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WARNING ¡ CUIDADO ! ACHTUNG

This is a draft. It contains more or less correct
proofs of statements that say more or less what
they should. Beyond that, I make no promises.
I’ve made many, many, many, many large-scale
changes to notation without ever going back to
proofread from page one. Caveat emptor.
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Glossary

alg (X) . . . . . . . . the (sub)algebra generated by X

consta . . . . . . . . the constant function that always returns a

C . . . . . . . . . . . the field of complex numbers

p | q . . . . . . . . . p divides q

EJA . . . . . . . . . Euclidean Jordan algebra

I . . . . . . . . . . . the identity matrix in the appropriate space

idX . . . . . . . . . . the identity function or arrow on X

ideal (X) . . . . . . . the ideal generated by X

lcm (X) . . . . . . . the least common multiple of the elements of X

R [X] . . . . . . . . . polynomials with coefficients in R and variable X

Pn (R) . . . . . . . . the polynomial ring R [X1, X2, . . . , Xn]

P (X) . . . . . . . . the “powerset,” or set of all subsets of X

PSD . . . . . . . . . positive-semidefinite

f�X . . . . . . . . . the restriction of f to X

R . . . . . . . . . . . the field of real numbers

σ (L) . . . . . . . . . the set of all eigenvalues of L

SDP . . . . . . . . . semidefinite program

Sn . . . . . . . . . . the set of n-by-n real symmetric matrices

SOCP . . . . . . . . second-order cone program

1R . . . . . . . . . . the multiplicative identity (unit) element of R
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Chapter 1

Preface

These notes were written for a class on advanced topics in operations research.
Euclidean Jordan algebras are an attractive subject for such a course; as they
are used in optimization, everything reduces to a finite-dimensional real inner-
product space with a funny multiplication defined on it. Basically, you’re in Rn,
and that means that even undergraduates can kind of understand what’s going
on if they’ve taken linear algebra.

Since Jordan-algebraic methods in optimization are an important research
area, one has to wonder—why aren’t they more popular? In the author’s opin-
ion, it’s the books. There are a lot of good books on Jordan algebras and a few
resources for Euclidean Jordan algebras, but none of them are “just right” if
you want an easy and comprehensive introduction to the subject. We mention
some of the more popular resources:

• The Minnesota Notes on Jordan Algebras and Their Applications, by Max
Koecher [8]. This is a good, readable book on Jordan algebras, but it fo-
cuses on general Jordan algebras and not (formally-real) Euclidean ones—
you don’t meet a Euclidean Jordan algebra until three-quarters of the way
through the book. The added generality requires some background that
students wouldn’t otherwise need to understand the simpler Euclidean
setting.

• Jordan-Algebren by Hel Braun and Max Koecher. I’ve heard this is also a
good, readable introduction to Jordan algebras. But unless you can speak
German, it’s a bit of a non-starter.

• A Taste of Jordan Algebras by Kevin McCrimmon and Structure and Rep-
resentations of Jordan Algebras by Nathan Jacobson. These are two huge
references by experts in the field that cover everything you could possibly
want to know about a Jordan algebra. But again, this comes at a price:
they are written at a graduate level. McCrimmon is easier than Jacob-
son, but it’s still rough going—and a lot of the material is irrelevant for
optimizers.
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• Analysis on Symmetric Cones, by Jacques Faraut and Adam Korányi[5].
This is the most cited work in the optimization literature. It’s compre-
hensive and generally trustworthy, but it’s also next to impossible to read,
especially for students. It assumes you have a strong background in ab-
stract algebra, analysis, and algebraic geometry among other things. Much
of our material comes from here, but we spend several pages discussing
each sentence.

• Spectral functions and smoothing techniques on Jordan algebras, by Michel
Baes. This was Baes’s PhD thesis, and was motivated by optimization—
smoothing techniques and spectral sets/function, in particular. Neverthe-
less, Baes has endeavored to build a foundation from scratch, and often
goes into Jacobson-like generality. For researchers, this is nice, because
many results for Euclidean Jordan algebreas apply more generally. How-
ever, for students, the detours into abstraction necessitate several years of
background that they aren’t likely to have.

• Fall 2001 Semidefinite and Second Order Cone Programming Seminar Lec-
ture Notes by Farid Alizadeh. This is probably the best match for what
we’re trying to accomplish. However, the material on Euclidean Jordan
algebras comprises a relatively small part of a larger course, and thus a
small part of their lecture notes. In the interest of brevity, many of the
proofs are omitted from the notes, and references to Faraut and Korányi
are given in their stead. But as we’ve said, the book by Faraut and Korányi
is nigh unreadable by mere humans.

In summary, what we’d like is something as clear and simple as the lecture
notes by Alizadeh, with the depth of Faraut and Korányi, and with everything
proved in detail. Our goal is to be accessible to someone with the following
background:

• One semester of real analysis (but preferably two).

• Two semesters of linear algebra; one focused on matrices, and one with
abstract vector spaces.

• One semester of abstract algebra covering at least rings, ideals, and poly-
nomials.

Basically, everything that we cover in Part I, you should already have seen
before. A non-comprehensive list of our assumptions:

• You are intimately familiar with the properties of the real numbers R.

• Sequences, limits, and open/closed sets in Rn are second nature.

• This is not be the first time you’ve met the complex numbers C.

• You’ve added, multiplied, and divided polynomials before.
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• The words “ring” and “ideal” do not scare you, having seen the abstract
definitions of algebraic structures like groups and vector spaces before.

• You can do changes of basis in a vector space without thinking about it.

• Finding the matrix of a linear operator with respect to a given basis is no
problem.

• You can compute eigenvalues, eigenvectors, and eigenspaces, and know
why all of them are important.

• You can diagonalize a matrix, or compute its spectral decomposition when
possible.

• You recall that there are two things called the “minimal polynomial” and
“characteristic polynomial” of a matrix.

• You’re willing to fake it if any of these assumptions don’t hold.

We won’t go into a lot of detail when it comes to the background material; we’ll
only mention some important results that are cited later. While the list above
contains the bare minimums, the following would be nice to have:

• A bit of algebraic geometry, to get a feel for working with polynomials
and their solutions.

• Some familiarity with topology (open and closed sets), since we mention
the Zariski topology momentarily.

• A bit of programming experience. A lot of these results look harder than
they are, and five minutes spent coding up an implementation can be more
enlightening than an hour spent staring at a page.

Throughout the notes, we’ve tried to keep the number of cited references to
a minimum. We expect that the reader will want to consult additional sources,
and that she probably won’t have fifty different books sitting around her at all
times. The following is a minimalish list of references to which we will refer by
name, rather than by citation. Only in rare cases are we forced to cite other
references.

• Abstract Algebra, by Beachy and Blair [4]. This is a great introduction to
groups, fields, rings, polynomials, and ideals—and that’s really all we’ll
need.

• Principles of Mathematical Analysis, by Walter Rudin. This book is fa-
mous for being difficult, but it’s still the standard most places. It’s worth
reading, if only so that you can be in on all the jokes about how ridicu-
lously hard it is.
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• Linear Algebra Done Right, by Sheldon Axler. The best introductory
linear algebra book, by far. Explains everything geometrically, and avoids
introducing coordinates unless they’re absolutely necessary. (Just buy this
book if you plan to keep doing math.)

• Advanced Linear Algebra, by Steven Roman [13]. If you can read Axler’s
book cover-to-cover, then this is where you go next. It’s also well-written,
but handles vector spaces of arbitrary dimension, over arbitrary fields—
and generalizes to modules over rings. Also treats Banach and Hilbert
spaces.

• Convex Optimization, by Boyd and Vandenberghe. Free online from the
authors.

• On an Algebraic Generalization of the Quantum Mechanical Formalism,
by Pascual Jordan, John von Neumann, and Eugene Wigner [7]. The
paper that started it all. Mainly of historical interest.

• Analysis on Symmetric Cones, by Jacques Faraut and Adam Korányi[5].
Mentioned previously.

• The Minnesota Notes on Jordan Algebras and Their Applications, by Max
Koecher [8]. Mentioned previously.

• Spectral functions and smoothing techniques on Jordan algebras, by Michel
Baes. Mentioned previously, and free from his advisor.

• Fall 2001 Semidefinite and Second Order Cone Programming Seminar Lec-
ture Notes by Farid Alizadeh. Free from the instructor’s website.

Finally, we mention some additional resources for background information.
These won’t be required, but may provide some additional value.

• Mathematical analysis, by Tom Apostol. This is what people use to fill in
the gaps when they get stuck reading Rudin.

• Introduction to Analysis, by Maxwell Rosenlicht. If you prefer a paper
copy of your reference books, this one is fifteen bucks on Amazon and gets
the job done.

• Algebra, by Saunders Mac Lane and Garrett Birkhoff [9]. This is the
grown-up version of Beachy and Blair. It uses higher-level ideas from
category theory, presents theorems more generally, and covers many of the
structures (magmas, monoids, modules, et cetera) that Beachy and Blair
omit. They say to read the masters, and these guys are the masters.

• Matrix Analysis and Applied Linear Algebra by Carl D. Meyer. This is
another good, comprehensive introduction to the most important concepts
of linear algebra, but using matrices instead of abstract linear operators
like Axler does. Unfortunately, you sometimes just have to know what to
do with a box full of numbers.
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• Harvard MATH122 (Abstract algebra) lecture videos. Free online from
Harvard’s Open Learning Initiative and mirrored on Youtube.

• Stanford EE364a (Convex Optimization I) lecture videos. Based on Con-
vex Optimization by Boyd and Vandenberge, and taught by Boyd. Avail-
able for free, and mirrored on youtube.

1.1 Notation notation
As a matter of honor, I strive in this text to make the notation as consistent
as possible without straying too much from widely-accepted conventions. The
reader should hold me to the following guidelines.

Generic variables, specifically function arguments and Euclidean Jordan al-
gebra elements, will be denoted by the lowercase Latin letters x, y, and z. If we
need more than three of them, or if we need an unspecified number k of them,
then x1, x2, . . . , xk will be used instead.

The capital Latin letters X, Y , and Z will be used to denote polynomial in-
determinates. If we need more than three of them, or if we need an unspecified
number k of them, then X1, X2, . . . , Xk will be used instead. In the context
of characteristic and minimal polynomials (where the indeterminate has some-
thing to do with eigenvalues), we will often use the indeterminate Λ instead. For
example, we write the characteristic polynomial of a matrix A as det (ΛI −A).
While det (XI −A) is equally correct, I see no reason to torture the reader
moreso than we already will by choosing an entirely different letter. The associ-
ated (scalar) eigenvalues are denoted by lowercase λ1, λ2, et cetera. Polynomials
themselves will use the lowercase Latin letters p, q, . . .

Linear operators and matrices that we want to treat like linear operators are
written in capital letters. The letters A,B, . . . are typically used for matrices;
the letters L,M, . . . for linear operators. This rule will be broken frequently
when we want to think of a matrix not as a linear operator, but as an element
of a Euclidean Jordan algebra where the names x, y, . . . are more appropriate.

Indexed lowecase Latin letters ai, bj , xk, and so on will be used for the
coordinates in a vector space or module. As a result of our index notation,
capital Latin letters like Aij will be used for the entries of a matrix A, even
though they are technically the coordinates of A with respect to a particular
basis. Other “interesting” scalars will be written in the lowercase Greek letters
α, β, . . .. If x ∈ R3, for example, we will write x = (x1, x2, x3)T even though
the xi happen to belong to the scalar field. If we want to scale x in some
specific context, we might write α (x1, x2, x3)T in that case. We formally define
polynomials as module elements that have coordinates, so if p is a polynomial,
the coefficients of X0, X1, . . . will be written as a0, a1, . . . rather than as αi.
Perhaps the converse is more useful: we will not use lowercase Greek letters for
anything other than scalars.
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Part I

Fundamentals
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Chapter 2

Vector space structure

2.1 Algebraic building blocks
The goal in this section is to illuminate the relationships between the various
algebraic structures that we’re going to encounter. The definitions below are a
bit verbose and are generally not used in practice. However, each subsequent
structure we define will be built from the previous ones, making only the neces-
sary changes or additions, to show how they relate to one another. And perhaps
more imporantly, some times you do really need the verbose definition to see
what’s going on. In any case, we mention some common notational shortcuts
that you’re likely to see following each definition.

Definition 1. A magma (S, µ) is a mathematical structure consisting of,

• A set S.

• A “multiplication” operation µ : (S × S)→ S.

Magmas are a most basic kind of algebraic structure. All that we impose is
the condition of closure on µ, namely that “multiplying” two elements of S gives
us back another element of S. Beware that some people use the term “groupoid”
to refer to magmas—the name “groupoid” however means something different
in other contexts, so we avoid it.

Definition 2. A semigroup (S, µ) is a magma where the “multiplication” op-
eration µ is associative.

Example 1. Let S = Z and let µ = max. Then for all integers x, y, z ∈ S,
we have max (max (x, y) , z) = max (x,max (y, z)) ∈ S; so (Z,max) forms a
semigroup.

Definition 3. A monoid (M,µ, 1M ) is a mathematical structure consisting of,

• A set M and a “multiplication” operation µ : (M ×M) → M such that
(M,µ) forms a semigroup.

12



• A unit element 1M ∈M such that for any x ∈M , we have µ (1M , x) = x
and µ (x, 1M ) = x.

A monoid is thus a semigroup with a unit element. Monoids are important
in their own right in computer science (list concatenation) and category theory,
among other places.

Convention 1: Units and identities

Unit elements are also commonly called identity elements, but we
will do our best to avoid that terminology, since it can lead to
ambiguity with the identity function or certain named relation-
ships like the Jordan identity. The identity matrix can be either,
depending on the context! We quote McCrimmon in A Taste of
Jordan Algebras. . .

Note that again the notation 1 for the unit is a generic
one-term-fits-all-algebras notation; if we wish to be
pedantic, or clear (“Will the real unit please stand
up?”), we write 1A to make clear whose unit it is.
The unit element is often called the identity element.
We will try to avoid this term, since we often talk
about an algebra “with an identity” in the sense of
“identical relation” (the Jacobi identity, the Jordan
identity, etc.). Of course, in commutative associative
rings the term “unit” also is ambiguous, usually mean-
ing “invertible element” (the group of units, etc.), but
already in noncommutative ring theory the term is
not used this way, and we prefer this lesser of two
ambiguities. It is a good idea to think of the unit as
a neutral element for multiplication, just as 0 is the
neutral element for addition.

Example 2. Let M = (Z ∪ {−∞}) and let µ = max. We saw in Example 1
that (Z,max) forms a semigroup, and it’s not hard to see that the addition of
the element “−∞” does not change that. However, in this case, we have a unit
element:

∀x ∈M : max (x,−∞) = x = max (−∞, x) .
As a result, ((M,µ),−∞) forms a monoid.
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Another perspective is that a monoid is like a group, but without the re-
quirement that we have inverses.

Definition 4. A group (G,µ, e, ι) consists of,

• A set G such that (G,µ, e) forms a monoid.

• An inverse operation ι : G→ G such that µ (g, ι (g)) = µ (ι (g) , g) = e for
any g ∈ G.

If µ (g, h) = µ (h, g) for all g, h ∈ G (that is, if multiplication is commuta-
tive), then the entire structure is called an abelian group, after the mathemati-
cian Niels Henrik Abel.

Convention 2: Group notation

Typically the group operations and unit element are understood,
and we say “the group G” to refer to the entire structure, leaving
the multiplication, inverse, and unit elements implicit. Since a
priori the group operation acts like multiplication, people usually
write gh for the product of g and h when the group structure is
understood. Likewise, we write g−1 for the multiplicative inverse
of g. An exception to that rule is when the group is abelian. In
that case, the group operation acts like addition, and the “prod-
uct” of g and h is written g + h. The inverse of g is then written
−g to agree with the intuition behind addition.

When a single symbol like G is used for the entire group, people
also sometimes repurpose that symbol to refer only to the un-
derlying set. For example, you might see φ : G → G written to
indicate that φ is a function on whatever set underlies the group
G. This is unambiguous since there’s only one set involved in the
definition of a group.

To summarize: a group is a set where we can multiply two elements to
get another element of the set, and this multiplication has a unit element and
inverses.

Definition 5. Roman,
Preliminaries,
Part 2

A ring (R,+, 0,− (·), ·, 1) consists of a set R such that,

• (R,+, 0,− (·)) forms an abelian group.

• (R, ·, 1) forms a monoid.

14



• Monoid “multiplication” distributes over group “addition” on both sides:

∀x, y, z ∈ R : x · (y + z) = (x · y) + (x · z) ,
∀x, y, z ∈ R : (x+ y) · z = (x · z) + (y · z) .

If x · y = y · x for all x, y ∈ R, then the entire structure a commutative ring.

Keep in mind that addition is always commutative in a ring, so the fact that
addition commutes does not make the ring commutative. The name “commu-
tative ring” refers to the multiplication.

Convention 3: Ring notation

Since the additive structure of a ring forms an abelian group,
everyone follows Convention 2 and writes the group operation
as addition, its unit element as zero, and its inverse as negation.
The multiplicative (monoid) structure of a ring is modeled on that
of the integers, and so we write it the same way we do integer
multiplication, either by juxtaposition gh or with a dot, like g ·h.
For the same reason, the group unit is almost always written as
“1,” since 1 is the multiplicative unit element for integers.

Since the operations and unit elements are always written the
same, most people omit them and say something like “if R is a
ring,” which means that R is a set on which there exists a ring
structure. And as collateral damage, we sometimes reuse the
ring symbol R to refer only to the underlying set. For example,
you will see φ : R → R used to indicate that φ is a function
on whatever set underlies the ring R. This is unambiguous since
there’s only one set involved in the definition of a ring.

Authors disagree on whether or not rings should have multiplicative identity
(unit) elements. Ours do. When there is no multiplicative identity, there is is a
tongue-in-cheek convention to call the resulting structure a rng; that is, a “ring”
but without the “i” (get it?). This is a decent enough convention, and easy to
remember, so we adopt it.

A subring of a given ring is a subset of the ring’s underlying set R that itself
forms a ring using the addition and multiplication operations (appropriately
restricted) from the bigger ring. Since our rings have unit elements, subrings
must too.
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Definition 6. If (R,+, 0,− (·), ·, 1) is a commutative ring, then a ring ideal in
R is a subset I ⊆ R such that (after restricting the domain and codomain of
the ring operations appropriately),

• (I,+, 0,− (·)) forms a subgroup of (R,+, 0,− (·)),

• (I, ·) forms a sub-semigroup of (R, ·).

• ∀i ∈ I,∀r ∈ R : i · r ∈ I.

If I = Rx := {rx | r ∈ R} for some x ∈ R, then I is called a principal ideal.

We don’t say that I forms a subring of G because we just mentioned that
subrings have a unit element, and we don’t want to require ring ideals to have
them too: if a ring ideal contains the unit element of the ring, the ring ideal is
the whole ring. This is also why we say that (I, ·) should form a sub-semigroup
in the definition of a ring ideal rather than a sub-monoid.

For some motivation, recall from group theory that if H is a subgroup of
G, then G/H does not necessarily form a group. We need H to be a normal
subgroup, so that the “mod” operation works the way we want it to. Ring ideals
are the same concept, but for rings. The set of equivalence classes R/I need
not be a ring unless I is a ring ideal.

Before we move on to fields, here are two special types of commutative ring
you’ll want to know.

Definition 7. Beachy and Blair,
Definition 5.1.7
and
Definition 5.3.3

If (R,+, 0,− (·), ·, 1) is a commutative ring with 1 6= 0 and if,
for all a, b ∈ R, ab = 0 implies (a = 0 or b = 0), then (R,+, 0,− (·), ·, 1) is an
integral domain. An integral domain where every ring ideal is a principal ideal
is a principal ideal domain.

The set of integers Z forms an integral domain, which is how integral domains
got their name. It’s a little less obvious, but Example 5.3.1 in Beachy and Blair
shows that the integers form a principal ideal domain as well.

Definition 8. A field
(
F,+, 0,− (·), ·, 1, (·)−1

)
consists of a set F such that

• (F,+, 0,− (·), ·, 1) forms a commutative ring, and

•
(
F \ {0},+, 1, (·)−1

)
forms an abelian group.

Fields add a multiplicative inverse to the concept of a commutative ring, but
with the caveat that there is no inverse for the additive unit (zero) of the ring.
This is easy enough to remember if you think of the real numbers, where there
is no multiplicative inverse of zero because we can’t divide by zero.
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Convention 4: Field notation

Fields often appear in “blackboard” font; for example, a general
field is commonly denoted by F. As always, when it’s clear from
the context or when we just don’t feel like writing it all out, we use
the single letter F to represent the entire field structure, leaving
the operations, unit elements, and inverses implicit.

Perhaps more importantly, we will sometimes use the symbol F
that denotes the entire field structure to refer only to the under-
lying set. For example, we might write φ : F → F to indicate
that φ is a function on whatever set underlies the field F. This
is largely unambiguous, since (if you squint) there’s only one set
involved in the definition of a field.

2.2 Vector and Hilbert spaces
Our first definition in this section is going to look a bit strange at first, so we
preface it with a motivating example.

Example 3. Most people would agree that in R3, we have the identity

(1 + 2 · 2) ·
(

(1, 0, 0)T + (0, 0, 1)T
)

= (5, 0, 5)T .

But what’s really going on here? The “plus” in (1 + 2 · 2) is addition of real
numbers, but the “plus” in (1, 0, 0)T +(0, 0, 1)T is addition of vectors. Moreover,
after simplifying, the “dot” in 2 ·2 is not the same “dot” in between 5 · (1, 0, 1)T .
We’ve written the operators the same, but they’re doing two different things.
We should really have two different addition/multiplication operations, and we
should know how they interact!

The above example motivates the definition of a module, which works just
like our example but explicitly keeps the operations separate. In other words,
scaling a vector is not the same thing as multiplying two numbers, and addition
of numbers and vectors get two separate operators. As you read, you can think
of the ring R as being the real numbers and the abelian group M as being
vectors. The “?” operation is what scales a vector by a real number.

Definition 9. Roman, Chapter 4An R-module (M,R, ?) consists of,

• An abelian group M := (M,+M , 0M ,−M (·)) of module elements,
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• A commutative ring R := (R,+R, 0R,−R (·), ·R, 1R) of scalars,

• A scaling operation ? : (R×M)→M satisfying the following laws,

∀α ∈ R,∀x, y ∈M : α ? (x+M y) = (α ? x) +M (α ? y)
∀α, β ∈ R,∀x ∈M : (α+R β) ? x = (α ? x) +M (β ? x)
∀α, β ∈ R,∀x ∈M : (α · β) ? x = α ? (β ? x)

∀x ∈M : 1 ? x = x.

A module can be thought of as “a vector space, but over a ring instead of a
field.” It is tempting to call the elements of M in Definition 9 “vectors,” but we
take care to avoid doing so, since the name “vector” suggests an element of a
“vector space.” The name R-module is by analogy to F-vector-space. In hind-
sight, if we think of a commutative ring as being a module over itself (Roman,
Example 4.1.3), then Definitions 6 and 9 say that the ring ideals in that ring
are precisely the submodules of the resulting module.

Convention 5: Module notation

It’s at this point that the structures become too complicated and
we just assume that everyone knows what we’re talking about.
Typically we will just say that (M,R) is a module, and it’s un-
derstood that M is a set on which there exists some additive
group structure, and that R is a commutative ring that can be
used to scale elements of M . Sadly, the subscripts on the oper-
ations are not used in practice. You will instead see the three
module operations conflated as in Example 3.

Example 4. Let Z3 be the set of all 3-by-1 column matrices whose entries are
integers. If we define addition of these objects byx1

x2
x3

+

y1
y2
y3

 :=

x1 + y1
x2 + y2
x3 + y3


and the scaling operation by

α ?

x1
x2
x3

 :=

αx1
αx2
αx3

 ,
then the resulting structure forms a Z-module. Of course, inside the brackets,
addition and multiplication are just the usual addition and multiplication of
integers.
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The general theory of modules is a lot more complicated than that of vector
spaces, but we won’t need most of it. It is however nice to know the definition,
because a vector space is simply a module over a ring that happens to be a field.
You will also see the name “module” a lot in SageMath, where vector spaces are
implemented as modules. Finally, it will save us a lot of time if we are able to
pretend that we’re allowed to put polynomials inside of vectors and matrices.
The theory of modules tells us that this is mathematically okay.

A free module is the name for a module with a basis, and for example, we can
construct the free module that consists of triples of integers, as in Example 4.

sage: M = FreeModule(ZZ,3)
sage: M.basis()
[
(1, 0, 0),
(0, 1, 0),
(0, 0, 1)
]

When an R-module has a basis, we can use that basis as a coordinate sys-
tem, much like we do with vectors in a real vector space. In an n-dimensional
real vector space, the coordinate vectors live in Rn, and in an R-module the
coordinates will live in Rn. To act on those coordinate representations, we can
define matrices whose entries are in R, and the set of all such matrices will itself
form an R-module, exactly how the set of all real n-by-n matrices forms a real
vector space of dimension n2.

Definition 10 (matrix notation). If R is a commutative ring, then Rm denotes
the set of all m-by-1 column matrices whose entries are elements of R. The set
Rm forms an R-module in an obvious way; if α ∈ R and x, y ∈ Rm, then the
addition and scaling operations are performed componentwise,

x1
x2
...
xm

+


y1
y2
...
ym

 :=


x1 + y1
x2 + y2

...
xm + ym



α ?


r1
r2
...
rm

 :=


αr1
αr2

...
αrm

 .
We further define Rm×n to be the set of m-by-n matrices with entries in R. If
A ∈ Rm×n, then we write Aij to indicate the element in the ith row and jth
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column of A,

A =

A11 · · · A1n
... . . . ...

Am1 · · · Amn

 .
Addition and scaling of these matrices works just like addition and scaling of
matrices whose entries come from a field. The set Rm×n therefore also forms
an R-module with the operations

A+B :=

 A11 +B11 · · · A1n +B1n
... . . . ...

Am1 +Bm1 · · · Amn +Bmn


αA :=

αA11 · · · αA1n
... . . . ...

αAm1 · · · αAmn


If the dimensions of A and B are compatible, that is if A ∈ Rm×n and if
B ∈ Rn×p, then matrix multiplication is defined in the usual way,

AB :=

C11 · · · C1p
... . . . ...

Cm1 · · · Cmp

 , where

Cij :=
n∑
k=1

AikBkj .

Thus when m = n, the set Rn×n forms a ring where the multiplication operation
is matrix multiplication. Its unit element is the n-by-n identity matrix,

I :=


1R 0 0 · · · 0
0 1R 0 · · · 0
... . . . . . . . . . ...
0 0 · · · 1R 0
0 0 · · · 0 1R

 = 1Rn×n ∈ Rn×n.

Convention 6: All identity matrices look the same

The notation “I” for an identity matrix mentions neither the size
n×n nor the ring R. The size and nature of its entries can usually
be inferred from the context. For example, if Λ belongs to some
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ring R (that isn’t a ring of matrices!), then you should probably
deduce that the I in the expression ΛI refers to a matrix with 1R
on the diagonal. Likewise if you see I +A where A ∈ Rn×n.

This is not as mathematically infuriating as it sounds. In Sec-
tion 3.3, we will adopt the convention of representing constant
polynomials by their sole nonzero coefficient. This is well-founded
whenever there exists a natural inclusion map from the base ring
to the larger ring that sends one unit element to the other. With
that in mind, you can think of “I” as a matrix of “ones,” where
the meaning of each 1 depends on the context.

So far we’ve been building up to the definitions of vector space and algebra.
Almost all optimization takes place in a vector space with some additional
structure. First let’s review what a vector space is, and what kinds of additional
structure we might impose on one.

Definition 11. A vector space (V,F, ?) is a module where the ring F is a
field. The elements of the underlying abelian group are called vectors, and the
elements of the field are called scalars.

Combining all of the properties of fields and modules should give you the
usual long list of axioms associated with a vector space.

You must know the underlying field and all of the operations (vector ad-
dition, field multiplication, field addition, vector scaling, et cetera) in order
to specify a vector space. It is therefore incorrect to say “let V be a vector
space. . . ” with no further information. Nevertheless, that’s what people do. Be
aware that you need to infer the rest of the information from the context. An-
other caveat is that the field multiplication and vector scaling are often written
the same way. The multiplication that takes π and turns it into 2π is not the
same as the multiplication that takes x ∈ V and turns it into 2x (one works on
vectors and the other on real numbers), but you will almost certainly find them
both denoted by a dot or by juxtaposition. Sorry.
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Convention 7: Vector space notation

After this section, we conform and write (V,F) to denote a vector
space, where V itself denotes the set of vectors. The operations
are all implicit and are written the usual way, like they are in Rn
(Example 3).

Definition 12. A normed vector space (V,F, ?, ‖·‖) consists of,

• A vector space (V,F, ?) where V = (V,+, 0,− (·)) is its abelian group of
vectors with a vector-addition operation.

• A subfield F of either the real numbers R or complex numbers C.

• A function called a norm, defined on V,

‖·‖ : V → F,

that satisfies three properties:

� Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
� Absolute homogeneity: ‖αx‖ = |α| ‖x‖ for α ∈ F.
� Positive-definiteness: ‖x‖ = 0 only when x = 0.

Norms are one way to define a “distance” between two vectors in a vector
space. If we think of ‖x‖ as the length of the vector x, then we can also think of
‖x− y‖ as the length of the segment from x to y (that is, the distance between
the two points). When y = 0, we get ‖x− y‖ = ‖x− 0‖ = ‖x‖ as the distance
from 0 to x, which is exactly what we call the “length” of a vector.
Remark 1. Even though we have defined the codomain of the norm function to
be the field F, our use of the “less than or equal to” in the triangle inequality
implies that the codomain of the norm is contained in the field of real numbers.
However, the choice of F was not merely to impress the reader: if F is a subfield
of the real numbers (like the rational numbers Q or the algebraic reals), then
the norm of an element should also belong to that smaller field. If F = Q, then
you can’t have an element with norm π.

In general, there may be more than one function defined on a single vec-
tor space that satisfies the properties of a norm. In finite-dimensional spaces,
however, they are all equivalent in a sense.
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Proposition 1 (equivalence of norms). Boyd, A.1.4If (V,F, ?) if a finite-dimensional vector
space and if ‖·‖a : V → F and ‖·‖b : V → F are two norms on V , then there
exist constants α, β > 0 in F such that

∀x ∈ V : α ‖x‖a ≤ ‖x‖b ≤ β ‖x‖b .

In particular, both norms induce the same open/closed sets, functions that are
continuous in one norm are continuous in the other, and sequences that converge
(or diverge) in one norm converge (or diverge) respectively in the other.

Definition 13. An inner-product space (V,F, ?, 〈·, ·〉) consists of,

• A vector space (V,F, ?) where V = (V,+, 0,− (·)) is its abelian group of
vectors with a vector-addition operation.

• A subfield F of either the real numbers R or complex numbers C.

• A function called an inner product defined on V × V ,

〈·, ·〉 : (V × V )→ F,

that satisfies three properties:

� Conjugate symmetry: 〈x, y〉 = 〈y, x〉.
� Linearity in first argument: 〈αx+ y, z〉 = α 〈x, z〉+ 〈y, z〉.
� Positive-definiteness: 〈x, x〉 > 0 for all nonzero x ∈ V .

In every inner-product space there is a natural norm ‖·‖ : V → F defined by
‖x‖ :=

√
〈x, x〉. The properties necessary of an inner-product ensure that this

function is indeed a norm.

Remark 2. As with a normed vector space, the field F must be either real or
complex in an inner-product space. This is so that the complex conjugate makes
sense in the “conjugate symmetry” axiom, and ensures that the natural norm
on the inner-product space has a codomain compatible with the properties of a
norm (as in Remark 1).

For the most part, we will consider only real vector spaces, where F = R. We
have tried not to overcomplicate these definitions, but on the other hand we need
them general enough to be sure that everything is justified. Particularly when
working in SageMath, we will need to use fields other than the real numbers,
because most real numbers can’t be represented exactly on a computer. The
best we can do is approximate them, and this leads to some problems:
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sage: RR
Real Field with 53 bits of precision
sage: A = matrix(RR, [[ 3, 5 ],
....: [ 30, 50 ]])
sage: A.rank()
2

Since the second row of that matrix is a multiple of (ten times) the first, its
rank should be one. What went wrong?

Warning 1: Floating point breaks linear algebra

Floating point numbers are merely approximations, and the com-
puter doesn’t have a good way of determining when two approx-
imations are equal. As a result, most linear algebra should be
done with rational numbers or the algebraic real field (the alge-
braic reals are the rationals with all square roots, cube roots, and
so on added in).

The rational field and real algebraic field are both usable in SageMath:
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sage: QQ
Rational Field
sage: AA
Algebraic Real Field
sage: QQ.is_subring(AA)
True
sage: AA.is_subring(RealLazyField())
True
sage: A = matrix(QQ, [[ 3, 5 ],
....: [ 30, 50 ]])
sage: A.rank()
1
sage: A = matrix(AA, [[ 3, 5 ],
....: [ 30, 50 ]])
sage: A.rank()
1

However, as far as the theory is concerned, you can usually imagine that we’re
working in Rn with real scalars. The following theorem says that every finite-
dimensional real inner-product space of the same dimension m is essentially the
same. Thus, up to isomorphism, it generally suffices to do things in Rn with
the usual inner-product.
Theorem 1. Any m-dimensional real inner-product space is isometric to Rm.
This result will be proved in Exercise 5.

Simplification 1: Real inner-product spaces

When F = R in an inner-product space, two properties of an
inner-product can be simplified:

• Symmetry:
∀x, y ∈ V : 〈x, y〉 = 〈y, x〉 .

• Bilinearity:

∀α ∈ R,∀x, y, z ∈ V : 〈αx+ y, z〉 = α 〈x, z〉+ 〈y, z〉

Thanks to symmetry, bilinearity need only be checked on one
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side.

In a moment (in Section 2.3), we will discuss continuity and compactness
in a vector space setting. Certain continuity and compactness results get com-
plicated in infinite dimensions, or in spaces that are not “complete.” For the
sake of brevity, we will state the simplified versions of these results in a finite-
dimensional complete inner-product space.

Definition 14. A normed vector space in which every Cauchy sequence con-
verges is called complete. A Hilbert space is a complete inner-product space.

Chapter 13 in Roman is devoted entirely to Hilbert spaces. Since our inner-
product spaces will all be finite-dimensional, and since the fields R and C are
complete, the only way that we could wind up with an incomplete inner-product
space would be to choose an incomplete subfield of R or C as the base field.
For example, R3 forms a Hilbert space but Q3 does not. Examples 12.9 and
12.10 in Roman discuss the completeness of Rn and Cn briefly. We mention
this caveat only because we have explicitly left open the possibility of choosing
such a subfield in Definition 13 and the remarks that follow it. However, for
the purposes of the theory, we’ll be using the real or complex field and there’s
nothing to worry about.

Example 5. Roman, examples
12.4, 12.14, and
13.1

The space `2 (R) consists of all square-summable sequences of real
numbers,

`2 (R) :=
{

(x1, x2, . . .)T
∣∣∣∣∣ xi ∈ R,

∞∑
i=1

x2
i ∈ R

}
.

This set forms a vector space over R with componentwise addition and scaling,
just like in Rn. However, there also exists a natural inner-product on the space,

〈x, y〉 :=
∞∑
i=1

xiyi,

which induces the norm

‖x‖ := 〈x, x〉1/2 =
( ∞∑
i=1

x2
i

)1/2

.

The definition of `2 (R) ensures that the sum in the norm converges, so that we
can actually take its square root. Since the norm converges, a general version
of Cauchy-Schwartz can be used to show that the sum in the inner-product
converges as well, even when y 6= x. This normed vector space is complete and
separable [13], and is one of the most important examples of a Hilbert space.

26



2.3 Continuity and compactness
The proper setting in which to discuss continuity and compactness is in a topo-
logical space. However, introducing all of the necessary terminology from topol-
ogy would take us too far abroad of our main goal, which is to use these concepts
in finite-dimensional inner-product spaces. So, without going into the details, we
will note that every normed vector space (and thus every inner-product space)
can be thought of as a topological space, and leave it at that. Likewise—in
case the reader is familiar with the concept—every normed vector space also
forms a metric space where the distance between two points is the norm of their
difference. Thus when we state things for normed vector spaces, you may apply
any results that you know for metric spaces.

The following is used as the definition of continuity in a topological space.
It is equivalent to the usual epsilon-delta definition in Rn, but we don’t have
epsilons and deltas in a topological space, so the more general formulation is
used. It will be useful, in particular, to know that the preimage of an open or
closed set under a continuous function is of the same type.

Definition 15. Let V and W be finite-dimensional Hilbert spaces and f : V →
W be a function. We say that f is continuous on V if the preimage of every
open set in W is open in V .

Exercise 1 (continuous preimage of closed set is closed). Let f : V →
W be a continuous function between two topological spaces V and W , so that
(by Definition 15) the preimage under f of every open set in W is open in V :

Y is open in W =⇒ f−1 (Y ) = {x ∈ V | f (x) ∈ Y } is open in V.

Prove that the preimage under f of every closed set in W is closed in V . Feel
free to take V = W = Rn to simplify things. A closed set is, by definition, a set
that is the complement of some open set.

Hint: show that the “preimage of” operation plays nice with “complement
of” operation, and then use the fact that every closed set is the complement of
some open set. Note that V is both open and closed as a subset of itself.

Since open and closed sets are dual to one another, we could just as well have
used the condition in Exercise 1 as our definition of a continuous function. And
in a finite-dimensional Hilbert space, either is equivalent to the usual epsilon-
delta condition that we get by taking the definition of continuity in R and
therein replacing the absolute value with a norm.

Theorem 2. Rudin, Theorems
4.6 and 4.8

If V and W are finite-dimensional Hilbert spaces and if f : V →
W is a function, then the following are equivalent:

• f is continuous on V in the sense of Definition 15.

• For every convergent sequence xn → x in V we have

lim
n→∞

f (xn) = f
(

lim
n→∞

xn

)
= f (x) .
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• f satisfies the usual epsilon-delta definition of continuity,

∀x ∈ V,∀ε > 0,∃δ > 0 : ‖x− y‖ < δ =⇒ ‖f (x)− f (y)‖ < ε.

And of course, using any of those definitions, we have the following basic
results.

Proposition 2. Addition is continuous on every normed vector space V .

Proof. Suppose that (x, y)n is a sequence converging to (x, y) in V × V , and
let f denote the “plus” function on V × V . Then there exist two sequences
in V such that xn → x and yn → y individually, and we can use the triangle
inequality to see that

‖f ((x, y))− f ((xn, yn))‖ = ‖(x+ y)− (xn + yn)‖
= ‖(x− xn) + (y − yn)‖
≤ ‖x− xn‖+ ‖y − yn‖
→ 0 + 0.

Proposition 3. If V ,W , and Z are finite-dimensional Hilbert spaces and if f :
V → W and g : W → Z are continuous, then the composition (g ◦ f) : V → Z
is continuous.

The next important concept, that of a compact set, is often described as a
generalization of finite sets.

Definition 16. A set X in a finite-dimensional Hilbert space is compact if
every collection of open sets that covers X can be reduced to a finite set. More
formally, we say that X is compact if, whenever

X ⊆
⋃
i∈I
Oi

for open sets Oi, there exists a finite subcollection of the Oi that also covers X:

∃m ∈ N : X ⊆
m⋃
i=1
Oi.

This definition is a bit weird, but it has its roots in a simpler setting. Recall
that a bounded set X in Rn is a set whose elements are all contained within
some norm ball,

X is bounded ⇐⇒ ∃M ∈ R : [∀x ∈ X : ‖x‖ < M ] .

Bounded sets are defined similarly in any normed vector space. In Rn compact-
ness is equivalent to being closed and bounded. However, in a topological space,
there is no notion of “bounded,” only that of “open.” Thus, for compactness to
have meaning in more general spaces, the funny Definition 16 is used.
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Theorem 3 (Heine-Borel). In any finite-dimensional Hilbert space, a set is
compact if and only if it is both closed and bounded.

The Heine-Borel theorem is usually stated in Rn, but Theorem 1 says that
every finite-dimensional real Hilbert space is basically Rn for this purpose. In-
deed, we have taken it a bit further and dropped the word “real” because the
same thing holds in any finite-dimensional Hilbert space, and in particular Cn.

But why should we care about continuity and compactness at all? One of the
most important theorems in optimization says that a (real) continuous function
on a compact set always achieves its minimum and maximum. This is a result
of the next proposition, which says that the continuous image of a compact set
is compact.

Proposition 4. Rudin Theorem
4.14

If V,W are finite-dimensional Hilbert spaces with X compact
in V and if f : V →W is continuous, then f (X) is compact in W .

Theorem 4. Rudin Theorem
4.16

Let V be a finite-dimensional Hilbert space. If X is a compact
set in V , and if f : V → R is a continuous function, then f achieves its
maximum/minimum on X. More precisely,

∃x0 ∈ X : sup ({f (x) | x ∈ X}) = f (x0) ,

and likewise for the infimum. Thus we can replace “sup” with “max” if we like.

Proof. Since Proposition 4 tells us that

f (X) := {f (x) | x ∈ X}

is compact, Theorem 3 says that it’s closed and bounded. Thus both

sup (f (X)) and inf (f (X))

are finite real numbers, and are the limit (by the definitions of infimum and
supremum) of real numbers in f (X). But then the fact that f (X) is closed
implies that those numbers are actually in f (X) itself.

Example 6. The same is not true for non-compact sets: what is the supremum
of f (x) = 1/x on the set X = (0, 1) ⊆ R? The open interval X is not compact
in this case (by Theorem 3), because it’s not closed.

Example 7. Let X ⊆ Rn be closed and bounded, and let f be continuous on
Rn. Then f attains its maximum on X by Theorems 3 and 4, and we can hope
to find it. If A ∈ Rn×n is some matrix, then the map x 7→ Ax is continuous,
and Proposition 4 tells us that A (X) := {Ax | x ∈ X} is also a compact set.
Thus we can try to maximize f over the set A (X), too.

Finally, there is another definition of compactness called sequential compact-
ness that makes some limit arguments easier. For us, sequential compactness
and compactness will be the same thing. The following theorem says that com-
pact sets are sequentially-compact, and that’s the direction we’ll need.
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Theorem 5 (sequential compactness). Rudin, Theorem
3.6

If V is a finite-dimensional Hilbert
space, then X ⊆ V is compact if and only if every sequence in X has some
subsequence that converges to a limit in X.

On the other hand, if we are given a convergent sequence, we can put it
inside compact set because the sequence itself is bounded by some closed ball.

Theorem 6. If V is a normed vector space, then every convergent sequence
in V is contained in a bounded subset of V . In particular, if V is a finite-
dimensional Hilbert space, then every convergent sequence in V is contained
inside some compact subset of V .

Proof. Theorem 3.2 in Rudin states that every convergent sequence in a metric
space (of which normed vector spaces are one example) is contained inside some
bounded set X. If moreover V is a Hilbert space, then it contains its limits,
and cl (X) ⊇ X is a subset of V as well. Thus the closed and bounded (that is,
compact) set cl (X) does the job.

2.4 Algebras
Definition 17. An algebra (M,R, ?, ◦) consists of,

• A module (M,R, ?), where M = (M,+, 0,− (·)) is its abelian group of
module elements and R is its commutative ring.

• A multiplication operation “◦” such that (M, ◦) forms a magma.

• The additional condition that the magma multiplication is bilinear with
respect to the addition and scalar multiplication of the module:

∀α ∈ R,∀x, y, z ∈M : ((α ? x) + y) ◦ z = α ? (x ◦ z) + α ? (y ◦ z)
∀α ∈ R,∀x, y, z ∈M : z ◦ ((α ? x) + y) = α ? (z ◦ x) + α ? (y ◦ z) .

If the magma multiplication is commutative, then the entire structure is called a
commutative algebra. If (M, ◦) forms a semigroup (that is, if the multiplication
is associative), then the entire structure is called an associative algebra. If there
exists some 1M ∈M such that

∀x ∈M : 1M ◦ x = x and x ◦ 1M = x,

then the entire structure is a unital algebra and 1M is its unit element.

The most common application of Definition 17 will be to vector spaces,
where the commutative ring happens to be a field. Since every vector space
is a module, a vector space that comes with a magmatic multiplication forms
an algebra. The reason for the more-general definition is because we want to
talk about algebras of polynomials later, and there the coefficients (the scalars)
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might not come from a field. Allowing algebras to be over a module also agrees
with the SageMath definition in the MagmaticAlgebras category:

sage: from sage.categories.magmatic_algebras import *
sage: print(MagmaticAlgebras.__doc__)

The category of algebras over a given base ring.

An algebra over a ring ‘R‘ is a module over ‘R‘ endowed
with a bilinear multiplication...

Warning 2: Algebras may not be rings

The “vector multiplication” in an algebra may not be associative.
In other words, the vector addition and multiplication may not
give rise to a ring, because multiplication must be associative in
a ring. In an algebra, multiplication is sometimes commutative,
sometimes not. Some algebras have multiplicative unit elements
and some don’t.

Example 8 (algebra of linear operators). If (V,F) is a vector space, then the
F-vector-space of linear operators on V , which we denote by B (V ), forms an as-
sociative unital algebra whose multiplication is function composition and whose
unit element is the identity operator idV on V . For L,M ∈ B (V ) and α ∈ F,
define

Vector scaling: α ? L := x 7→ αL (x)
Vector addition: L+M := x 7→ L (x) +M (x)

Vector multiplication: L ◦M := x 7→ L (M (x)) .

Normally in this algebra, we write simply αL for α ? L and LM for L ◦ M
since these objects act like matrices, and that’s how we write the corresponding
operations for matrices.

Composition is a valid multiplication in this example because both functions
are linear. If N ∈ B (V ) is any other linear operator on V , then

∀x ∈ V : [(α ? L+M) ◦N ] (x) = αL (N (x)) +M (N (x))
= [(α ? (L ◦N)) + (M ◦N)] (x)
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showing that—as functions, and thus as algebra elements—we have

(α ? L+M) ◦N = (α ? (L ◦N)) + (M ◦N) .

In other words, our “multiplication” is linear in the first (left) component. The
process to show that it’s linear in the second component is identical. Combining
the two shows that we do indeed have an algebra. Here, the identity operator
does somewhat obviously satisfy the definition of a unit element with respect
to the algebra multiplication. Thus, this algebra is unital. Finally, function
composition is always associative. Since the multiplication in this algebra is
composition, that multiplication is associative, and the whole thing is an asso-
ciative algebra.

Example 9 (algebra of functions). If (M,R, ·) is an algebra over R and if F is
some set of functions from X to M , then we can add, multiply, and scale them.
Define for f, g ∈ F and α ∈ R,

Module scaling: α ? f := x 7→ αf (x)
Module addition: f + g := x 7→ f (x) + g (x)

Algebra multiplication: f • g := x 7→ f (x) · g (x) .

(We have used a dot/disc instead of a circle to indicate algebra multiplication
to avoid confusion with function composition.) If the functions defined above
belong to F for all f, g ∈ F and α ∈ R, then with the proper bookkeeping, the
set F forms another algebra.

Even if X = M , the identity function idM on M is not a unit element for
this algebra, since (idM •f) (x) := idM (x) f (x) = xf (x) 6= f (x). However,
if (M,R, ◦) is unital with multiplicative unit 1M , then the constant function
const1M

:= x 7→ 1M works instead:

(const1M
•f) (x) := const1M

(x) · f (x) = 1M · f (x) = f (x) ,
(f • const1M

) (x) := f (x) · const1M
(x) = f (x) · const1M

= f (x) .

So if const1M
∈ F , this algebra is unital as well. Finally, if (M,R, ·) is associa-

tive, then it easily follows that the algebra of functions is associative too.

Convention 8: Linear function composition

In the algebra of linear operators, we used the function compo-
sition symbol L ◦M to indicate the composition of L with M .
No one does this: instead, they write LM to mean the same
thing. This is by analogy with matrices, where the product of L
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and M is written LM and represents the composition of the two
functions whose matrix representations are L and M .

From now on, we use juxtaposition to indicate both the compo-
sition of linear operators and matrix multiplication.

Example 10. In R3, the vector cross product defined byx1
x2
x3

×
y1
y2
y3

 =

x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

 (2.1)

is a bilinear “multiplication,” and thus induces an algebra on R3.

Exercise 2 (vector cross product is an algebra operation). Show
that the cross product defined on R3 by Equation (2.1) is bilinear, and that it
therefore makes R3 into an algebra. Afterwards, show that the cross product is
neither commutative nor associative. A counterexample suffices here; try a few
values of x, y, z until commutativity and associativity fail.

In the later chapters, our focus will be on a particular type of commutative
(but not associative) type of algebra called a Jordan algebra. The next result
tells us that, in that scenario, the “Jordan multiplication” is continuous. A
rigorous proof of the same result with a condition for infinite-dimensional spaces
is given in Rudin’s Theorem 2.17 [14]. Later on in Lemma 2 we do prove
something similar in the infinite-dimensional space of multivariate polynomials.
Proposition 5. If (V,F, ?, ‖·‖) is a finite-dimensional Hilbert space and if
(V,F, ?, ◦) forms an algebra, then the algebra multiplication is continuous.

Proof. Let {e1, e2, . . . , en} be a basis for V, and suppose that for any x, y ∈ V
we have the basis representations

x = x1e1 + x2e2 + · · ·+ xnen, and
y = y1e1 + y2e2 + · · ·+ ynen.

Then using the bilinearity of the multiplication operator, we can expand,

x ◦ y =
n∑
i=1

n∑
j=1

xiyj (ei ◦ ej) .

But here, the products ei ◦ ej are fixed (they don’t involve x or y in any way).
As a result, the multiplication function

(x, y) 7→=
n∑
i=1

n∑
j=1

xiyj (ei ◦ ej) ,
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is now “obviously continuous” by Proposition 3 because it’s a composition of
things that are continuous—addition and multiplication of the components of x
and y by each other and by the constants ei ◦ ej .

2.5 Solutions to exercises

Solution to Exercise 1 (continuous preimage of closed set is closed).
First we show that f−1 (W \ Y ) = f−1 (W ) \ f−1 (Y ) for all subsets Y of W .
Suppose that x ∈ f−1 (W \ Y ); then by definition of the preimage, f (x) ∈ W
but f (x) /∈ Y . Thus x is in f−1 (W ), but not in f−1 (Y ). In other words, x ∈
f−1 (W ) \ f−1 (Y ). In the other direction, suppose that x ∈ f−1 (W ) \ f−1 (Y ).
Then f (x) ∈ W , but f (x) /∈ Y since x /∈ f−1 (Y ). This is the same thing as
saying that x ∈ f−1 (W \ Y ).

Now that we know that preimage “plays nice” with complements, suppose
that Y ⊆ W is closed. By definition, Y is the complement of some open set in
W ; let’s say Y = W \X. Then we have

f−1 (Y ) = f−1 (W \X) = f−1 (W ) \ f−1 (X) = V \ f−1 (X)

and this set should be closed: the whole space V is always closed, and f−1 (X)
is open because X is open and f is continuous. Thus f−1 (Y ) is the complement
of the open set f−1 (X) in V , and is therefore closed.

Solution to Exercise 2 (vector cross product is an algebra operation).
Let α ∈ R, and suppose that

x =

x1
x2
x3

 , y =

y1
y2
y3

 , z =

z1
z2
z3

 .
First we show that the cross product is linear in the first component:

(αx+ y)× z :=

(αx2 + y2) z3 − (αx3 + y3) z2
(αx3 + y3) z1 − (αx1 + y1) z3
(αx1 + y1) z2 − (αx2 + y2) z1


=

αx2z3 + y2z3 − αx3z2 − y3z2
αx3z1 + y3z1 − αx1z3 − y1z3
αx1z2 + y1z2 − αx2z1 − y2z1


=

(αx2z3 − αx3z2) + (y2z3 − y3z2)
(αx3z1 − αx1z3) + (y3z1 − y1z3)
(αx1z2 − αx2z1) + (y1z2 − y2z1)


= α (x× z) + (y × z) .
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The same thing needs to happen in the second component:

x× (αy + z) :=

 x2 (αy3 + z3)− x3 (αy2 + z2)
x3 (αy1 + z1)− x1 (αy3 + z3)
x1 (αy2 + z2)− x2 (αy1 + z1) .


=

αx2y3 + x2z3 − αx3y2 − x3z2
αx3y1 + x3z1 − αx1y3 − x1z3
αx1y2 + x1z2 − αx2y1 − x2z1.


=

 (αx2y3 − αx3y2) + (x2z3 − x3z2)
(αx3y1 − αx1y3) + (x3z1 − x1z3)
(αx1y2 − αx2y1) + (x1z2 − x2z1) .


= α (x× y) + (x× z) .

To show that the cross product is neither associative or commutative, the
following example suffices:

sage: e1 = vector(QQ,[1,0,0])
sage: e2 = vector(QQ,[0,1,0])
sage: e3 = vector(QQ,[0,0,1])
sage: e1.cross_product(e2)
(0, 0, 1)
sage: e2.cross_product(e1)
(0, 0, -1)
sage: e = e1 + e2 + e3
sage: (e.cross_product(e2)).cross_product(e3)
(0, 1, 0)
sage: e.cross_product(e2.cross_product(e3))
(0, 1, -1)
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Chapter 3

Polynomials and
power-associativity

3.1 Univariate polynomials
One of the most important rings is the ring of polynomials. If R is some other
commutative ring, we write R [X] to denote the ring of polynomials with coef-
ficients in R and one variable X. Informally, a polynomial p ∈ R [X] of degree
d is an expression that looks like

α0X
0 + α1X

1 + · · ·+ αdX
d

for some coefficients αi ∈ R. This corresponds to a “polynomial function,”

x 7→ α0 + α1x+ · · ·+ αdx
d,

and multiplication, addition, and scaling of p, q ∈ R [X] are defined in a way
that makes everything agree with the corresponding operations on “polynomial
functions” in the algebra of functions. Equality, however, is more subtle: we say
that two polynomials p and q in R [X] are equal if and only if the coefficients
of their respective powers of X are equal as elements of R. This is all very
hand-wavy, which is why we make the following formal definition.

Definition 18. Beachy and Blair,
Example 5.1.2

If R is a commutative ring, and if we define the infinite cartesian
product

R∞ :=
∞×
i=0
R =

{
(a0, a1, a2, . . .)T

∣∣∣ ai ∈ R} ,
then the commutative univariate polynomial ring over R, or the ring of univari-
ate polynomials with coefficients in R, is

R [X] :=
{

(a0, a1, . . .)T ∈ R∞
∣∣∣ ai 6= 0 for only finitely many i

}
⊆ R∞.
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under suitable addition, subtraction, and multiplication operations. The def-
inition of equality, inherited from R∞, is componentwise. The symbol X is
merely a name that we assign by convention to the element (0, 1, 0, 0, . . .)T . For
compatibility with the way we write polynomial functions, we further define

X0 = (1, 0, 0, 0, 0, . . .)T ,
X2 = (0, 0, 1, 0, 0, . . .)T ,
X3 = (0, 0, 0, 1, 0, 0 . . .)T ,

...

Thus Xk is shorthand for the tuple with 1 in its kth component and zeros
elsewhere.

Addition and subtraction in R [X] are pointwise, “obvious,” and in fact
inherited from the module R∞. If p = (a0, a1, . . .)T , q = (b0, b1, . . .)T , then

p+ q := (a0 + b0, a1 + b1, . . .)T (addition)
p− q := (a0 − b0, a1 − b1, . . .)T (subtraction).

Corresponding to these operations, we have the additive unit element (0, 0, . . .)T ,
also inherited from R∞, such that

(0, 0, . . .)T + (a0, a1, . . .)T = (0 + a0, 0 + a1, . . .)T = (a0, a1, . . .)T .

The ring laws for addition all hold in R [X] because equality in R [X] is defined
componentwise, and the ring laws hold in each component due to R itself being
a ring. Sums and differences of polynomials all have a finite number of nonzero
entries, because, for example, in p+ q you’re eventually just adding 0 + 0 com-
ponentwise. Defining multiplication, on the other hand, is a bit trickier and is
left as an exercise.

Exercise 3 (polynomial multiplication). Suppose that R is a commutative
ring, and let p, q ∈ R [X] be given by

p = (a0, a1, a2, . . . , aI , 0, 0, . . .)T ,
q = (b0, b1, b2, . . . , bJ , 0, 0, . . .)T .

From Definition 18, we see that these elements can be expressed as

p =
I∑
i=0

aiX
i and q =

J∑
j=0

bjX
j .

Define the product pq in a way that agrees with your intuition about how poly-
nomial functions should act. Specifically, your formula should satisfy XiXj =
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Xi+j , and therefore X0 should be the multiplicative unit element. Prove that
your multiplication is commutative, associative, and distributes over addition.

In hindsight, the name X in R [X] is completely irrelevant; the ring R [Y ]
is identical to R [X]. Both Y and X simply refer to a polynomial that already
exists in the ring. We will however try not to be too pedantic in this regard.

Simplification 2: This ring is an algebra, but it’s a ring

The ring R [X] naturally forms an algebra under Definition 18
since we can scale polynomials by elements of R just like we’d
scale a vector. But we’re going to do what everyone does and
ignore the “scaling” operation to treat R [X] as a ring.

In a ring, there’s only one set to worry about, the things that get
added and multiplied. In an algebra, there’s two: you also need a
set of scalars, which is often (but not necessarily) different from
the set of ring elements. For the polynomial ring R [X] in partic-
ular, there are several reasonable choices for the scalars. . . which
means that we’d always have to state which one we’re using if we
wanted to treat R [X] as an algebra.

Particularly in multivariate polynomial rings, the “obvious” scal-
ing operation isn’t the one that makes them act like multivariate
polynomial functions. In summary: treating the polynomials as
an algebra makes a lot of things pointlessly awkward, so we avoid
it except in a few critical special cases.

Definition 19. Beachy and Blair,
Example 5.1.2

The degree of a nonzero polynomial (a0, a1, . . .)T ∈ R [X] is

deg
(

(a0, a1, . . .)T
)

:= max ({i ∈ N | ai 6= 0}) .

The degree of the zero polynomial is undefined.

Definition 20. Beachy and Blair,
Definition 4.1.4

If p = (a0, a1, . . .)T ∈ R [X] is a nonzero polynomial and if
d := deg (p) is the degree of p, then p is monic if and only if ad = 1R.

Proposition 6. If R is a commutative ring, then the ring R [X] is commutative
and unital, and

{
Xk

∣∣ k ∈ N
}

is a basis for the underlying free module.

Of course, every polynomial p ∈ R [X] induces a “polynomial function” on
R in an obvious way. To be clear, when we talk about a “polynomial function,”
we mean something like the following.
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Definition 21. If R is a commutative ring and if (M,R, ◦) is an associative
unital algebra over R, then to each p = (a0, a1, . . . , ad, 0, 0, . . .)T ∈ R [X] we
define the associated polynomial function on R,

p�M : M →M

p�M := x 7→ a0x
0 + a1x+ a2x

2 + · · ·+ adx
d

that lives in a different algebra, namely the algebra of functions on M (Exam-
ple 9). The addition, subtraction, and multiplication operations in R [X] are
defined precisely so that the map p 7→ p�M is a ring homomorphism. In general,
each polynomial object could have many associated functions, each with differ-
ent domains and/or codomains. The notation above is an abuse of the function
restriction notation f�X , because that symbol means something like “think of f
as being a function defined on X instead,” which is more or less what we want
to say about the polynomial.

Example 11. If R is a commutative ring, then in particular, R forms a com-
mutative algebra over itself. As a result, the function

p�R : R→ R

p�R = x 7→ a0x
0 + a1x+ a2x

2 + · · ·+ adx
d,

is defined on R.

Example 12. Let V be a finite-dimensional vector space over R, and recall the
associative unital algebra of linear operators on V . If

p = a0X
0 + a1X + a2X

2 + · · ·+ adX
d ∈ R [X] ,

then we can evaluate p on a linear operator L to get back another linear operator,

p�B(V ) (L) = a0L
0 + a1L+ a2L

2 + · · ·+ adL
d ∈ B (V ) .

This idea is used extensively in the study of minimal and characteristic polyno-
mials for linear operators.

Later we’ll want to do the same sort of thing in a Euclidean Jordan algebra,
which is not associative. This only works when the algebra has another special
property, called power-associativity, that we discuss in Section 3.5.
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Convention 9: Polynomial notation

We will write

p = a0X
0 + a1X + a2X

2 + · · ·+ adX
d ∈ R [X] ,

to indicate the polynomial object

p = (a0, a1, . . . , ad, 0, 0, . . .)T .

Specifying the ring R [X] ensures that the terms Xi are inter-
preted as infinite tuples (the basis for R∞), and not as literal
powers of some function’s argument. Likewise, whenever we spec-
ify that some object lives in a polynomial ring, like(

X − λ1X
0) (X − λ2X

0) · · · (X − λdX0) ∈ R [X] ,

we mean that the multiplication should be carried out formally
in the ring R [X] to obtain some infinite tuple as the result. (Af-
ter Section 3.3, we will cease to litter every equation with X0

symbols.)

On the other hand, when we wish to talk about a polynomial
function, we will usually specify its domain and codomain, and
will always refer to it using the “restriction” notation,

p�R : R→ R

p�R = x 7→ a0x
0 + a1x+ a2x

2 + · · ·+ adx
d.

The codomain does not appear in the symbol p�R, but we will
never have two polynomials in scope with the same domains and
different codomains, so hopefully no confusion ensues.

Remark 3. When we express a polynomial

p = a0X
0 + a1X + a2X

2 + · · ·+ adX
d ∈ R [X] (3.3)

in terms of the basis X0, X1, . . ., then the degree of p (from Definition 19) will
be the largest exponent appearing in that expression after all of the products
have been expanded. When written in a form like Equation (3.3), the degree is
easy to determine. However, when the polynomial is written as a product like(
X − b1X0) (X2 + b2X

0), its degree (which is three, in this case) is not obvious
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because the highest power X3 doesn’t appear until after the multiplication is
carried out.

Example 13. If p, q ∈ R [X] are both monic and have the same degree d :=
deg (p) = deg (q), then deg (p− q) < d. Using our notation, we can write p and
q in terms of the basis elements X0, X1, . . . , Xd,

p = a0X
0 + a1X

1 + · · ·+ a(d−1)X
d−1 +Xd

q = b0X
0 + b1X

1 + · · ·+ b(d−1)X
d−1 +Xd.

Subtracting, we obtain

p− q = c0X
0 + c1X

1 + · · ·+ c(d−1)X
d−1 + 0Xd,

where ci := ai − bi, and cd = 1 − 1 = 0. The maximum index i such that ci is
non-zero is now at most d− 1, so deg (p− q) ≤ d− 1.

Example 14. If p, q ∈ F [X] for some field F, then deg (pq) = deg (p) + deg (q).
Suppose that deg (p) = m and deg (q) = n, and let

p = a0X
0 + a1X

1 + · · ·+ +amXm

q = b0X
0 + b1X

1 + · · ·+ +bnXn.

Then formally multiplying the two gives

pq = c0X
0 + · · ·+ c(m+n)X

m+n,

where c0 = a0b0, cm+n = ambn, and Xm+n is clearly the largest power that
appears. Now because F is a field and since am, bn ∈ F were non-zero, their
product is non-zero as well. Thus, cm+n is the (non-zero) coeffcient of the
largest power of X appearing in pq, and its index m + n = deg (p) + deg (q) is
the degree of pq.

Warning 3: Polynomials outnumber functions

If p = q in R [X], then clearly p�R (x) = q�R (x) for all x ∈ R.
However, the converse is not generally true. Over some rings,
we’ll have equality of the functions p�R = q�R, but have p 6= q as
polynomial objects. This depends on the ring R, and is Example
4.1.4 in Beachy and Blair.

Exercise 1. Find a commutative ring R and a two polynomials p, q ∈ R [X]
such that p�R (x) = q�R (x) for all x ∈ R, but p 6= q in R [X].
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The converse does hold under some additional assumptions, one of which
we’ll prove. Unfortunately we have to do this in a pretty general setting, because
we’ll eventually want the result to apply to multivariate polynomial rings.

Recall that a root of a function f is a value x such that f (x) = 0. We’ll
want to be a little careful throwing around the word “root” in the context
of polynomials to avoid confusion. People often talk about the “roots of a
polynomial,” but unless you know which function they’re talking about, the
term can be ambiguous. We have already seen in Examples 11 and 12 that
there can be more than one function associated with a single polynomial, and
those functions will have different roots.

Lemma 1. If R is an integral domain and if f ∈ R [X] is a nonzero polynomial,
then f�R has at most deg (f) roots.

Proof. Using the division algorithm (Theorem 4.2.1 in Beachy and Blair), we
can pick any c ∈ R and divide f by g := (X − c) to obtain f = qg + r, where
q, r ∈ R [X] and either deg (r) < deg (g) = 1, or r = 0. In Beachy and Blair, the
division algorithm is stated only for polynomials over a field; however, it is easy
to check that when g is monic, the proof goes through without ever needing to
use the fact that the coefficients come from a field. For peace of mind, refer to
Theorem 19 in Mac Lane and Birkhoff [9].

Now since either r = 0 or deg (r) = 0, we may think of r as being a scalar
multiple of 1R, a “constant polynomial.” Thus, evaluating, we have

f�R (c) = 0 ⇐⇒ r = 0 ⇐⇒ f = q (X − c) ⇐⇒ (X − c) | f.

Thus, f�R (c) = 0 if and only if X − c divides f in R [X].
We proceed by induction. The statement holds if deg (f) = 0, since then f�R

is a (nonzero) constant function with no roots. Assuming it holds for deg (f) =
k, we want to show that it holds for deg (f) = k+ 1 as well. Suppose c ∈ R is a
root of f�R. Then we can divide f by (X − c) and conclude that f = q (X − c),
where the degree of q is necessarily one less than the degree of f . Since R is
an integral domain, any root d of f�R satisfies f�R (d) = q�R (d) (d− c) = 0,
implying either that d = c, or that d is a root of q�R (which has at most k
possible roots, by our assumption). The one root of (X − c)�R and the at-most
k roots of q�R give at most k + 1 roots of f�R.

Theorem 7. If (V,R, ◦) is a nontrivial, associative, and unital algebra over an
infinite integral domain R and if p�V = q�V as functions on V , then p = q in
R [X]. As a result, the map p 7→ p�V is a ring isomorpism.

Proof. Addition and multiplication inR [X] are defined so that the map p 7→ p�V
is a ring homomorphism, where now we think of

p�V : V → V

p�V = x 7→ a01V + a1x+ a2x
2 + · · ·+ akx

k
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as a polynomial function on V . The only question that remains is whether or
not two distinct elements of R [X] can map to the same function on V . Let

p = (a0, a1, . . . , ak, 0, 0, . . .)T , and
q = (b0, b1, . . . , b`, 0, 0, . . .)T

be two polynomials in R [X]. If p 6= q, then they differ in one or more coordi-
nates. Let d be the largest index where pd 6= qd. Then

∀α ∈ R :


(p�V − q�V ) (α1V )

=
(a0 − b0) 1V + α (a1 − b1) 1V + · · ·+ αd (ad − bd) 1V

which can never be identically zero. If it were, then since 1V 6= 0, we would
conclude that

∀α ∈ R : (a0 − b0) + α (a1 − b1) + · · ·+ αd (ad − bd) = 0.

But, this is the same thing as saying that

∀α ∈ R : (p− q)�R (α) = 0.

That cannot happen, as it would give us an infinite number of roots for the
polynomial function (p− q)�R, in violation of Lemma 1. Thus, p�V 6= q�V , and
we have shown that the map p 7→ p�V is injective. All of the other pieces were
already in place, so we conclude that p 7→ p�V is a ring isomorphism.

It follows that p 7→ p�V is a ring isomorphism when the underlying algebra
is over an infinite field like R. We will use this result liberally later on.

Corollary 1. If R is an infinite integral domain, then p 7→ p�R is a ring
isomorphism.

Corollary 2. If F is an infinite field, then p 7→ p�F is a ring isomorphism.

Definition 22. If R is a commutative ring and if X ⊆ R, then the ring ideal
of R generated by X is

ideal (X) :=
{∑

rx
∣∣∣ r ∈ R, x ∈ X} .

Theorem 8. Beachy and Blair,
Theorem 4.2.2
and
Example 5.3.2

If R is a field, then every ring ideal I in R [X] is generated by a
single element,

∃p ∈ R [X] : I = ideal ({p}) .
In other words, R [X] is a principal ideal domain.

This is a well-known result that you should keep in the back of your mind for
the rest of your life. It follows fairly easily from the polynomial division algo-
rithm Theorem 4.2.1 in Beachy and Blair. It’s also useful for determining when
one polynomial expressed as a product of irreducible factors divides another.
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Proposition 7. Beachy and Blair,
Proposition 9.1.8

If D is a principal ideal domain, if p ∈ D is irreducible, and
if q, r ∈ D with p | qr, then p | q or p | r.

Corollary 3. If R is a field and if p | q for some p, q ∈ R [X] that factor into
monic irreducible terms as

q =
(
X − a1X

0) (X − a2X
0) · · · (X − akX0)

and
p = p1p2 · · · p`,

then ` ≤ k and each pi is equal to some
(
X − ajX0). In other words, p is a

product of some subset of the monic irreducible factors of q, and the roots of
p�R are a subset of the roots of q�R.

Proof. The polynomial ring R [X] is a principal ideal domain by Theorem 8.
Each irreducible factor pi of p must also divide q by Proposition 9.1.3 in Beachy
and Blair. By induction/recursion, this means that pi must divide some irre-
ducible factor

(
X − ajX0) of q; and the only way that can happen is if they are

equal. Thus the irreducible factors of p are a subset of those of q.

The SageMath project was started by algebraic geometers, so it has strong
support for polynomials. One nice feature is that, in a univariate polynomial
ring, it can compute the unique generator of every ideal.

sage: R = PolynomialRing(QQ, ’X’)
sage: X = R.gen()
sage: p1 = Xˆ4 - 2*Xˆ3 + 2*X - 4
sage: p2 = Xˆ3 - Xˆ2 - 6*X + 8
sage: R.ideal([p1,p2])
Principal ideal (X - 2) of Univariate Polynomial Ring in
X over Rational Field

Before we move on to multivariate polynomials, we record a folklore theorem
that says something like “the roots of a real polynomial function are continuous
functions of the polynomial’s coefficients.” A precise statement of this result is
a bit technical and perilous, especially in the real case, so we punt and cite it
from someone else [1].

Theorem 9. Alexandrian,
Theorem 3.5

If p ∈ R [X] is a monic polynomial of degree d ≥ 1, that is if

p = Xd +
d−1∑
k=0

akX
k ∈ R [X]
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and if λ is a root of p�R with multiplicity one, then for all sufficiently-small
ε > 0 there exists a δ > 0 such that for any

q = Xd +
d−1∑
k=0

bkX
k ∈ R [X]

satisfying |ak − bk| < δ for all k ∈ {0, 1, . . . , d− 1}, the polynomial function q�R
has a root µ of multiplicity one with |λ− µ| < ε.

This statement is awkward to parse, but if you’ve seen the infinity norm
before, it’s defined on Rn to be ‖x‖∞ := max {|xi| | i ∈ {0, 1, 2, . . . , n}}. If we
extend that definition to R [X], then the condition on the coeffcients ak and
bk in Theorem 9 simply says that ‖p− q‖∞ < δ, so it’s a typical continuity
condition. Stated casually: if p�R has a real multiplicity-one root and if q is
close to p, then q�R also has a real multiplicity-one root nearby.

3.2 Multivariate polynomials
We can also define polynomials with other numbers of variables, like zero or
two. Recall that we constructed R [X1] as a subset of the free module

R∞ :=
∞×
i=0
R =

{
(a0, a1, a2, . . .)T

∣∣∣ ai ∈ R} .
This is a Cartesian product, made up of countably-infinite copies of R with
pointwise addition and subtraction. The subset R [X1], when endowed with a
multiplication, gives rise to the univariate polynomial ring.

To construct a multivariate polynomial ring, we simply repeat the process,
defining R [X1, X2] := (R [X1]) [X2]. Since R [X1] is itself a commutative ring
by Proposition 6, this results in another polynomial ring whose coefficients now
come from R [X1]. In other words, a multivariate polynomial ring is just a
univariate polynomial ring but with coefficients in some other polynomial ring.
This means that technically, our Definition 19 of the degree of a polynomial
extends to multivariate polynomials. Likewise, we can use Definition 20 to talk
about monic multivariate polynomials. But please, don’t. No one is going to
know what you’re talking about. We will never use either term in a multivariate
context.

Proposition 8. If R is a commutative ring, then R [X1, X2, . . . , Xn] is a com-
mutative ring.

Proof. True for R and R [X1], and if you assume that it’s true with n− 1 vari-
ables, then by definition, the induction hypothesis says it works for n variables
as well.

SageMath supports multivariate polynomials too, and lets you treat them
like functions of multiple variables so long as the base ring is commutative.
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sage: R = PolynomialRing(QQ, [’X’, ’Y’, ’Z’])
sage: X,Y,Z = R.gens()
sage: p = (-1)*X + (3/4)*Y - 8*Z
sage: p
-X + 3/4*Y - 8*Z
sage: p(X=0, Y=0, Z=2)
-16

These functions will play a big part later on because we’ll be evaluating
them on the coordinates x1, x2, xn of a vector x in some n-dimensional vector
space. When we do so, we will use the fact that the multiple-argument poly-
nomial function is continuous. Let’s define precisely what we mean by these
statements. For notational convenience, we’ll use a single symbol to denote a
generic multivariate polynomial ring.

Definition 23. If R is a commutative ring, then we denote a general polynomial
ring with coefficients in R and n indeterminates X1, X2, . . . , Xn by

Pn (R) :=
{
R if n = 0,
R [X1, X2, . . . , Xn] otherwise

.

Keeping in mind our recursive definition of multivariate polynomial rings, this
definition is also recursive, because Pn (R) = Pn−1 (R) [Xn].

If you think of P1 (R) as an operation that adds one variable to R, then
the notation Pn (R) can be thought of as performing the “add one variable”
operation n times.

Definition 24. Suppose that R is a commutative ring and that p ∈ Pn (R).
We define a multivariate polynomial function p�Rn : Rn → R recursively by,

p�Rn = x 7→

{
p�R (xn) if n = 1,
[p�R (xn)]�Rn−1

(
(x1, . . . , xn−1)T

)
if n > 1.

The recursive definition of multivariate polynomials and functions is conve-
nient in some aspects—particular for proofs by induction—but is overly cum-
bersome in others. This next proposition gives us an explicit representation of
a multivariate polynomial in terms of its indeterminates, which amounts to a
basis representation. This will make it obvious, for example, that multivariate
polynomial functions are continuous.

Proposition 9. Suppose that R is a commutative ring, that p ∈ Pn (R), and
that dk is the largest power of Xk appearing in p. Then there exist a(i1,i2,...,in) ∈
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R, for ik ∈ {0, 1, . . . , dk}, such that

p =
d1∑
i1=0

d2∑
i2=0
· · ·

dn∑
in=0

a(i1,i2,...,in)X
i1
1 X

i2
2 · · ·Xin

n (3.4)

and the function p�Rn : Rn → R in Definition 24 is given explicitly by

p�Rn = x 7→
d1∑
i1=0

d2∑
i2=0
· · ·

dn∑
in=0

a(i1,i2,...,in)x
i1
1 x

i2
2 · · ·xinn .

Proof. The form of p follows from induction. Clearly, for n = 1, we have

p =
d1∑
i1

ai1X
i1
1 with ai1 ∈ R

which is already what we’re looking for. If we assume the form Equation (3.4)
for polynomials with n− 1 variables, then a polynomial in n variables is by our
definition just a univariate polynomial with coefficients in a ring of some more
polynomials:

p =
dn∑
in

CinX
in
n , where Cin ∈ Pn−1 (R) .

Now apply the induction hypothesis to Cin ,

p =
dn∑
in

 d1∑
i1=0

d2∑
i2=0
· · ·

dn−1∑
in−1=0

a(i1,i2,...,in−1)X
i1
1 X

i2
2 · · ·X

in−1
n−1


︸ ︷︷ ︸

Cin

Xin
n .

Since each Cin has its own coefficients that we’ve written a(i1,i2,...,in−1), it makes
sense to label them a(i1,i2,...,in−1,in) instead. Now just distribute and reorder the
sums to achieve the desired form.

Now that we know p has the form Equation (3.4), it is straightforward to
show what the evaluation functions look like, too. Again, for n = 1, the result
is trivial and follows from immediately from the n = 1 case in Definition 24,
which is just univariate polynomial function evaluation:

p =
d1∑
i1=0

ai1X
i1
1 ∈ P1 (R) =⇒ p�R1 = x1 7→

d1∑
i1=0

ai1x
i1
1 ∈ P0 (R) .
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Now, assuming that the result holds in Pn−1 (R), we have for the n > 1 case,

p�Rn = x 7→ [p�R (xn)]�Rn−1

(
(x1, . . . , xn−1)T

)
=
[
dn∑
in

Cinx
in
n

]
�Rn−1

(
(x1, . . . , xn−1)T

)

=
dn∑
in

Cin�Rn−1

(
(x1, . . . , xn−1)T

)
xinn .

Apply the inductive hypothesis here, expand, and rename the coefficients again
to achieve the desired result.

Simplification 3: Explicit multivariable polynomials

Proposition 9 is how you should think of multivariate polynomials
and their associated functions. We’ve defined everything carefully
by induction/recursion to be sure that it works, but the explicit
formulas are what make most results “obvious.”

An explicit representation also allows us to define the concept of a homo-
geneous polynomial, which will be useful later in one very specific but critical
situation.
Definition 25. Let R be a commutative ring. If p ∈ Pn (R), then we say that
p is a homogeneous polynomial of degree k if i1 + i2 + · · · + in = k whenever
a(i1,i2,...,in) 6= 0 in Equation (3.4). If M is a module over R, then f : M → R

is a homogeneous function of degree k if f (αx) = αkf (x) for all x ∈M and all
α ∈ R.

The explicit form of a multivariate polynomial in Proposition 9 is nothing
more than a basis representation; the set

{
Xi1

1 X
i2
2 · · ·Xin

n

∣∣ i1, i2, . . . , in ∈ N
}

is
the basis for the space. The explicit form makes a lot of tricky things “obvious.”
For example, we can now see that the polynomial-to-function mapping is a
homomorphism, and that it extends to something “homomorphism-like” for the
functions associated with matrices of polynomials as in Convention 10.
Proposition 10. If R is a commutative ring, then the mapping p 7→ p�Rn from
Pn (R) into the corresponding algebra of functions is a ring homomorphism.
Moreover, if two matrices A,B have entries in Pn (R) and if their dimensions
are compatible (if matrix addition and multiplication make sense), then

∀x ∈ Rn :
{

[AB]�Rn (x) = A�Rn (x)B�Rn (x) , and
[A+B]�Rn (x) = A�Rn (x) +B�Rn (x) .
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Proof. The fact that p 7→ p�Rn is a ring homomorphism follows from Proposi-
tion 9 which lets you check the homomorphism conditions directly. Using the
formula for matrix multiplication,

[AB]ij :=
m∑
`=1

Ai`B`j .

And since we just showed that Mij 7→Mij�Rn is a homomorphism,

[AB]ij�Rn (x) =
n∑
`=1

Ai`�Rn (x)B`j�Rn (x)

= [A�Rn (x)B�Rn (x)]ij ,

The corresponding claim for addition is similar but easier.

Since we went to the trouble of defining an R-module in Definition 9, we
might as well look at one more imporant example: matrices with polynomial
entries form a module over the coefficient ring of those polynomials.

Example 15. Roman, Example
4.1.2

Let R be a commutative ring, and Pn (R) be the ring of poly-
nomials in n variables whose coefficients come from R. Consider the set M of
m-by-1 column matrices whose entries are in Pn (R),

M =
{

(p1, p2, . . . , pm)T
∣∣∣ p ∈ Pn (R)

}
= [Pn (R)]m×1

.

Recall Definition 10. The set M forms a free module over the ring Pn (R),
with the entries of the matrix and the scalars both being polynomials: the
zero polynomial is in M , you can add two elements of M together to get an-
other element of M , and you can scale an element of M by s ∈ Pn (R) to get
(sp1, sp2, . . . , spm)T . All of the module laws are satisfied, so we have a module.

We can also construct matrices to act on M . Suppose that A ∈ [Pn (R)]m×m.
Then if x ∈M , the product Ax is defined in exactly the way that matrix multi-
plication normally is, and gives rise to a function on M . Sometimes, thinking of
“a matrix with polynomial entries” will make our arguments simpler, and this
example shows that the idea makes sense.

Note that SageMath does support matrices with polynomial entries.
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sage: P = PolynomialRing(QQ, [’X’, ’Y’, ’Z’])
sage: X,Y,Z = P.gens()
sage: p1 = (-1)*X + (3/4)*Y - 8*Z
sage: p2 = Xˆ2 - Yˆ2 + 3*Z
sage: p3 = Z
sage: m = vector(P, [p1,p2,p3])
sage: m
(-X + 3/4*Y - 8*Z, Xˆ2 - Yˆ2 + 3*Z, Z)
sage: m.parent()
Ambient free module of rank 3 over the integral domain
Multivariate Polynomial Ring in X, Y, Z over Rational Field
sage: m.parent().basis()
[
(1, 0, 0),
(0, 1, 0),
(0, 0, 1)
]
sage: A = matrix.diagonal(P, [X,Y,Z])
sage: A
[X 0 0]
[0 Y 0]
[0 0 Z]
sage: A*m
(-Xˆ2 + 3/4*X*Y - 8*X*Z, Xˆ2*Y - Yˆ3 + 3*Y*Z, Zˆ2)

The one thing to be wary of here is that, in other contexts where the ring R
can be non-commutative, it’s possible to construct a polynomial-esque expres-
sion that is actually not a polynomial. For example, if R is non-commutative,
then XY ∈ R [X,Y ] but not Y X ∈ R [X,Y ], since in the latter case the coeffi-
cients (the stuff on the left) are supposed to come from R [X] and you can’t just
switch them. To avoid these sorts of surprises, SageMath won’t let you define a
multivariate polynomial ring over a non-commutative base ring:
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sage: R = MatrixSpace(QQ,2)
sage: R.is_ring()
True
sage: R.is_commutative()
False
sage: R_XY = PolynomialRing(R, [’X’, ’Y’])
Traceback (most recent call last):
...
TypeError: The base ring Full MatrixSpace of 2 by 2 dense
matrices over Rational Field is not a commutative ring

Instead, it makes you define an equivalent structure, one level at a time,
as a univariate polynomial ring whose coefficients come from another univariate
polynomial ring, just like we did. This prevents you from doing something illegal
as in the preceding example:

sage: R = MatrixSpace(QQ,2)
sage: R_X = PolynomialRing(R, ’X’)
sage: R_XY = PolynomialRing(R_X, ’Y’)
sage: R_XY
Univariate Polynomial Ring in Y over Univariate Polynomial
Ring in X over Full MatrixSpace of 2 by 2 dense matrices
over Rational Field

The way that we avoid these problems is by not allowing the ringR to be non-
commutative. Too many things go wrong to make the generality worthwhile.

One final bit of polynomial notation is in order. We have just seen that we
can sensibly construct matrices whose entries are polynomials in Pn (R). As
a result, each entry of the matrix corresponds to a function from Rn to R as
in Definition 24, and the matrix itself naturally corresponds to a function that
takes an element of Rn and returns a matrix whose entries are in R.
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Convention 10: Polynomial matrix function notation

If A :=
[
Aij
]
∈ [Pn (R)]`×m is a matrix whose entries are multi-

variate polynomials, then we write A�Rn for the function

A�Rn : Rn → R`×n

A�Rn = x 7→
[
Aij�Rn (x)

]
that takes x, feeds it to the functions that correspond to the
polynomial entries of A, and then combines all of the results back
into a matrix of the appropriate size.

One of our main results for univariate polynomials was that the ring of
univariate polynomials is isorphic to an ring of polynomial functions. We’d like
to say the same for multivariate polynomials, but in Theorem 7 it was crucial
that the ring R be an integral domain. So if we want to apply Theorem 7 to
Pn (R), for example, we will eventually need to know that its coefficient ring
Pn−1 (R) is an integral domain. Fortunately this is true, and we can simply cite
the result.

Theorem 10. Beachy and Blair,
Example 5.1.8

If R is an integral domain, then so is R [X].

Corollary 4. If R is an integral domain, then the multivariate polynomial rings
Pn (R) are integral domains for any n ≥ 1.

Proof. Follows from repeated applications Theorem 10 to our recursive Defini-
tion 23 definition of Pn (R) as Pn−1 (R) [Xn].

These results can be combined with Lemma 1 to conclude that if R is an
integral domain and if f ∈ Pn (R), then f�R has only a finite number of roots.
But be careful! The function f�R only “evaluates” one indeterminate, and the
same cannot be said of the function f�Rn . For example, if f = XY − 1 ∈
R [X,Y ], then f�R has no roots, since there is no polynomial in X that we can
substitute for Y to get the zero polynomial. The function f�R2 on the other
hand has an infinite number of roots of the form

(
x, 1

x

)
.

Theorem 11. If R is an infinite integral domain, then the map φ = p 7→ p�Rn

is a ring isomorphism between Pn (R) and the ring of multivariate polynomial
functions (the image of φ).

Proof. This true for n = 1, as that’s Theorem 7. We proceed by induction,
assuming that it holds for any k < n.
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If you care to check, Proposition 9 shows that φ is a ring homomorphism,
so we need only show that it is injective. Suppose that φ (p) = φ (q) so that

p�Rn = q�Rn

⇐⇒

[p�R (xn)]�Rn−1

(
(x1, . . . , xn−1)T

)
= [q�R (xn)]�Rn−1

(
(x1, . . . , xn−1)T

)
.

Our inductive hypothesis can be applied to conclude that

p�R (xn) = q�R (xn)

in Pn−1 (R). But Pn−1 (R) is an (infinite) integral domain by Corollary 4, so
Theorem 7 can now be applied to conclude that p = q.

The isomorphism result relies on the base ring being an infinite integral
domain, but you should keep in mind that the map into the function space
is always a homomorphism by Proposition 10. Using the polynomial/function
isomorphism we can also finally demonstrate the relationship between homoge-
neous polynomials and homogeneous functions as in Definition 25.

Proposition 11. Suppose R is an infinite integral domain and that p ∈ Pn (R)
has the explicit form Equation (3.4). Then p is homogeneous of degree k if and
only if p�Rn is homogeneous of degree k.

Proof. Suppose p ∈ Pn (R) is homogeneous of degree k. By simply evaluating,

p�Rn (αx) =
d1∑
i1=0

d2∑
i2=0
· · ·

dn∑
in=0

a(i1,i2,...,in) (αx1)i1 (αx2)i2 · · · (αxn)in

=
d1∑
i1=0

d2∑
i2=0
· · ·

dn∑
in=0

a(i1,i2,...,in)α
i1αi2 · · ·αinxi11 x

i2
2 · · ·αxinn

= α(i1+i2+···in)p�Rn (x)
= αkp�Rn (x) .

Conversely, suppose that p�Rn (αx) = αkp�Rn (x) for all α ∈ R and x ∈ Rn.
Then for all α ∈ R and x ∈ Rn,

p�Rn (αx)− αkp�Rn (x) = 0
⇐⇒

d1∑
i1=0

d2∑
i2=0
· · ·

dn∑
in=0

a(i1,i2,...,in)

[
α(i1+i2+···+in) − αk

]
xi11 x

i2
2 · · ·xinn = 0.

But these are simply the polynomial functions qα�Rn corresponding to

qα :=
d1∑
i1=0

d2∑
i2=0
· · ·

dn∑
in=0

b(i1,i2,...,in)X
i1
1 X

i2
2 · · ·Xin

n ,
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where
b(i1,i2,...,in) := a(i1,i2,...,in)

[
α(i1+i2+···+in) − αk

]
.

By Theorem 11, the functions qα�Rn can be identically zero only if the coeffi-
cients of the qα are all zero. Since R is an integral domain, we conclude that
for all i1, i2, . . . , in, we have α(i1+i2+···+in) − αk = 0, from which it follows that
i1 + i2 + · · · + in = k, since otherwise in an infinite ring we would reach a
contradiction.

Another interesting fact that pops out of the explicit representation and
function isomorphism is that we can interpret a polynomial as living in another
ring where the indeterminates are rearranged when it is convenient. For a
concrete example, suppose p ∈ R [X,Y,Λ] has the explicit representation from
Equation (3.4),

p =
d1∑
i1=0

d2∑
i2=0

d3∑
i3=0

a(i1,i2,i3)X
i1Y i2Λi3

Rings like R [X,Y,Λ] will appear often, since we often start with a ring like
R [X,Y ] whose indeterminates represent coordinates in R2, and then later tack
on another indeterminate to computing things like the minimal and characteris-
tic polynomial based on those coordinates. However, the variable order X,Y,Λ
is awkward for that purpose, since our definition of a polynomial function insists
that we replace Λ first; you can’t replace X or Y until you’ve replaced Λ, so if
you want a function from R2 to R [Λ], you’re out of luck.

To work around that problem, define a new polynomial q ∈ R [Λ, X, Y ] with
the explicit representation,

q :=
d1∑
i1=0

d2∑
i2=0

d3∑
i3=0

a(i1,i2,i3)Λi3Xi1Y i2

Technically R [X,Y,Λ] and R [Λ, X, Y ] are the same ring but with the names of
the basis elements swapped, but p and q will still generally be different polyno-
mials. In other words, q is not what you’d get from renaming X → Λ, Y → X,
and Λ→ Y in the expression for p, because the exponents are wrong.

Now, it is easy to see that for all (x, y, λ) ∈ R3, we have p�R3 (x, y, λ) =
q�R3 (λ, x, y). Just substitute into the explicit representation, and look at the
two results: they’re the same expression. These two functions are in fact related
to one another by an isomorphism in the function ring. If f : R3 → R is a
function, define τ (f) := (λ, x, y) 7→ f (x, y, λ). Check that τ is a homomorphism
of the function ring:

τ (fg + h) (λ, x, y) := [fg + h] (x, y, λ)
= f (x, y, λ) g (x, y, λ) + h (x, y, λ)
= τ (f) (λ, x, y) τ (g) (λ, x, y) + τ (h) (λ, x, y) .

54



The map τ is also bijective, making it an isomorphism. Finally, let φ denote
the map that takes p to p�R3 . Note that φ (q) = q�R3 as well, since p and q
technically live in the same polynomial ring. Now, we’ve just shown that

φ−1 (τ (φ (p))) = q,

where both φ and τ are ring isomorphisms. As a result, the composition is a
ring isomorphism sending p to q. Phew.

Now, suppose we want to define a function on R2 that takes (x, y)T and
substitutes them into X and Y respectively in the expression for p. It’s pretty
clear that this can be done, but it’s not at all obvious how you’d define such a
function using only Definition 24. But now, we have a way. Let p̃ := q�R2 =[
φ−1 (τ (φ (p)))

]
�R2 , and let’s see what happens:

p̃ (x, y) := q�R2 (x, y)

=
d1∑
i1=0

d2∑
i2=0

d3∑
i3=0

a(i1,i2,i3)Λi3xi1yi2

=
d1∑
i1=0

d2∑
i2=0

d3∑
i3=0

a(i1,i2,i3)x
i1yi2Λi3 .

Refer back to the explicit representation of p. This is precisely what we were
looking for. Moreover, the map p 7→ p̃ is an isomorphism, because getting from p
to q involved an isomorphism, and then getting from q to q�R2 involved another
isomorphism—namely Theorem 11.

The isomorphism φ is inherent to the polynomial ring, and works for any p.
Likewise, the only magic contained within τ is that it rearranges the arguments
to the function it acts on in some particular way. By considering all of the
various rearrangements given by the various maps τ , we can obtain functions to
replace any subset of the indeterminates in p by real numbers in a formal way.

The details of this construction can promptly be forgotten. The main idea
is summarized in the following theorem, to which we will refer when necessary.

Theorem 12. If R is an infinite integral domain and if p ∈ Pn (R), then
for any subset of indices I := {k1, k2, . . . , km} ⊆ {1, 2, . . . , n}, there exists a
function p�RI : Rm → Rn−m such that p̃ (xk1 , xk2 , . . . , xkm

) is the polynomial
in Rn−m that you’d get by replacing each Xkj

with xkj
in Equation (3.4). The

mapping p 7→ p�RI is an isomorphism between the polynomial ring and the
ring of polynomial functions that p�RI lives in, and it extends to an additive
and multiplicative function on polynomial matrices analogous to the result in
Proposition 10.

Proof. The same steps we followed in our example work for the general case.
Given p, you can relabel the indeterminates and permute the exponents so that
the indeterminates you want to substute for come last (and in order) and the
resulting polynomial q has an associated function q�Rn whose arguments are
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similarly permuted. Call τ the isomorphism that permutes the arguments of
p�Rn to make it agree with q�Rn , and then construct an explicit isomorphism
between p and q that can be used to define p�I := q�Rm : Rm → Rn−m.

The claim about matrices is proved exactly like the analogous clam in Propo-
sition 10, which used only the fact that the polynomial-to-function map was a
homomorphism.

Convention 11: More polynomial notation

This is hopefully the last bit of polynomial notation we’ll need.
When p ∈ Pn (R), we now know that there are a number of
polynomial functions associated with it. If I = {i1, i2, . . . , ik}
is a set of indices, we’ll adopt the convention that p�RI is
the function that takes k arguments and substitutes them for
Xi1 , Xi2 , . . . , Xik , in order.

For a typical example, let p ∈ Pn (R) [Λ], so that p has n + 1
indeterminates X1, X2, . . . , Xn,Λ. If we write n̄ to denote the
set {1, 2, . . . , n}, then p�Rn̄ is the function that takes a vector in
Rn, substitutes its components into X1, X2, . . . , Xn, and returns
a polynomial in R [Λ].

This new ability to substitute for any number of indeterminates in any order
is mirrored by SageMath.

sage: R = PolynomialRing(QQ, ’X,Y,Z’)
sage: X,Y,Z = R.gens()
sage: p = X + 2*Y + 3*Z
sage: p(Y=7)
X + 3*Z + 14
sage: p(Y=7, Z=2)
X + 20

3.3 Polynomial ring embeddings
One final matter of notation deserves our attention. Suppose that R is a com-
mutative ring, and that R [X] is the ring of polynomials with coefficients in R.
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For example, if R = Z, then we would have 7 ∈ Z and there would exist a
“constant polynomial,”

p := 7 · 1Z[X] = (7, 0, 0, . . .)T

whose associated function on R is

p�Z = x 7→ 7.

In fact, the map that takes 7 ∈ Z to 7 ·1Z[X] is an injective, unit-preserving ring
homomorphism called the canonical embedding.

Definition 26. If R is a commutative ring, then the function

ι : R→ R [X]
ι = x 7→ x · 1R

is the canonical embedding of R into R [X].

In light of this, if R is a commutative ring, then the name of any element x ∈
R will be used simultaneously to refer to either the ring element or the element
ι (x) ∈ R [X], depending on the context. Following our previous example, the
symbol “7” may mean either the integer 7 ∈ Z, or the constant polynomial
ι (7) = 7 · 1Z[X] ∈ Z [X]. Why settle for such imprecise notation? In this case,
it’s almost unavoidable. A few examples should make our case.

Example 16. Beachy and Blair,
Section 5.4

In the usual set-theoretic construction, the rational numbers
are constructed as ordered pairs of integers (a, b) ∈ Z2 modulo the equivalence
relation (a, b) ∼ (c, d) ⇐⇒ ad = bc. Ignoring the details, it should be clear that
the intergers are not a subset of the rational numbers under this construction.
Nevertheless, we pretend that Z ⊆ Q, because there is a canonical embedding
x 7→ x

1 := [(x, 1)] of the integers into the rational numbers. And we write
the rational number “7” the same way we write the integer “7”. These are
non-polynomial rings, but this example should convince you that this type of
notational hackery is nothing new.

Example 17. In Corollary 3, we factored a polynomial q ∈ R [X] as

q =
(
X − a1X

0) (X − a2X
0) · · · (X − akX0) .

Compared to
q = (X − a1) (X − a2) · · · (X − ak) ,

the former expression is rather clumsy. We will be factoring polynomials often,
and it’s nice to be able to read the roots of the corresponding functions off of the
polynomials themselves. But the expression X − ai here does not make sense
unless we take ai to mean ι (ai) = ai · 1R[X] so that X − ai = X − aiX0.
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Example 18. Later on we claim that the polynomial det (ΛI −A) ∈ R [Λ] is
the characteristic polynomial of a matrix A ∈ Rn×n. If the matrix I here has
real entries, then a priori the expression ΛI doesn’t make sense. We need to
treat the “1” entries in I as belonging to the ring R [Λ] for the scaling operation
to make sense.

Afterwards, the expression ΛI − A is still nonsense unless A contains poly-
nomial entries. Since a priori its entries are real, we need to apply the canonical
embedding to them so that the A within the determinant has entries in R [Λ].

Example 19. Our multivariate polynomial notation allows us to write things
like X1 ∈ R [X1, X2, . . . , Xn]. But the symbol X1 lives in R [X1], and saying
that it belongs to the “larger” ring is, you guessed it, incorrect. The canonical
embedding allows us to think of X1 as living in R [X1, X2], and so on, up to
R [X1, X2, . . . , Xn] without resorting to oppressive notational gimmicks.

For the sake of clarity, we might have been willing to do everything explicitly,
excepting this last example. The remainder of the text would be incomprehen-
sible if we were not allowed to treat R [X1] as a subset of R [X1, X2]. And when
we treat P0 (R) = R as a subset of P1 (R) = R [X1], that’s quite literally the
same thing. So in many cases, we will need to use these canonical embeddings
implicitly. But at that point, we might as well make full use of them, and apply
them consistently whenever they might clean up the notation.

SageMath follows this convention, for the same reasons. Under the hood,
the following example checks for a canonical embedding of the integers into the
polynomial ring, and uses it to “coerce” the integer 3 into the polynomial ring
where it becomes 3X0:

sage: R = PolynomialRing(ZZ,’X’)
sage: X = R.gen()
sage: p = Xˆ2 + X
sage: p + 3
Xˆ2 + X + 3

The same is true for multivariate polynomials, where “smaller” polynomial
rings can be coerced into “larger” ones, but not the other way around:
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sage: R1 = PolynomialRing(ZZ,’X1’)
sage: X1 = R1.gen()
sage: R2 = PolynomialRing(R1,’X2’)
sage: X2 = R2.gen()
sage: X2 + X1 in R1
False
sage: X2 + X1 in R2
True
sage: R1.has_coerce_map_from(R2)
False
sage: R2.has_coerce_map_from(R1)
True

3.4 Rational functions
If you have spent any time at all studying mathematics, you will not be sur-
prised to hear that “rational functions” are not functions. The space of rational
functions is the most general type of polynomial space that we’ll encounter.
Rather than actual polynomials, the rational functions consist of polynomial
fractions. That is, fractions of the form p/q where both p and q are themselves
polynomials. But we have to be careful what we mean here.

Recall from Example 16 that the rational numbers Q can be constructed
from pairs of integers under an appropriate equivalence relation. Instead of
thinking of a/b ∈ Q as a single number, we think of a, b as being integers,
and a/b as being the equivalense class [(a, b)] under the equivalence relation
(a, b) ∼ (c, d) ⇐⇒ ab = cd. We then declare the “integers” to be the sub-
set {[(a, 1)] | a ∈ Z}. The corresponding embedding is a ring homomorphism.
This construction generalizes to any integral domain—things that act like the
integers—and not just to pairs of integers themselves.
Definition 27. Beachy and Blair,

Definition 5.4.5
If R is an integral domain, the fraction field of R is

Frac (R) := {[(a, b)] | a, b ∈ R}

under the equivalence relation (a, b) ∼ (c, d) ⇐⇒ ab = cd. Each pair
(c, d) ∈ [(a, b)] is called a representative of the equivalence class [(a, b)], and
the equivalence class [(a, b)] is usually denoted by a/b or a

b .
Addition in a fraction field is defined by

a

b
+ c

d
:= ad+ bc

bd

and multiplication is defined by(a
b

)( c
d

)
:= ac

bd
.
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The additive identity (zero) element of Frac (R) is 0R/1R and its unit is
1R/1R, as can easily be checked from the definition:

∀
(a
b

)
∈ Frac (R) : a

b
+ 0R

1R
:= a · 1R + b · 0R

b · 1R
= a

b
,

∀
(a
b

)
∈ Frac (R) :

(a
b

)(1R
1R

)
:= a · 1R

b · 1R
= a

b
.

Beware that superficially-similar name “quotient field” refers to something else
entirely, which is why we have avoided Beachy and Blair’s Q (R) notation that
is suggestive of the word “quotient.” The fact that a fraction field is indeed a
field requires some justification. It is also true that the original integral domain
always embeds into its fraction field. We punt to the references for the proofs.

Theorem 13. Beachy and Blair,
Theorem 5.4.4

If R is an integral domain, then Frac (R) is a field, and the map
ι = a 7→ [(a, 1)] is a ring isomorphism between R and ι (R).

It can in fact be shown that Frac (R) is the smallest field that contains a
subring isomorphic to R. Though this is somewhat “obvious” considering that
we started with R and constructed Frac (R) by adding in all of the things that
would have to be there in a field. But how does this all apply to polynomials and
rational functions? The field of (multivariate) rational functions is the fraction
field of the (multivariate) polynomial ring over some integral domain R. We
need to mention one important example.

Example 20. As we have just seen, the polynomial ring R := Pn (R) is an
integral domain. We can therefore form its field of rational functions F :=
Frac (R). Let ι denote the injective ring homomorphism a 7→ a/1R, from R into
F, from Theorem 13. Then, for example,

a/1 = 0F ⇐⇒ ι (a) = 0R ⇐⇒ ∀x ∈ Rn : a�Rn (x) = 0.

The last equivalence is due to the polynomial/function isomorphism Theo-
rem 11.

Unfortunately, it’s not always easy to turn a fraction into a function as in
the previous example. We discuss a way out of the mess in Chapter B.

Warning 4: Rational functions aren’t functions

Since we know how to turn two polynomials p, q ∈ Pn (R) into
functions, you may be tempted to think of the formal quotient p/q
as a function as well—namely the one that takes some x ∈ Rn and
produces p�Rn (x) /q�Rn (x). But in general, that doesn’t work,
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because q�Rn (x) could be zero.

3.5 Power-associative algebras
Next we want to investigate the relationship between polynomials and algebras.
There’s a special type of algebra where polynomials make sense, and this is
what we’ll be dealing with by and large. Recall from Theorem 7 that univariate
polynomials over an infinite field are essentially the same as the polynomial
functions on an associative unital algebra over that field. The same is true in
slightly more generality; in particular we’ll need to know it for Euclidean Jordan
algebras, which are not associative, but rather power-associative.

Definition 28. Alizadeh,
Definition 33

If (V, ◦) is a unital algebra and if X ⊆ V , then the subalgebra
of V generated by X is written alg (X) and is defined to be the intersection of
all subalgebras of V that contain {1V } ∪X.

We insist that alg (X) contain the unit element of V so that it contains all
powers in V (in particular, the power zero) of the elements of X. In general, a
subalgebra of V might have a different unit element than V itself; with alg (X)
we want the unit elements to be the same.

Another way to think of alg (X) is as the set of all elements of X, and
all scalar multiples of elements of X, and all sums of those things, and then
all products of those things, and then all sums of the products. . . and so on.
Basically, you start with X and then you keep adding the things that have to
be there to satisfy the definition of an algebra. This is similar to how span (X)
is the smallest subspace containing X, but can also be thought of as “all linear
combinations of things in X”. With the span, this can be written out explicitly,

span (X) =
{

m∑
i=1

αixi

∣∣∣∣∣ m ∈ N, αi ∈ R, xi ∈ X

}
.

However, in an algebra, it’s not so easy to write down exactly what that means
because we don’t know a priori that we only need to consider a finite number
of products. For example, if x1, x2 ∈ X, then x1 ◦ x2 needs to be in alg (X),
but then x2 ◦ (x1 ◦ x2) needs to be there too, and x1 ◦ (x2 ◦ (x1 ◦ x2)) . . .. Those
might all be different, and it’s not clear when we can stop, which makes it
hard to write down “all things of that form.” That’s why we use the abstract
Definition 28 instead.

Definition 29. Alizadeh,
Definition 34;
Baes, Definition
2.2.11

If (V, ◦) is a unital algebra and if alg ({x}) is associative for all
x ∈ V , then (V, ◦) is power-associative. In any power-associative algebra, we
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define

x0 := 1V
x1 := x

xk := x ◦ xk−1 = x ◦ (x ◦ (· · · ◦ (x ◦ x)))︸ ︷︷ ︸
k−1 multiplications

, for k ≥ 2

and the expression for xk can be parenthesized in any order.

Convention 12: Power notation

We will only ever use the power notation xk in a power-associative
algebra where the meaning is unambiguous.

When X = {x} is a singleton set in a finite-dimensional power-associative
unital algebra, alg (X) has a particularly nice description.

Proposition 12. If (V, ◦) is a finite-dimensional power-associative unital alge-
bra, if x ∈ V , and if d := dim (alg ({x})), then

alg ({x}) =
{
d−1∑
i=0

αix
i

∣∣∣∣∣ αi ∈ F

}
= span

({
xi
∣∣ i ∈ {0, 1, 2, . . . , d− 1}

})
.

Proof. To start, define a subspace of V ,

W := span
({
xi
∣∣ i ∈ N

})
.

Since V is finite-dimensional and since W ⊆ V , we can let d := dim (W ) and
know for sure that d ∈ N is finite.

Since (V, ◦) is unital, we have 1V ∈ alg ({x}) by Definition 28. Moreover
every product of any number of x terms in any order is necessarily in alg ({x});
and all sums and scalar multiples of those things have to be in alg ({x}) too.
Thus,

W ⊆ alg ({x}) .
On the other hand, restricting the algebra operations to W shows that W is a
subalgebra of V . From the definition of span, the algebra (W, ◦) is closed under
addition and scalar multiplication. Using the fact that alg ({x}) is associative,
we also see that it is closed under algebra multiplication:(

m1∑
i=0

αix
i

)
◦

m2∑
j=0

βjx
j

 =
m1∑
i=0

m2∑
j=0

αiβjx
i+j ∈W.
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Now since alg ({x}) is supposed to be the smallest subalgebra of V containing
both x and the unit element and since W is such a subalgebra, we have

alg ({x}) ⊆W.

Therefore alg ({x}) = W , and it remains only to show that the first d powers of
x span W ; in other words that

W =
{
d−1∑
i=0

αix
i

∣∣∣∣∣ αi ∈ F

}
.

We’ll use a dimension argument. Clearly,{
d−1∑
i=0

αix
i

∣∣∣∣∣ αi ∈ F

}
⊆W,

so for them to be unequal we must have

dim
({

d−1∑
i=0

αix
i

∣∣∣∣∣ αi ∈ F

})
< dim (W ) = d.

Suppose that’s true, so that without loss of generality, xd−1 can be written as
a linear combination of the other powers. Then

∃α0, α1, . . . , αd−2 ∈ R : xd−1 =
d−2∑
i=0

αix
i.

But then,

W = span
({
xi
∣∣ 0 ≤ i ≤ d− 2

})
+ span

({
xi
∣∣ i ≥ d})

and now we claim that any element in the second span can be written as a linear
combination of elements of the first. For if k ≥ d − 1, then k = q (d− 1) + r
where 0 ≤ r < d− 1 by the division algorithm for natural numbers, and

xk = xd−1xd−1 · · ·xd−1︸ ︷︷ ︸
q times

xr.

Each term of degree d − 1 in this product can be replaced by a sum of terms
of degree less than d − 1, since xd−1 was a linear combination of the lower-
degree terms. After expanding, the process can be repeated, at each step
replacing all terms of degree greater than d − 2 by terms of strictly smaller
degree. This process terminates when there are no terms of degree greater
than d − 2 left in the expression for xk. At that point, we have shown that
xk ∈ span

({
xi
∣∣ 0 ≤ i ≤ n− 2

})
, meaning that the second direct summand in

the formula for W above is contained in the first. In other words, that

W = span
({
xi
∣∣ 0 ≤ i ≤ d− 2

})
.

This would contradict the fact that dim (W ) = n, so when we supposed that
xd−1 was a linear combination of the lower powers, that was impossible.
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Corollary 5. If (V, ◦) is a finite-dimensional power-associative unital algebra,
if x ∈ V , and if d := dim (alg ({x})), then{

x0, x1, x2, . . . , xd
}

is a basis for alg ({x}).

The main reason we care about power-associative algebras is because they’re
the most general type of algebra that we know how to evaluate a polynomial
on. The power-associativity is critical in the following definition to ensure that
alg ({x}) is associative for all x. Otherwise, the meaning of p�alg({x}) would be
unclear.

Definition 30. If p ∈ R [X] and if (M,R, ◦) is a power-associative and unital
algebra over R, then we define an associated polynomial function on M by

p�M : M →M

p�M = x 7→ p�alg({x}) (x) .

Since M is associative, alg ({x}) is associative. We interpret the result as living
in M even though a priori the codomain of p�alg({x}) is alg ({x}).

Corollary 6. If (V,F, ◦) is a nontrivial, power-associative, and unital algebra
over an infinite field F and if p�V = q�V as functions on V , then p = q in F [X].
As a result, the map p 7→ p�V is a ring isomorpism.

Proof. Since V is nontrivial, there exists a nonzero x ∈ V , and alg ({x}) is
therefore a nontrivial, associative, unital subalgebra over F. By definition,

p�V = q�V
⇐⇒

∀z ∈ V : p�alg({z}) (z) = p�alg({z}) (z) .

In particular, this holds for all z ∈ alg ({x}), where we have alg ({z}) =
alg ({x}). If we denote alg ({x}) by W , then

p�V = q�V
=⇒

∀z ∈W : p�W (z) = p�W (z) ,

where again, we reiterate that W is a nontrivial associative unital algebra. Since
these two functions are equal on W , Theorem 7 shows that p = q in F [X].

3.6 Polynomial continuity
Everyone knows that multivariate polynomial functions are continuous, right?
It’s not so easy to formalize that, but it’s a crucial fact that we can’t in good
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conscience omit. Specifically, we want to show that the functions in Definition 24
are continuous, but to do so, we have to give up on using a general ring R.
For continuity, we’ll need convergent sequences and series, and to fall back on
existing results it’s just easier to work in the familiar setting of the real numbers.

Recall Example 5, where we saw the space `2 (R) consisting of all square-
summable infinite sequences of real numbers. The way that we defined a uni-
variate polynomial with real coefficients was as a subset,

R [X1] :=
{

(a0, a1, . . .)T ∈ R∞
∣∣∣ ai 6= 0 for only finitely many i

}
⊆ R∞.

In hindsight, the fact that the elements of R [X1] have only a finite number of
non-zero coordinates means that R [X1] is actually a subset of `2 (R), which is of
course a subset of R∞. This means that R [X1] inherits a norm from the `2 (R),
namely ∥∥a0 + a1X

1
1 + · · ·+ adX

d
1
∥∥
P1(R) :=

(
d∑
i=0

a2
i

) 1
2

.

Now for a multivariate polynomial, we can define a norm recursively. The trick
is to realize that, with multivariate polynomials, we’re dealing with a Cartesian
product space. In two variables, for example,

R [X1, X2] :=
{

(a0, a1, . . .)T ∈ (R [X1])∞
∣∣∣ ai 6= 0 for only finitely many i

}
which is a subspace of the Cartesian product (`2 (R))∞ ⊆ (R [X1])∞. Cartesian
product spaces have a natural norm inherited from their constituent spaces via
the Pythagorean theorem. Basically, we just define

∥∥a0 + a1X
1
2 + · · ·+ adX

d
2
∥∥
R[X1,X2] :=

(
d∑
i=0
‖ai‖2R[X1]

) 1
2

.

and since there are only a finite number of non-zero ai, this sum is guaranteed
to exist. And we can continue this process indefinitely (well, to a finite extent),
since it works at every subsequent step.

Definition 31. The norm on Pn (R) is defined recursively by

∥∥a0 + a1X
1
n + · · ·+ adX

d
n

∥∥
Pn(R) :=

(
d∑
i=0
‖ai‖2Pn−1(R)

) 1
2

where the base case in P0 (R) = R simply uses the absolute value.

Contradicting Simplification 2, we have secretly introduced a scaling oper-
ation for polynomials here. To reuse some machinery, we began thinking of
R [X1] as a subset of `2 (R), which of course has a natural scaling operation
(by real numbers) defined on it. We must also allow this scaling operation to
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exist in the background for our polynomials, since any polynomial norm must
support “pulling out” a scalar in absolute value. Nevertheless, we will still treat
polynomial rings as rings for algebraic purposes.

And now that we have a norm on polynomial spaces, we can talk about
continuity there. The first, most basic thing we might try to prove is that
addition and multiplication of polynomials are continuous operations. Since
Pn (R) is a ring structure on top of a Hilbert space, you might be tempted to
apply Proposition 5; however, the space Pn (R) is not finite-dimensional, even
though each individual element has a finite number of non-zero coordinates.

Lemma 2 (polynomial ring operation continuity). If p, q ∈ Pn (R), then the
maps (p, q) 7→ pq and (p, q) 7→ p+ q are continuous.

Proof. Suppose that

p = a0 + a1X
1
n + · · · ad1X

d1
n ,

q = b0 + b1X
1
n + · · · ad2X

d2
n .

Then, the polynomial multiplication formula gives

pq =
d1∑
i=0

d2∑
j=0

aibjX
i+j
n .

We claim that polynomial multiplication is bounded; that is, that

∀p, q ∈ Pn (R) : ‖pq‖Pn(R) ≤ ‖p‖Pn(R) ‖q‖Pn(R) .

This is true when n = 1, since

‖pq‖2P1(R) =
d1∑
i=0

d2∑
j=0
‖aibj‖2R

≤
d1∑
i=0

d2∑
j=0

a2
i b

2
j

=
d1∑
i=0

a2
i

d2∑
j=0

b2j

=
d1∑
i=0

a2
i ‖q‖

2
P1(R)

= ‖q‖2P1(R) ‖p‖
2
P1(R) .
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And if we assume that it works for n− 1, then

‖pq‖2Pn(R) =
d1∑
i=0

d2∑
j=0
‖aibj‖2Pn(R)

≤
d1∑
i=0

d2∑
j=0
‖ai‖2Pn(R) ‖bj‖

2
Pn(R)

=
d1∑
i=0
‖ai‖2Pn(R)

 d2∑
j=0
‖bj‖2Pn(R)


= ‖q‖Pn(R) ‖p‖Pn(R) .

Thus it’s true in general by induction. And boundedness implies continuity. If
(p, q)m is a sequence converging to (p, q), then pm → p and qm → q. Then
thanks to boundedness, we have

‖pq − pmqm‖Pn(R) = ‖pq − pmq + pmq − pmqm‖Pn(R)

= ‖(p− pm) q + pm (q − qm)‖Pn(R)

≤ ‖(p− pm) q‖Pn(R) + ‖pm (q − qm)‖Pn(R)

≤ ‖p− pm‖Pn(R) ‖q‖Pn(R) + ‖pm‖Pn(R) ‖q − qm‖Pn(R) .

Since Theorem 6 shows that convergent sequences are bounded, both terms
here go to zero. The fact that addition is continuous follows from Proposition 2,
given that Pn (R) is a normed vector space.

The continuity of polynomial operations will be often be used implicitly.
The next thing we’ll need to know is that univariate polynomial evaluation is
continuous. This will be the “base case” in our proof for multivariate polynomial
functions, but we prove it as a separate result because we know how to evaluate
univariate polynomials in a more general setting now.

Proposition 13 (univariate polynomial function continuity). If p = a0+a1X
1+

· · · + adX
d ∈ R [X] and if (V,R, ◦) is a finite-dimensional, normed, unital,

power-associative algebra, then p�V is continuous.

Proof. Suppose that xm → x in V . Then by the triangle inequality,

‖p�V (x)− p�V (xm)‖ =
∥∥a01V + a1 (x− xm) + · · ·+ ad

(
xd − xdm

)∥∥
≤

d∑
i=0
|a0|

∥∥xi − xim∥∥
which goes to zero by the continuity of the field operations.

Finally, we use this result to show that the function p�Rn is continuous. We
needed a norm on the polynomial spaces for this to make sense.
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Proposition 14. If p ∈ Pn (R), then the function p�Rn : Rn → R in Defini-
tion 24 is continuous.

Proof. Suppose that δ ∈ Rn, and notice that as δ → 0, the explicit representa-
tion of p�Rn from Proposition 9 gives us (after suppressing some of the indices
for notational convenience),

p�Rn (x+ δ)− p�Rn (x)
=

d1∑
i1=0
· · ·

dn∑
in=0

a(i1,i2,...,in) (x1 + δ1)i1 · · · (xn + δn)in

−
d1∑
i1=0
· · ·

dn∑
in=0

a(i1,i2,...,in)x
i1
1 · · ·xinn .

If you put the R norm (absolute value) around this expression and apply the
triangle inequality, you wind up with,

|p�Rn (x+ δ)− p�Rn (x)|
≤∑∣∣a(i1,i2,...,in)

∣∣ ∣∣∣[(x1 + δ1)i1 · · · (xk + δk)ik
]
−
[
xi11 · · ·x

ik
k

]∣∣∣︸ ︷︷ ︸
→0

,

Since part of each term is constant, and the other part involving δ is going to
zero by Lemma 2, the whole thing is going to zero.

Finally, we’ll need to know that convergence as polynomials implies conver-
gence as functions.

Proposition 15. If p(`) is a sequence in Pn (R) converging to p, then p(`)�Rn →
p�Rn pointwise on R.

Proof. First note that this is obvious for n = 1, the case that we all learned in
kindergarten. This lets us restrict our attention to n > 1, and to assume that
it holds for 1 ≤ k < n.

Next suppose that each element p(`) in the sequence has the form,

p(`) = a
(`)
0 X0

n + a
(`)
1 X1

n + · · ·+ a
(`)
d Xd

n,

and that p itself is
p = a0X

0
n + a1X

1
n + · · ·+ adX

d
n.

Definition 31 implies that

lim
`→∞

p(`) = p ⇐⇒ ∀i ∈ {0, 1, 2, . . . , d} : lim
`→∞

∥∥∥a(`)
i − ai

∥∥∥
Pn−1(R)

= 0.
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Use Definition 24 to expand p(`)�Rn (x)

p(`)�Rn (x) =
[
p(`)�R (xn)

]
�Rn−1

(
(x1, . . . , xn−1)T

)
=
[

d∑
i=0

a
(`)
i xin

]
�Rn−1

(
(x1, x2, . . . , xn−1)T

)
=

d∑
i=0

a
(`)
i �Rn−1

(
(x1, x2, . . . , xn−1)T

)
xin,

and likewise for

p�Rn (x) =
d∑
i=0

ai�Rn−1

(
(x1, x2, . . . , xn−1)T

)
xin.

Let x̂ := (x1, x2, . . . , xn−1)T to clean up the notation a bit; then subtract, take
absolute value, and apply the triangle inequality:

∣∣∣p(`)�Rn (x)− p�Rn (x)
∣∣∣ ≤ d∑

i=0

∣∣∣a(`)
i �Rn−1 (x̂)− ai�Rn−1 (x̂)

∣∣∣ ∣∣xin∣∣ .
We showed above that a(`)

i → ai in Pn−1 (R), the induction hypothesis therefore
shows that this entire sum goes to zero.

3.7 Solutions to exercises

Solution to Exercise 3 (polynomial multiplication). Beginning with the
expression,

pq =
(

I∑
i=0

aiX
i

) J∑
j=0

bjX
j

 ,

we can begin to impose some of the properties that we would like this mul-
tiplication to have. For multiplication to be distributive, we must be able to
expand,

pq =
I∑
i=0

J∑
j=0

aiX
ibjX

j .

Then if we’re going to have commutativity and XiXj = Xi+j , we should be
able to regroup, so we define

pq :=
I∑
i=0

J∑
j=0

(aibj)Xi+j . (3.1)
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This answer is already correct. It’s commutative, because the products aibj in
the coefficients commute, as do the sums i+ j and the sums of module elements
that arise from the two big sigmas; so the expression won’t change if you switch
p and q. And it’s distributive because we defined it to be: if

r =
K∑
k=0

ckX
k ∈ R [X] ,

and if we write M := max ({J,K}), then

p (q + r) =
(

I∑
i=0

aiX
i

) M∑
j=0

(bj + cj)Xj


:=

I∑
i=0

M∑
j=0

[ai (bj + cj)]Xi+j .

In this expression, we have used the same index name j to index both q and
r simultaneously. To that end, we have combined their upper limit into M :=
max ({J,K}). This does not change anything: J , for example, was the largest
index such that bj was nonzero. That means that all bj for j > J are zero, and
it doesn’t hurt if we include “extra” terms 0 = bjX

j when j is between J and
M for notational convenience. Likewise for k > K, if it so happens that K > J .

Using the distributivity of the coefficients in R and the laws of module
addition and scalar multiplication, this simplifies to

I∑
i=0

M∑
j=0

[
(aibj)Xi+j + (aicj)Xi+j]

=

 I∑
i=0

M∑
j=0

(aibj)Xi+j

+
[

I∑
i=0

M∑
k=0

(aick)Xi+k

]
= (pq) + (pr) .
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Finally, it is associative, as the same module/ring laws show:

(pq) r =

 I∑
i=0

J∑
j=0

(aibj)Xi+j

[ K∑
k=0

ckX
k

]

=
I∑
i=0

J∑
j=0

K∑
k=0

[(aibj) ck]Xi+j+k

=
I∑
i=0

J∑
j=0

K∑
k=0

[
aiX

i
] [

(bjck)Xj+k]

=
[

I∑
i=0

aiX
i

] J∑
j=0

K∑
k=0

(bjck)Xj+k


= p (qr) .

However, this naive definition of polynomial multiplication is not the most
computationally-convenient. The product pq is itself a tuple of infinite length,
and Equation (3.1) doesn’t help us find a particular entry (the coefficient of
a given power) in that tuple very easily. To do so, we have to loop over two
large-ish sets of indices, many of which are redundant. To address that, let’s
try to turn Equation (3.1) into a single sum. First, simply let ` = i + j, and
rewrite the formula,

pq =
∑{

(aibj)X`
∣∣ i, j ∈ {0, 1, . . . ,max ({I, J})} , i+ j = `

}
.

With this new expression for pq, it’s easier to read off what the `th entry of pq
is; by definition, it’s the coefficient of X`:

(pq)` =
∑
{(aibj) | i, j ∈ {0, 1, . . . ,max ({I, J})} , i+ j = `} .

Notice that we won’t be considering any i or j greater than `, since both are
nonnegative and we must have i+ j = `. As a result, this can be simplified to

(pq)` =
∑
{aibj | i, j ∈ {0, 1, . . . , `} , i+ j = `} .

Leave i alone in this expression, but solve for j in terms of i and ` to get j = `−i.
Since ` is fixed, i ranges from 0 to `, and j is uniquely determined by those, we
can simply replace j by `− i without any loss of fidelity:

(pq)` =
∑
{aib`−i | i ∈ {0, 1, . . . , `}} =

∑̀
i=0

aib`−i. (3.2)

This new expression contains only one summation, and tells us what the `th
coordinate of pq is. Let’s check Equation (3.2) using SageMath for two quadratic
polynomials p and q:
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sage: a0,a1,a2 = SR.var(’a0,a1,a2’)
sage: b0,b1,b2 = SR.var(’b0,b1,b2’)
sage: a = [a0,a1,a2,0,0]
sage: b = [b0,b1,b2,0,0]
sage: p = a[0] + a[1]*x + a[2]*xˆ2
sage: q = b[0] + b[1]*x + b[2]*xˆ2
sage: expected = (p*q).expand()
sage: expected
a2*b2*xˆ4 + a2*b1*xˆ3 + a1*b2*xˆ3 + a2*b0*xˆ2 + a1*b1*xˆ2 +
a0*b2*xˆ2 + a1*b0*x + a0*b1*x + a0*b0
sage: def coeff(l):
....: return sum( a[i]*b[l - i] for i in range(l+1) )
sage: [ bool(coeff(l) == expected.coefficient(x,l))
....: for l in range(5) ]
[True, True, True, True, True]

Do we need to show that this new formula is commutative, associative,
and distributive? It can be done directly, but we have already shown that
Equations (3.1) and (3.2) are equivalent definitions, and the first one satisfies
all of the properties we need.
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Chapter 4

Linear Algebra

4.1 Linear operators, matrix representation
Every vector space has a basis, and all bases for a given vector space have the
same cardinality (these are not easy things to prove). A vector space is said
to be finite-dimensional if some/every basis for that vector space is finite. The
cardinality of the basis is referred to as the dimension of the vector space. All
of our vector spaces will be finite-dimensional: this makes things a lot easier.
Definition 32. If (V,F) and (W,F) are vector spaces and if L : V → W is a
function, then we say that L is a linear operator from V to W if

∀x, y ∈ V,∀α ∈ F : L (αx+ y) = αL (x) + L (y) .

The set of all linear operators from V to W is denoted by B (V ,W ).
Exercise 2. Show that B (V ,W ) is a vector space over F if V and W are.

There is a straightforward connection between linear operators and matri-
ces: a matrix is simply a representation of a linear operator with respect to a
particular basis. For example, suppose V has a basis {e1, e2, . . . , en} and that
x ∈ V . Then we can write x = x1e1 + x2e2 · · · + xnen in terms of that basis.
Now suppose L ∈ B (V ). Then in particular, L (e1), and L (e2), and so on, are
back in V and we can write them in terms of our basis:

L (e1) = `11e1 + `21e2 + · · ·+ `n1en

L (e2) = `12e1 + `22e2 + · · ·+ `n2en

...
L (en) = `1ne1 + `2ne2 + · · ·+ `nnen.

It turns out that knowing the scalars {`ij | 1 ≤ i, j ≤ n} is completely equivalent
to knowing L itself. Since any x ∈ V can be written as x = x1e1+x2e2 · · ·+xnen,
we have

L (x) = x1L (e1) + x2L (e2) + · · ·xnL (en) ,
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and of course knowing the `ij tells us what L does to each ej . Matrices arise
from the following realization: if knowing the scalars x1, x2, . . . , xn is equivalent
to knowing x, and if knowing the `ij is equivalent to knowing L, then why don’t
we just arrange those scalars in a way that lets us compute with them? Matrix
multiplication is defined how it is precisely so that

`11 `12 · · · `1n

`21
. . . `2n

... . . . ...
`n1 `n2 · · · `nn.



x1
x2
...
xn

 = the coordinate representation of L (x) .

SageMath is happy to let you define a linear transformation in terms of its
action on a basis, and it can tell you the resulting matrix:

sage: V = VectorSpace(QQ,3)
sage: e1,e2,e3 = V.basis()
sage: L_of_e1 = -e1 + 2*e2 + e3
sage: L_of_e2 = e1 + e2 - e3
sage: L_of_e3 = e2
sage: images = [L_of_e1, L_of_e2, L_of_e3]
sage: L = linear_transformation(V,V,images)
sage: L
Vector space morphism represented by the matrix:
[-1 2 1]
[ 1 1 -1]
[ 0 1 0]
Domain: Vector space of dimension 3 over Rational Field
Codomain: Vector space of dimension 3 over Rational Field

Definition 33. If V is a finite-dimensional vector space over the field F with
basis b, then the coordinate vector of x ∈ V with respect to b will be written
b (x) ∈ Fn×1, and the coordinate matrix of L ∈ B (V ) will be written similarly,
as b (L) ∈ Fn×n. We use function notation for this operation to emphasize
that it acts very much like a homomorphism; matrix multiplication is defined
precisely so that b (L (x)) = b (L) b (x).

Proposition 16. If V is a vector space and if b = {b1, b2, . . . , bn} is a basis
for V , then the (block) matrix representation of L ∈ B (V ) with respect to b is,

b (L) :=

 | | |
b (L (b1)) b (L (b2)) · · · b (L (bn))
| | |

 .
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Proof. Recall that b (L) should be the matrix satisfying b (L) b (x) = b (L (x))
for all x ∈ V . If x ∈ V is arbitrary with b-coordinates b (x) = (x1, x2, . . . , xn)T ,
then x = x1b1 + x2b2 + · · ·xnbn, and using the linearity of L,

b (L (x)) = b (x1L (b1) + x2L (b2) + · · ·+ xnL (bn)) .

Now using the linearity of b (), this is just

x1b (L (b1)) + x2b (L (b2)) + · · ·+ x2b (L (bn)) ,

which, by the definition of (block) matrix multiplication, is

 | | |
b (L (b1)) b (L (b2)) · · · b (L (bn))
| | |



x1
x2
...
xn



Exercise 4 (matrix of transpose operator). Let V = R2×2 be the vector
space of 2-by-2 matrices with real entries over the scalar field R. We can define
a function L on V by

L : V → V

L = A 7→ AT ,

so that L is the “transpose operator.”
First show that L is linear, so that L ∈ B (V ). Then choose a basis for the

vector space V = R2×2, and find the matrix of L with respect to your basis.
It’s possible to have more than one basis in play at the same time, which

is when things really get confusing. (And God forbid if your vector space is
Rn so that the matrix of a linear operator with respect to the standard basis
looks exactly like itself). We’ll do one example of a “change of basis” for linear
operators, since it’s so useful.

Example 21 (change of basis). Suppose you have two bases e = {e1, e2, . . . , en}
and b = {b1, b2, . . . , bn} for a vector space V , and that L ∈ B (V ) is some linear
operator. How are e (L) and b (L) related? Can you compute one easily from
the other? From Proposition 16, we can say immediately that

e (L) =

 | | |
e (L (e1)) e (L (e2)) · · · e (L (en))
| | |

 , and

b (L) =

 | | |
b (L (b1)) b (L (b2)) · · · b (L (bn))
| | |

 .
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Theorem 2.2 of Roman says that we can completely specify a linear operator by
its action on a basis, so let A ∈ B (V ) be the map that sends ei to bi. We can
then substitute bi = A (bi) in the second equation to get | | |

b (LA (e1)) b (LA (e2)) · · · b (LA (en))
| | |

 .
Note now that A is invertible, and that A−1 sends bi to ei. Thus for any
x = x1b1 + x2b2 + · · ·xnbn ∈ V , we have A−1 (x) = x1e1 + x2e2 + · · ·xnen.
It follows that e

(
A−1 (x)

)
= b (x) for all x in V . By taking x = LA (ei) for

i = 1, 2, . . . , n in the expression above and substituting e
(
A−1 (x)

)
for b (x),

we finally arrive at

b (L) =

 | | |
e
(
A−1LA (e1)

)
e
(
A−1LA (e2)

)
· · · e

(
A−1LA (en)

)
| | |


= e

(
A−1LA

)
.

Now by the “homomorphism” property of basis representation,

b (L) = e
(
A−1LA

)
⇐⇒ b (L) = e

(
A−1) e (L) e (A) ,

showing that we can obtain b (L) from e (L) by conjugating it.

For the most part, people choose a standard orthonormal basis, and the space
of matrices is isometric to (essentially the same as) the space of linear operators.
Thus, nobody really distinguishes them. Matrices are easy to compute with, but
choosing a coordinate system (that is, a basis) is a bit arbitrary and can obscure
what’s going on.

Proposition 17. Axler,
Proposition 3.20

If V and W are two finite-dimensional vector spaces, then
B (V ,W ) is also finite-dimensional and has dimension dim (V ) dim (W ).

Proof. Let {a1, a2, . . . , am} be a basis for V and {b1, b2, . . . , bn} be a basis for
W . Define the following family of linear operators, where the xk denote scalars:

Lij :=
(

m∑
k=1

xkak

)
7→ xibj .

It is fairly easy to see using linearity that any element of B (V ,W ) can be
written as a linear combination of these Lij . Likewise, it is easy to show
that the set {Lij | i = 1, 2, . . . ,m; j = 1, 2, . . . , n} is linearly-independent. As
a result, that set is a basis for the vector space B (V ,W ), and it contains
m · n = dim (V ) dim (W ) elements.

Corollary 7. If V is finite-dimensional, then dim (B (V )) = dim (V )2.
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4.2 Eigenvalues and self-adjoint operators
Probably the most important concept that we’re going to study with regards to
linear operators is that of eigenvalues/eigenvectors. Here we recall some familiar
facts from basic linear algebra. They will become extremely important later
when we’re studying Euclidean Jordan algebras: the one trick in our bag will
be to convert Jordan-algebraic problems into standard linear algebra problems,
and to analyze those instead.

Definition 34. If (V,F) is a vector space and if L ∈ B (V ), then we say that
λ ∈ F is an eigenvalue of L if there exists a nonzero x ∈ V such that L (x) = λx.
In that case, x is called an eigenvector of L corresponding to λ.

Eigenvalues are important because they make it easy to understand what
a linear operator does. If L sends x to λx, then by linearity, we know how
L acts on all of span ({x}). Thus it suffices to understand how L acts on
things perpendicular to x. And if y ⊥ x, and if y is also an eigenvector. . . then
we can repeat the process, breaking down L into a bunch of simple scaling
operations (on the eigenvectors) plus whatever’s left over (which is usually more
complicated, but not as bad as when we started).

When can we decompose a linear operator L completely in terms of its
eigenvalues/eigenvectors? This question has a nice answer. Recall that if A ∈
Rn×n is a matrix, then the function λ 7→ det (λI −A) is a real polynomial
function of degree n on R. Now is a good time to define that function.

Definition 35. Axler 10.25;
Roman, Corollary
14.20

Suppose R is a commutative ring and that A ∈ Rn×n is a
matrix with entries Ai,j ∈ R. If Sn is the permutation group on {1, 2, . . . , n}
and if par (ρ) denotes the parity of the permutation ρ, then

det : Rn×n → R

det := A 7→
∑
ρ∈Sn

par (ρ)Ap(1),1Ap(2),2 · · ·Ap(n),n.

is the determinant of the matrix A.

The function λ 7→ det (λI −A) first constructs a matrix λI−A whose entries
are all of the form δijλ−Aij where δij ∈ {0, 1}. And the parity of a permutation
is either 1 or −1. Thus det (λI −A), which consists of products and sums of
those entries and the parities, consists of just more products and sums involving
real numbers and λ. As a result, the entire expression is a big product/sum of
terms involving only real numbers and λ; that is, a polynomial in λ. A 3-by-3
example should get the idea across. Here we have used the letter X instead of
λ for unrelated technical reasons.
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sage: a11,a12,a13 = SR.var(’a11,a12,a13’)
sage: a21,a22,a23 = SR.var(’a21,a22,a23’)
sage: a31,a32,a33 = SR.var(’a31,a32,a33’)
sage: A = matrix(SR, [ [a11,a12,a13],
....: [a21,a22,a23],
....: [a31,a32,a33] ])
sage: X = SR.var(’X’)
sage: I = matrix.identity(SR,3)
sage: (X*I - A).determinant().expand()
Xˆ3 - Xˆ2*a11 - X*a12*a21 - Xˆ2*a22 + X*a11*a22 -
X*a13*a31 + a13*a22*a31 - a12*a23*a31 - a13*a21*a32 -
X*a23*a32 + a11*a23*a32 - Xˆ2*a33 + X*a11*a33 +
a12*a21*a33 + X*a22*a33 - a11*a22*a33

Since λ 7→ det (λI −A) is a real polynomial function, it is safe to say by
Theorem 7 that it is the unique real polynomial function associated with some
det (ΛI −A) ∈ R [Λ], where here the determinant operation is interpreted for-
mally as a series of multiplications and sums of polynomial objects (specifically,
one like the expression in the SageMath example above). We will adopt this
more-convenient formalism from now on.

There is a slightly more useful formula for the determinant that doesn’t
require us to compute the signs of a bunch of permutations.

Definition 36 (cofactors). Suppose that R is a commutative ring, and that
Rn×n and R(n−1)×(n−1) are two matrix spaces with respective standard bases
E = {Eij | i, j ∈ {1, 2, . . . , n}} and F = {Fij | i, j ∈ {1, 2, . . . , n− 1}}. Then
since we’re in a free module (see Chapter 5 of Roman) we can define a linear
transformation M`k : Rn×n → R(n−1)×(n−1) by its action on E,

M`k (Eij) :=
{

0 if i = ` or j = k

Fij otherwise
.

When acting on matrices, the transformation M`k has the effect of “deleting” the
`th row and kth column. We can now define the (`, k)th cofactor of A ∈ Rn×n,

cofactor (`, k, ·) : Rn×n → R

cofactor (`, k, A) = (−1)`+k det (M`k (A)) .

Essentially, cofactor (`, k, A) is just (plus or minus) the determinant of the ma-
trix you would get if you deleted the `th row and kth column of A.

Theorem 14 (Laplace cofactor expansion). If R is a commutative ring, if
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A ∈ Rn×n is a matrix with entries Aij, and if we fix i ∈ {1, 2, . . . , n}, then

det (A) =
n∑
j=1

Aij cofactor (i, j, A) .

Likewise, if we fix j ∈ {1, 2 . . . , n}, then

det (A) =
n∑
i=1

Aij cofactor (i, j, A) .

The cofactor expansion allows us to define the determinant recursively. We
know what the determinant of a 1-by-1 matrix should be, and then the deter-
minant of a 2-by-2 matrix is defined in terms of that. So on for bigger matrices.
Example 22. Consider the real symmetric matrix

A :=

1 2 3
2 0 4
3 4 5

 ∈ S3.

The minimal polynomial of A is Λ3 − 6Λ2 − 24Λ − 12 ∈ R [Λ] from which we
can deduce that det (A) = 12. Let’s fix i = 3, and use its cofactor expansion:

A31 · cofactor (3, 1, A) +A32 · cofactor (3, 2, A) +A33 · cofactor (3, 3, A)
=

3 (−1)4 det
([

2 3
0 4

])
+ 4 (−1)5 det

([
1 2
3 4

])
+ 5 (−1)6 det

([
1 2
2 0

])
=

3 · 8 + 4 · 2 + 5 · (−4) = 12.

Here we have implicitly used the fact that

det
([
a b
c d

])
= ad− bc,

which of course follows itself from another cofactor expansion.
The cofactor expansion also makes it easy to see that the determinant of A

comes from some multivariate polynomial evaluated on the entries of A. It’s
trivially true for 1-by-1 matrices, and if it holds for (n− 1)-by-(n− 1) matrices,
then the cofactor expansion is a sum/product of polynomials in the entries of
A. So, it’s true by induction on n.

Ok, why do we care? The determinant can be used to solve systems of linear
equations.
Theorem 15 (Cramer’s rule). If R is a ring, if b ∈ Rn, and if A ∈ Rn×n with
det (A) 6= 0, then the system Ax = b has a unique solution for x ∈ Rn given by

x = (x1, x2, . . . , xn)T with xi = det (Ai→b)
det (A) ,

where Ai→b denotes the matrix A but with its ith column replaced by b.
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Proof. Define a function LA : Rn → Rn by

LA



x1
x2
...
xn


 := 1

det (A)


det (A1→x)
det (A2→x)

...
det (An→x)


The determinant function is linear in the columns (and rows, see Corollary
14.20 in Roman) of its argument, so for a fixed A, the function LA is linear in
its argument x. Now see what happens if we apply LA to each column Ai of A
itself. The entries of LA (Ai) look like

LA (Ai)k = det (Ak→Ai
)

det (A) =
{

det(A)
det(A) = 1 if k = i

0 otherwise
,

since adding a second copy of Ai in a non-i position makes the matrix singular.
Thus we conclude that

LA (Ai) = ei,

the ith standard basis vector. However, the inverse of A acts the same way, as
can be seen if we write both A−1 and A itself in block form,

A−1A =
[
A−1] [A1 A2 · · · An

]
=
[
A−1A1 A−1A2 · · · A−1An

]
= I

=
[
e1 e2 · · · en

]
.

Since the columns of A form a basis for Rn (it’s a free module, see Chapter 5
of Roman), and since LA and A−1 agree on that basis, they must be the same
linear transformation. Now we simply substitute LA for A−1 in

x = A−1b ⇐⇒ x = LA (b) ,

and look at the ith component:

xi = (LA (b))i = det (Ai→b)
det (A) .

Another reason to care about the determinant is that det (ΛI −A) ∈ R [Λ]
is a polynomial, and the roots of the function [det (ΛI −A)]�R are the eigen-
values of A, since that expression comes directly from the eigenvalue equation
Ax = λx. Therefore, by the fundamental theorem of algebra, if F is the com-
plex numbers, we can find n complex roots/eigenvalues, some of which may be
repeated. However, we want to know what happens in real vector spaces. First
let’s recall the adjoint of a linear operator.
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Definition 37. If (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) are two finite-dimensional real
inner-product spaces and if L ∈ B (V ,W ), then there exists a unique L∗ ∈
B (W,V ) called the adjoint of L such that

∀x ∈ V,∀y ∈W : 〈L (x), y〉W = 〈x, L∗ (y)〉V .

If L ∈ B (V ) and if L∗ = L, then L is called self-adjoint. Note that the idea of
self-adjoint doesn’t make sense unless W = V above.

The existence of an adjoint in finite-dimensional spaces is discussed in Axler’s
Chapter 6, or in Roman’s Theorem 10.1. The general case (more general even
than what we claim here) is covered in the uncharacteristically-readable Theo-
rem 4.10 in Functional Analysis, by Walter Rudin [14].

In an inner product space, the “isomorphisms” are isometries—linear maps
that preserve the inner product.

Definition 38. Axler, Chapter 7If (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) are two finite-dimensional real
inner-product spaces and if L ∈ B (V ,W ) satisfies

∀x ∈ V : ‖x‖V = ‖L (x)‖W ,

then L is an isometry between V and W .

Theorem 16. Axler, 7.36;
Roman, 9.6

If (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) are two finite-dimensional real
inner-product spaces and if L ∈ B (V ,W ), then L is an isometry if and only
if ∀x, y ∈ V : 〈x, y〉V = 〈L (x), L (y)〉W .

Thus isometries preserve not only norms, but also inner products. Since the
theorem above is an equivalence, it doesn’t really matter which one you choose
as your definition: Chapter 9 of Roman defines isometries as preserving inner
products. Literally, though, “isometry” means “same distance,” so we side with
Axler on this one.

Exercise 5 (isometry between finite-dimensional spaces). Suppose that
V and W are two real, n-dimensional Hilbert spaces. Each therefore has a basis
consisting of n elements. Prove Theorem 1: show that V and W are isometric
by demonstrating an isometry between them.

Hint: take both bases, and cite some linear algebra result that says that you
can orthonormalize them. Prove (or cite someone again to show) that you can
define a linear operator on a vector space by specifying its action on a basis.
Finally, define your isometry by deciding what it should do on an orthonormal
basis for V , and prove that it preserves inner-products and/or norms.

If A is a real matrix that represents L with respect to some orthonormal
basis, then its transpose AT represents L∗ with respect to the same basis. If A
is complex, then its conjugate-transpose A∗ (sometimes written AH) represents
L∗ instead.

Proposition 18. If (V,F, 〈·, ·〉) is a finite-dimensional inner-product space with
orthonormal basis b, then L ∈ B (V ) is self-adjoint if and only if the matrix of
L with respect to b is Hermitian.
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Proof. Since b is orthonormal, then the basis representation map bi 7→ ei from
V to Fn (where n is the dimension of V ) is an isometry: b (bi) = ei, and both
bi and ei have unit norm. This holds for the entire orthonormal basis b, and
thus for all of V : any v ∈ V can be written as a linear combination

∑n
i=1 αibi

of the elements of b; then using ‖x‖2 := 〈x, x〉 and the orthonormality of both
bases, we have

‖v‖2V =
∥∥∥∥∥
n∑
i=1

αibi

∥∥∥∥∥
2

V

=
n∑
i=1

n∑
j=1

αiαj 〈bi, bj〉V =
n∑
i=1

α2
i ‖bi‖

2
V =

n∑
i=1

α2
i

‖b (v)‖2Fn =
∥∥∥∥∥b
(

n∑
i=1

αibi

)∥∥∥∥∥
2

Fn

=
n∑
i=1

n∑
j=1

αiαj 〈ei, ej〉Fn =
n∑
i=1

αi ‖ei‖2Fn=
n∑
i=1

α2
i .

Thus b is an isometry when considered as a linear operator from V to Fn. And
since b is an isometry, it is in particular an invertible linear operator. Keep that
in mind for a second, because. . .

∀y, z ∈ V : 〈L (y), z〉V = 〈y, L (z)〉V
⇐⇒

∀y, z ∈ V : 〈b (L (y)),b (z)〉Fn = 〈b (y),b (L (z))〉Fn

⇐⇒
∀y, z ∈ V : 〈b (L) b (y),b (z)〉Fn = 〈b (y),b (L) b (z)〉Fn .

Here we can use the invertibility of b, to create the correspondences

p = b (y) ⇐⇒ b−1 (p) = y

q = b (z) ⇐⇒ b−1 (q) = z,

and use them to change where the “for all” takes place. The result is,

· · ·
⇐⇒

∀p, q ∈ Fn : 〈b (L) p, q〉Fn = 〈p,b (L) q〉Fn .

This chain of equivalences starts with the self-adjointness of L, and end with its
matrix b (L) being Hermitian. So, those two things are equivalent.

Example 23. In Rn×1, the inner product 〈x, y〉 can be written as simply yTx.
Thus 〈Ax, y〉 = yTAx, and if A is self-adjoint, then

yTAx = 〈Ax, y〉 = 〈x,Ay〉 = 〈Ay, x〉 = xTAy.

Theorem 17. Axler,
Proposition 7.1

If (V,C) is an inner-product space and if L ∈ B (V ) is self-
adjoint, then all of the eigenvalues of L are real.
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Proof. Suppose that x ∈ V is an eigenvector of L with L (x) = λx. We want to
show that λ = λ, from which we conclude that λ ∈ R:

λ ‖x‖2 = 〈λx, x〉 = 〈L (x), x〉 = 〈x, L (x)〉 = 〈x, λx〉 = λ ‖x‖2 .

Since x 6= 0 because it was an eigenvector, we can divide both sides by ‖x‖2 > 0
to conclude that λ = λ.

How do we apply the previous theorem to real vector spaces?
Proposition 19. Roman, Theorem,

10.11
If A ∈ Rn×n is symmetric, then the real polynomial function

λ 7→ det (λI −A) has n real roots.

Proof. Consider the matrix Ã ∈ Cn×n having the same entries as A. In that
setting, Ã is Hermitian, because the conjugate-transpose of a matrix with real
entries is the regular transpose, and A was symmetric. Thus, the eigenvalues
of Ã are real by Theorem 17, and we conclude that the polynomial function
λ 7→ det

(
λI − Ã

)
has n real roots. Now we simply note that

∀λ ∈ R : det
(
λI − Ã

)
= det (λI −A) ,

from which the conclusion follows.

We won’t call this next theorem “the fundamental theorem of linear algebra,”
but only because that name is already taken. This is the practical reason why
symmetry of matrices is so important.
Theorem 18 (spectral theorem for linear algebra). Axler, Chapter 7;

or Roman,
Theorem 10.19

If (V,R) is a real inner-
product space of dimension n and if L ∈ B (V ), then the following are equivalent:

• L is self-adjoint.

• V has an orthonormal basis consisting of eigenvectors of L.

• There exists some orthogonal matrix U that diagonalizes the matrix A of
L; that is, such that UAUT = diag (λ1, λ2, . . . , λn) where (without loss of
generality) the λi are the eigenvalues of L.

• There exists a unique set of pairs {(λ1, P1) , (λ2, P2) , . . . , (λk, Pk)} con-
sisting of real numbers λi ∈ R and operators Pi ∈ B (V ) such that

� The real numbers λ1 through λk are all non-zero and distinct; like-
wise, the operators P1 through Pk are all non-zero and distinct.

� P 2
i = Pi and P ∗i = Pi. In other words, each Pi is a projection.

� Pi is the projection onto the eigenspace ker (λi idV −L) of L corre-
sponding to the non-zero eigenvalue λi.

�

∑k
i=1 Pi = idV and thus

∑k
i=1 λiPi = L.

� PiPj = 0 for i 6= j (the projections are onto orthogonal subspaces).

The last item involving the projections doesn’t appear in the cited theorems,
but can be deduced afterwards from Axler’s Proposition 5.21.
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Warning 5: Zeros invalidate uniqueness

It’s hard to find the unique decomposition written down anywhere
correctly. The fact that there exist spectral projectors and eigen-
values is fairly easy to deduce, but the uniqueness is not. The
caveat is that the zero operator satisfies the definition of a pro-
jection, and the zero eigenvalue is also a legitimate eigenvalue.
You can add in extra zero projectors to any decomposition to
make it non-unique without affecting the answer. And if λ = 0
is an eigenvalue of your operator, then you can pair it with any
projection P in λP = 0 to make the decomposition non-unique.
Thus we have restricted our statement to nonzero projectors and
eigenvalues.

The spectral theorem is incredibly useful because the mapping X 7→ UXUT

is an isometry on the space of matrices. Thus if we can write A = UDUT for
a diagonal matrix D, then we know precisely how A is isometric to a diagonal
matrix. And diagonal matrices are easy to reason about.

Example 24. [inverse of a symmetric matrix] Suppose that A ∈ Rn×n is sym-
metric. Using the spectral theorem for linear algebra, we can write

A = UT diag (λ1, λ2, . . . , λn)U.

If any of the λi are zero, then A is not invertible. On the other hand, if all of
the λi are nonzero, then the inverse of A is

A−1 = UT diag (λ1, λ2, . . . , λn)U−1 = UT diag
(

1
λ1
,

1
λ2
, . . . ,

1
λn

)
U,

as can easily be verified by matrix multiplication using the fact that UUT =
UTU = I.

Example 25 (spectral norm of a symmetric matrix). The operator norm or
spectral norm of a matrix A ∈ Rn×n is the maximum amount that it can stretch
a vector,

‖A‖ := sup
({
‖Ax‖
‖x‖

∣∣∣∣ x ∈ Rn, x 6= 0
})

= max ({‖Ay‖ | y ∈ Rn, ‖y‖ = 1}) .

The second equality is obtained by letting y = x/ ‖x‖. The set of all y ∈ Rn with
‖y‖ = 1 is closed and bounded, and is therefore compact in Rn by Theorem 3.
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As a result, the continuous function y 7→ ‖Ay‖ achieves its supremum on said
set by Theorem 4.

But what is this norm? If A is symmetric, then we write A = UTDU where
D = diag (λ1, λ2, . . . , λn) by the spectral theorem for linear algebra. Then

‖A‖ = max
({∥∥UTDUy∥∥ ∣∣ y ∈ Rn, ‖y‖ = 1

})
,

and since U and UT are invertible isometries, we can let Uy = z and substitute,

‖A‖ = max
({∥∥UTDz∥∥ ∣∣ z ∈ Rn, ‖z‖ = 1

})
= max ({‖Dz‖ | z ∈ Rn, ‖z‖ = 1}) .

Intuitively, the way to maximize this is to put a “1” in the component of z that
corresponds to the largest entry of D. Without loss of generality, suppose that
D11 = λ1 is the largest entry in absolute value. Then it easy to see that

‖A‖ = ‖De1‖ = |λ1| .

Thus the spectral/operator norm of A is its largest eigenvalue, in absolute value:

‖A‖ = max ({|λ1| , |λ2| , . . . , |λn|}) .

The maximum eigenvalue of any matrix A is called its spectral radius and is
written ρ (A). Thus in the special case of a symmetric matrix, the operator
norm is the same as the spectral radius.

Example 26 (condition number of a symmetric matrix). In numerical compu-
tations, solving the system Ax = b in Rn using floating-point arithmetic will
produce an innacurate solution. The condition number κ (A) of the matrix
A ∈ Rn×n provides an upper bound on the error associated with that solution.
In terms of the operator norm,

κ (A) = ‖A‖
‖A−1‖

.

Therefore, if A is symmetric, then by Example 25 we can simply compute

κ (A) = |λmax|
|λmin|

,

where λmax and λmin are the largest/smallest eigenvalues of A, in absolute value,
respectively.

Example 27. [exponential of a symmetrix matrix] The matrix exponential of
A ∈ Rn×n is defined to be

exp (A) :=
∞∑
k=0

1
k!A

k,
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and this always converges thanks to the factorial in the denominator. Ok,
but how do we compute it? If A is symmetric, we write A = UTDU where
D = diag (λ1, λ2, . . . , λn) as usual. Then

exp (A) =
∞∑
k=0

1
k! U

TDUUTDUUTDU · · ·︸ ︷︷ ︸
k times

,

and using the fact that UUT = I, we arrive at

exp (A) =
∞∑
k=0

1
k!U

TDkU

= UT

( ∞∑
k=0

1
k!D

k

)
U

= UT diag
(
eλ1 , eλ2 , . . . , eλn

)
U.

Exercise 6 (eigenvalues of powers). Let A ∈ Rn×n be symmetric with
eigenvalues λ1, λ2, . . . , λn ∈ R. Use the spectral decomposition of A to show
that the eigenvalues of Ak are λk1 , λk2 , . . . , λkn.

Exercise 7 (eigenspaces of transpose operator). Let V = R2×2 and
recall the “transpose operator” L from Exercise 4 that takes a matrix A ∈ V
and returns AT . In this problem, we will want to talk about orthogonality in
V , and that requires an inner product. The inner product of two matrices B
and C is usually defined to be

〈B,C〉 := trace
(
BCT

)
, (4.2)

and we will use that as our inner product on V . Thus when we talk about
matrices B,C ∈ V being orthogonal, we mean that

〈B,C〉 := trace
(
BCT

)
= 0.

First, find all eigenvalues of L, using either your solution to Exercise 4 or
the fact that L (L (A)) =

(
AT
)T = A. For each eigenvalue λi ∈ R that you find,

there should be a corresponding eigenspace Vi ⊆ V such that

∀x ∈ Vi : L (x) = λix.

Find these eigenspaces and their dimensions, and show that V is an orthogonal
direct sum of them,

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk,

where the elements of Vi and Vj are orthogonal when i 6= j.
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4.3 Positive semi-definite operators
The cone of positive-semidefinite matrices (in the ambient space of symmetric
matrices) is going to come up frequently. We recall the definition, which gives
us a good example of why the spectral theorem is so useful.
Definition 39 (positive-semidefinite). If (V,F) is an inner-product space and
if L ∈ B (V ), then L is positive-semidefinite or PSD if

∀x ∈ V : 〈L (x), x〉 ≥ 0.

Proposition 20. If A ∈ Rn×n is symmetric, then A is positive-semidefinite if
and only if every eigenvalue of A is nonnegative.

Proof. Use the spectral theorem for linear algebra to write A = UDUT with
the eigenvalues of A on the diagonal of D and all other entries of D zero. Then

〈Ax, x〉 =
〈
UDUTx, x

〉
=
〈
D
(
UTx

)
, UTx

〉
.

Since U is an isometry on V , we have V =
{
UTx

∣∣ x ∈ V }. Thus we can let
y = UTx above and conclude that

∀x ∈ V : 〈Ax, x〉 ≥ 0 ⇐⇒ ∀y ∈ V : 〈Dy, y〉 ≥ 0.

Now simply consider y = (1, 0, . . .)T , y = (0, 1, . . .)T , et cetera to see that this is
equivalent to the diagonal entries of D (the eigenvalues of A) being nonnegative:

〈Dei, ei〉 = λi ≥ 0.

Warning 6: Positive-semidefinite isn’t self-adjoint

Some authors define a positive-semidefinite operator to be self-
adjoint (so that its matrix is symmetric or Hermitian). When
you’re working over the complex numbers, this kind-of makes
sense, because in that case the condition in Definition 39 implies
that the operator is self-adjoint. In particular, when we write
〈L (x), x〉 ≥ 0, we mean that the inner product is real. On a com-
plex vector space, that can only happen when L is self-adjoint.

Example 28. If (V,C) is an inner-product space and if L ∈ B (V ) is not self-
adjoint, then there exists some x ∈ V such that

〈L (x), x〉 6= 〈x, L (x)〉 ⇐⇒ 〈L (x), x〉 6= 〈L (x), x〉.

Clearly this means that 〈L (x), x〉 is not real.
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However, over the real numbers, symmetry and positive-semidefiniteness
don’t come as a package.

Example 29. Let A ∈ R2×2 and an arbitrary x ∈ R2×1 be given by

A =
[

1 1
−1 1

]
and x =

[
x1
x2

]
.

Clearly, A is not symmetric. And yet,

〈Ax, x〉 =
〈[

x1 + x2
−x1 + x2

]
,

[
x1
x2

]〉
= x2

1 + x2
2 ≥ 0,

showing that A is positive-semidefinite.

4.4 Characteristic and minimal polynomials
The utility of results like Proposition 19 might not be immediately clear; how-
ever, the polynomial it refers to is quite important. Refer to Section 3.3 and
specifically Example 18 if the notation needs explaining.

Theorem 19. Axler, Theorem
10.17

The polynomial det (ΛI −A) ∈ R [Λ] is the characteristic poly-
nomial of A ∈ Rn×n.

The polynomial object in Theorem 19 is computed according to Definition 35.
Since the determinant involves only addition and multiplication, and since R [Λ]
is a ring, the end result is back in that same ring; that is, det (ΛI −A) ∈ R [Λ].

Recall that the characteristic polynomial of a complex matrix A is usually
defined as

(Λ− λ1)m1 (Λ− λ2)m2 · · · (Λ− λk)mk ∈ C [Λ] , (4.3)

where the k real numbers λ1, . . . , λk are the distinct (complex) eigenvalues of
A, and the exponent mi is the dimension of ker (λiI −A). You can find it in
SageMath, although the default is to output a lowercase x for the polynomial
indeterminate:

sage: A = matrix.hilbert(3); A
[ 1 1/2 1/3]
[1/2 1/3 1/4]
[1/3 1/4 1/5]
sage: A.characteristic_polynomial()
xˆ3 - 23/15*xˆ2 + 127/720*x - 1/2160

Proposition 21. Axler,
Proposition 8.18

The exponents m1, . . . ,mk in Equation (4.3) sum to n.
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Thus, the characteristic polynomial of a complex n-by-n matrix is always
of degree n. The real-matrix case is rather more annoying; you can consult
Chapter 9 in Axler for the details. However, things are just as nice for real
symmetric matrices, because their eigenvalues are all real.

Proposition 22. If A ∈ Rn×n is symmetric, then the characteristic polynomial
of A is

(Λ− λ1)m1 (Λ− λ2)m2 · · · (Λ− λk)mk ∈ R [Λ] ,

where the k real numbers λ1, . . . , λk are the distinct eigenvalues of A, the expo-
nents mi are the dimensions of the ker (λiI −A), and

∑
imi = n.

Proof. Since A is symmetric, we cite Proposition 19 and Theorem 19 to conclude
that

det (ΛI −A) ∈ R [Λ]

is the characteristic polynomial of A. It follows from the definition of determi-
nant that the whole thing is a polynomial of degree n, and since the correspond-
ing function [det (ΛI −A)]�R has n roots, it factors into the stated form.

Exercise 8 (characteristic polynomial of transpose operator). The
characteristic polynomial of a linear operator is defined to be the characteristic
polynomial of its matrix representation with respect to any basis. Let L be
the “transpose” operator on V = R2×2 that sends a matrix A to its transpose,
AT . Use your solutions to Exercise 4 and/or Exercise 7 to show that L is self-
adjoint, and then use either its matrix representation or Proposition 22 to find
its characteristic polynomial.

Exercise 9 (axiomatic determinant). Suppose that A ∈ Rn×n is a symmet-
ric matrix. In Proposition 19 (and thus in Proposition 22), we have relied upon
the fact that the roots of γA�R are the eigenvalues of A. This is based on the
belief that there are nontrivial solutions λ ∈ R to the equation (λI −A)x = 0
if and only if (λI −A) is singular if and only if det (λI −A) = 0. From Defini-
tion 35, it’s not obvious that the determinant has that property.

For reasons like that, an axiomatic definition of the determinant is often
used instead. For example, if R is a commutative ring, then the determinant is
the unique function from Rn×n to R satisfying the following four properties:

1. det (I) = 1R, where I = 1Rn×n is the identity matrix in Rn×n.

2. If you fix any n−1 rows of A, then det is linear in the remaining row. For
example, if the rows of A are A1, A2, . . . , An, then

det (A) := det



A1
A2
...
An


 ,
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and the linearity that we refer to is (for example, in the first row),

det



αA1 +B

A2
...
An


 = α det



A1
A2
...
An


+ det



B
A2
...
An


 .

3. If two adjacent rows of A are equal, then det (A) = 0.

From those three properties it follows that det (AB) = det (A) det (B). Take
the three properties (and the one consequence) as your definition of the deter-
minant, and use the spectral decomposition of the symmetric matrix A ∈ Rn×n
to show directly that

γA = det (ΛI −A) = (Λ− λ1) (Λ− λ2) · · · (Λ− λn) ∈ R [Λ] ,

where λ1, λ2, . . . , λn are the (possibly repeated) eigenvalues ofA. In other words,
re-prove Proposition 22 using an axiomatic definition of the determinant.

Hint: this is easier than it sounds. First use the spectral theorem for linear
algebra to diagonalize A. Use one of the properties to eliminate the orthogonal
matrices. Then all that remains is to find the determinant of a diagonal matrix
using the given properties.

The next theorem looks pretty innocent, but we’ll use it over and over again.

Theorem 20 (Cayley-Hamilton Theorem). Axler, Theorems
8.20 and 9.20

If A ∈ Rn×n and if p is the char-
acteristic polynomial of A, then the associated function p�Rn×n : Rn×n → Rn×n
satisfies p�Rn×n (A) = 0.

The Cayley-Hamilton theorem tells us something surprising: we know that
Rn×n is a vector space of dimension n2, right? So let A ∈ Rn×n be given, and
consider the set of powers,{

A0, A1, A2, . . . , A(n2)
}
.

How many powers do we need before this set becomes linearly-dependent? In the
worst case, we might expect the answer to be n2, because that’s the dimension
of the ambient space.

Definition 40. The minimal polynomial of A ∈ Rn×n is the monic polynomial
p ∈ R [Λ] of smallest degree such that the associated function p�Rn×n : Rn×n →
Rn×n satisfies p�Rn×n (A) = 0.

Recall that if the set
{
A0, A1, . . . , Am−1} is linearly-independent but the

set
{
A0, A1, . . . , Am

}
is linearly-dependent, then we can write Am as a unique

linear combination of the lower powers A0, A1, . . . , Am−1. It’s not obvious, but
this gives us a way to find the minimal polynomial of a matrix. But for sure, it
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gives us a polynomial function that evaluates to zero on A, since

Am = a0A
0 + a1A

1 + · · ·+ a(m−1)A
m−1

⇐⇒
Am − a0A

0 − a1A
1 − · · · − a(m−1)A

m−1 = 0.

To prove that this is indeed the minimal polynomial of A ∈ Rn×n takes a
bit of work. We omit the proof of the next proposition because we give a more
general proof in Proposition 34 that actually applies to any finite-dimensional
power-associative unital algebra, and in particular to the associative algebra
of matrices under matrix multiplication (we showed that this is an associative
algebra in the algebra of linear operators).

Proposition 23. If A ∈ Rn×n for n ≥ 1, then the minimal polynomial of A is

µA = Λd − a0Λ0 − a1Λ1 − · · · − a(d−1)Λd−1 ∈ R [Λ] ,

where d ≥ 1 is first power of A that can be expressed as a linear combination of
lower powers, and where the coefficients {a0, a1, . . . , ad−1} are the coordinates
of Ad with respect to

{
A0, A1, . . . , Ad−1} in span

({
A0, A1, . . . , Ad−1}).

So, asking how many linearly-independent powers we can get is equivalent
to asking the degree of the minimal polynomial. The importance of the Cayley-
Hamilton theorem is that it shows that the minimal polynomial of any matrix
must divide its characteristic polynomial (the “minimal” is with respect to the
“divides” ordering that we’ll meet in Example 40). And the characteristic poly-
nomial is always degree n in Rn×n, as we just showed. Thus, even though we
might expect to need n2 powers, it turns out that we only need the much smaller
number n. SageMath can also find minimal polynomials:

sage: A = matrix(ZZ, [[4,0,0],
....: [0,2,2],
....: [0,2,2]])
sage: p = A.characteristic_polynomial(); p
xˆ3 - 8*xˆ2 + 16*x
sage: m = A.minimal_polynomial(); m
xˆ2 - 4*x
sage: m.divides(p) # by Cayley-Hamilton
True

We’re going to reinvent all of these concepts later, in the setting of a Eu-
clidean Jordan algebra, so it’s important that you have some intuition for the
minimal/characteristic polynomials and why they’re useful.
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Theorem 21. The determinant of a symmetric matrix A ∈ Rn×n is the product
of its eigenvalues, and the trace of A is the sum of its eigenvalues.

Proof. Use the spectral theorem for linear algebra to write A = UDUT where
U is orthogonal (so UT = U−1). Then

det (A) = det
(
UDU−1) = det (U) det (D) det

(
U−1) = det (D) ,

and since the eigenvalues of A are on the diagonal of D and the rest of D contains
zeros, the only non-zero term in det (D) is the product of the eigenvalues of A.

For the trace, the same trick works:

trace (A) = trace
(
UDU−1) = trace

(
DU−1U

)
= trace (D) .

Now the trace of D is the sum of its diagonal entries, the eigenvalues of A.

This theorem holds also for asymmetric matrices, but it’s harder to prove
when you can’t use the spectral theorem to diagonalize the matrix.

Corollary 8. The determinant of a symmetric matrix A ∈ Rn×n is (−1)n times
the constant (zeroth) term in its characteristic polynomial, and the trace of A
is (−1) times the coefficient of the penultimate term.

Proof. Consider the argument zero to the real function p�R : R→ R associated
with the characteristic polynomial p ∈ R [Λ] of A. By Proposition 22,

p�R (0) = (−λ1)m1 (−λm2
2 ) · · · (−λmk

k )

= (−1)(m1+m2+···+mk)
λm1

1 λm2
2 · · ·λmk

k

= (−1)n λm1
1 λm2

2 · · ·λmk

k .

is the constant term in the characteristic polynomial because all others go away
when apply the function to 0. It is also (−1)n times the product of the eigen-
values of A, which Theorem 21 shows is the determinant of A.

For the trace, consider the polynomial of degree n,

p = (Λ− σ1) (Λ− σ2) · · · (Λ− σn) ∈ R [Λ] ,

where σi ∈ R. We claim that the coefficient of Λn−1 in this polynomial is
−
∑n
i=1 σi, and can prove it by induction. The result is clearly true for n = 1,

where p = Λ1 − σ1 and σ1 is the coefficient of Λn−1 = Λ0. So, assume that it
holds for polynomials of degree n− 1, and reconsider

p = (Λ− σ1) (Λ− σ2) · · · (Λ− σn)︸ ︷︷ ︸
q

= Λq − σ1q

where now we have introduced a polynomial q ∈ R [Λ] of degree n − 1. The
coefficient of Λn−1 in pmust be the coefficient of Λn−1 in Λq minus the coefficient
of Λn−1 in σ1q. But within q, the induction hypothesis applies, and we see that
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in q, the coefficient of Λn−2 must be −
∑n
i=2 σi. Thus in Λq, the coefficient of

Λn−1 is also −
∑n
i=2 σi. Moreover, in q, the coefficient of Λn−1 is one (it’s a

monic polynomial), so the coefficient of Λn−1 in σ1q is simply σ1. Subtracting
the two, we get (

−
i=n∑
i=2

σi

)
− σ1 = −

n∑
i=1

σi,

and the statement is proved. To turn this into a statement about the trace,
simply apply it to the characteristic polynomial in Proposition 22, whence the
coefficient of Λn−1 is −

∑
k λkmk, or negative the sum of the eigenvalues of A,

including repeats, that we showed in Theorem 21 was the trace.

Exercise 10 (inverse via Cayley-Hamilton). Suppose that A ∈ Rn×n is
symmetric and has characteristic polynomial

γA = a0 + a1Λ + a2Λ2 + · · ·+ Λn ∈ R [Λ] .

Recall that the inverse of A is the unique matrix B such that AB = BA = I,
where I ∈ Rn×n denotes the identity matrix, and use the Cayley-Hamilton
Theorem to find a formula for the inverse of A when det (A) 6= 0.

4.5 Solutions to exercises

Solution to Exercise 4 (matrix of transpose operator). The transpose
is linear on any real matrix space. Two matrices are equal if their entries are
equal, and(

(αA+B)T
)
ij

= (αA+B)ji = α
(
AT
)
ij

+
(
BT
)
ij

=
(
αAT +BT

)
ij
.

For a basis of V , the obvious choice is b = {b1, b2, b3, b4} where

b1 =
[
1 0
0 0

]
, b2 =

[
0 1
0 0

]
, b3 =

[
0 0
1 0

]
, b4 =

[
0 0
0 1

]
.

This spans the space, since for any α, β, γ, δ ∈ R, we have[
α β
γ δ

]
= αb1 + βb2 + γb3 + δb4. (4.1)

Moreover Equation (4.1) shows that b is linearly-independent, since

αb1 + βb2 + γb3 + δb4 =
[
0 0
0 0

]
⇐⇒

α = β = γ = δ = 0.
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So b is in fact a basis for V . To find the matrix of L, we just use the formula,

b (L) =
[
b (L (b1)) b (L (b2)) b (L (b3)) b (L (b4))

]
=
[
b (b1) b (b3) b (b2) b (b4)

]
=




1
0
0
0




0
0
1
0




0
1
0
0




0
0
0
1




=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Solution to Exercise 5 (isometry between finite-dimensional spaces).
Let a = {a1, a2, . . . , an} be a basis for V and b = {b1, b2, . . . , bn} be a basis
for W . Since V,W are both n-dimensional, the two bases contain the same
number of elements. By the Gram-Schmidt orthonormalization process (Roman,
Theorem 9.11), there also exist two orthonormal bases

â = {â1, â2, . . . ân} , and

b̂ =
{
b̂1, b̂2, . . . b̂n

}
of V and W , respectively, obtained from the originals. Theorem 2.2 in Roman
says that we can define a linear transformation by specifying its action on a
basis, so we define

L (âi) = b̂i,

and its linear extension should be an isometry. To see this, let x, y ∈ V be
arbitrary. We can represent them uniquely in terms of our orthonormal basis,

x = x1â1 + x2â2 + · · ·+ xnân

y = y1â1 + y2â2 + · · ·+ ynân,

and simply compute. First in V ,

〈x, y〉V =
n∑
i=1

n∑
j=1
〈xiâi, yj âj〉V

=
n∑
i=1
〈xiâi, yiâi〉V (since the basis â is orthogonal)

=
n∑
i=1

xiyi ‖âi‖2V

=
n∑
i=1

xiyi (since the basis â is normal).
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and then in W , using our definition of L and its linearity:

〈L (x), L (y)〉W =
n∑
i=1

n∑
j=1

〈
xib̂i, yj b̂j

〉
W

=
n∑
i=1

〈
xib̂i, yib̂i

〉
W

(since the basis b̂ is orthogonal)

=
n∑
i=1

xiyi

∥∥∥b̂i∥∥∥2

W

=
n∑
i=1

xiyi (since the basis b̂ is normal).

Solution to Exercise 6 (eigenvalues of powers). Use the spectral theorem
for linear algebra to write A = UDUT . Then,

Ak = UDUTUDUT · · ·UDUT︸ ︷︷ ︸
k times

= UDkUT ,

since all of the UTU terms in the middle cancel. Now

Dk = diag
(
λk1 , λ

k
2 , . . . , λ

k
n

)
,

and the only question that remains is, why should those be the eigenvalues of
UDkUT ? Suppose that

UDkUTx = λx,

where x 6= 0, and then let UTx = y which is also non-zero because UT is an
isometry. We can also multiply on the left by UT = U−1 to obtain,

UTUDkUTx = λUTx

⇐⇒
Dky = λy

⇐⇒
λk1y1
λk2y2

...
λknyn

 =


λy1
λy2

...
λyn

 .
The vector y was nonzero, so some particular coordinate yj is non-zero. If λ is
not equal to any of the λki , then in particular λ 6= λkj . But then the equation
above is false in the jth row. So, it must be the case that λ is contained in the
set
{
λki
∣∣ i = 0, 1, . . . , n

}
.

On the other hand, by choosing x = Ue1, Ue2, . . . , Uen successively, where
ei is the ith standard basis vector, we see that each λki is indeed an eigenvalue
of UDkUT . So the set

{
λki
∣∣ i = 0, 1, . . . , n

}
is precisely its set of eigenvalues.
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Solution to Exercise 7 (eigenspaces of transpose operator). Suppose
that A ∈ R2×2 is an eigenvector of L corresponding to the eigenvalue λ ∈ R, so
that L (A) = λA. Then

L (L (A)) = λL (A) = λ2A.

But we also know that
L (L (A)) = A,

since taking the transpose twice gives us back the original matrix. Combining
these two equations and using the fact that A 6= 0 (from the definition of an
eigenvector) gives us

(
λ2 − 1

)
= 0. This quadratic equation has two solutions,

λ = 1 and λ = −1.
The eigenspace corresponding to λ = 1 consists of the symmetric matrices,

V1 :=
{[
α β
β γ

] ∣∣∣∣ α, β, γ ∈ R
}

since those are the matrices that are left unchanged by the “transpose” op-
eration. The other eigenspace, corresponding to λ = −1, consists of skew-
symmetric matrices,

V2 :=
{[

0 β
−β 0

] ∣∣∣∣ β ∈ R
}
.

Let b = {b1, b2, b3, b4} be the basis of R2×2 that we used in our solution to
Exercise 4, namely

b1 =
[
1 0
0 0

]
, b2 =

[
0 1
0 0

]
, b3 =

[
0 0
1 0

]
, b4 =

[
0 0
0 1

]
.

This basis is in fact orthonormal:
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sage: b1 = matrix(QQ,[[1,0],
....: [0,0]])
sage: b2 = matrix(QQ,[[0,1],
....: [0,0]])
sage: b3 = matrix(QQ,[[0,0],
....: [1,0]])
sage: b4 = matrix(QQ,[[0,0],
....: [0,1]])
sage: b = [b1,b2,b3,b4]
sage: [ (b[i]*b[j].transpose()).trace()
....: for i in range(4)
....: for j in range(4)
....: if i == j ]
[1, 1, 1, 1]
sage: [ (b[i]*b[j].transpose()).trace()
....: for i in range(4)
....: for j in range(4)
....: if i != j ]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

As a result, the set {b1, b2 + b3, b4} forms a basis for the (three-dimensional)
subspace V1 of symmetric matrices; and likewise, the set {b2 − b3} forms a ba-
sis for the (one-dimensional) subspace V2 of skew-symmetric matrices. It is
straightforward to show that these are indeed bases for their respective spaces,
and that the two subspaces are orthogonal to one another in the sense of Equa-
tion (4.2) by using the fact that the elements of b are orthonormal. For example,
〈b2 − b3, b4〉 = 〈b2, b4〉−〈b3, b4〉 = 0−0. And since 1 = dim (V2) and 3 = dim (V1)
sum to 4 = dim (V ), the direct sum of V1 and V2 must be V itself.

Solution to Exercise 8 (characteristic polynomial of transpose opera-
tor). In Exercise 4 we found that

b (L) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


with respect to the basis b = {b1, b2, b3, b4} whose elements are

b1 =
[
1 0
0 0

]
, b2 =

[
0 1
0 0

]
, b3 =

[
0 0
1 0

]
, b4 =

[
0 0
0 1

]
.

Then, in Exercise 7 we showed that b is an orthonormal basis for V . We
can therefore apply Proposition 18 to conclude that L is self-adjoint because
the matrix b (L) is symmetric. We also showed in Exercise 7 that V is an
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orthogonal direct sum of two eigenspaces V1 and V2 of L. By combining two
unit norm-bases of V1 and V2, we obtain an orthonormal basis for V consisting
of eigenvectors of L—which by the spectral theorem for linear algebra also shows
that L is self-adjoint.

We can compute the characteristic polynomial of L directly from its matrix:

sage: R = PolynomialRing(QQ,’X’)
sage: X = R.gen()
sage: L = matrix(R, [[1,0,0,0],
....: [0,0,1,0],
....: [0,1,0,0],
....: [0,0,0,1]])
sage: I = identity_matrix(R,4)
sage: (X*I - L).determinant().factor()
(X + 1) * (X - 1)ˆ3

We could also apply Proposition 22 here, since in Exercise 7 we proved
that dim (V1) = 3 and dim (V2) = 1 are the dimensions of the eigenspaces
corresponding to λ = 1 and λ = −1 respectively.

Solution to Exercise 9 (axiomatic determinant). Let R := R [Λ] and note
that ΛI−A lives in the space Rn×n. The symbol I therefore necessarily denotes
the identity matrix in Rn×n.

Use the spectral theorem for linear algebra to write A = UDUT , and sub-
stitute that into the formula for the characteristic polynomial:

γA = det
(
ΛI − UDUT

)
= det

(
U
(
ΛUT IU −D

)
UT
)

= det
(
U (ΛI −D)UT

)
.

Using the fact that det (AB) = det (A) det (B), we have

det
(
U (ΛI −D)UT

)
= det (U) det (ΛI −D) det

(
UT
)
.

Now, from det (I) = 1R, we deduce that

det (I) = det
(
UUT

)
= det (U) det

(
UT
)

= 1R,

and thus,
det (U) det (ΛI −D) det

(
UT
)

= det (ΛI −D) .
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If D = diag (λ1, λ2, . . . , λn), then in block form,

ΛI −D =


(Λ− λ1) e1
(Λ− λ2) e2

...
(Λ− λn) en

 ,
where ei denotes the ith standard basis vector, which is the ith row of the
identity matrix. Using the row-linearity property, we can pull these out one at
a time,

det (ΛI −D) = det




(Λ− λ1) e1
(Λ− λ2) e2

...
(Λ− λn) en


 = (Λ− λ1) det




e1
(Λ− λ2) e2

...
(Λ− λn) en


 ,

until eventually we’re left with

(Λ− λ1) (Λ− λ2) · · · (Λ− λn) det (I) .

Use the fact that det (I) = 1R one more time, and we’re done.

Solution to Exercise 10 (inverse via Cayley-Hamilton). The Cayley-
Hamilton Theorem says that

γA�Rn×n (A) = a0I + a1A+ a2A
2 + · · ·+An = 0.

Move the identity to the other side, and factor out an A:

A
(
a1I + a2A+ · · ·+An−1) = −a0I.

From Corollary 8, we know that a0 = (−1)n det (A). If det (A) 6= 0, then a0 6= 0,
and we can solve

A

[
a1I + a2A+ · · ·+An−1

−a0

]
= I.

Since powers of a matrix commute, the same thing holds on the other side,[
a1I + a2A+ · · ·+An−1

−a0

]
A = I,

and thus we’ve found the inverse of A.
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Chapter 5

Convex geometry

The goal of mathematical optimization problem is minimize or maximize some-
thing. Minimization and maximization require you to have some idea of bigness
and smallness, and as a result, we tend to do optimization over the real num-
bers. Typically the thing we minimize or maximize is a function into the real
numbers; given f : V → R, we might be asked to

minimize f (x)
⇐⇒

find x∗ ∈ V such that f (x∗) = inf {f (x) | x ∈ V }.

Our use of the infimum here provides another reason to work in the real
number system: we want that inf to exist. Now, people thought this looked
too easy, so they started to impose extra conditions. One natural constraint
would be to restrict x to a subset of the domain, one that is defined by a list
of functions. If we choose a bunch of real functions g1, g2, . . . , gm that are also
defined on V , then we can reformulate the problem,

minimize f (x)
subject to g1 (x) ≤ 0

g2 (x) ≤ 0
...
gm (x) ≤ 0.

By choosing the functions gi carefully, this approach can be used to impose
all kinds of constraints on the problem. In fact, the gi are called constraint
functions, and the whole problem above is called a constrained optimization
problem.
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5.1 Convex sets
The good/bad news is, without knowing more about f or the constraint func-
tions gi, we have very little idea how to solve these problems. The main reason
we study convex sets and functions is because we can actually solve constrained
optimization problems when the functions and sets are both convex.

Definition 41. If x and y are elements of a real vector space, then a convex
combination of x y is any sum αx+ (1− α) y where α ∈ [0, 1].

The set of all convex combinations of x and y forms the line segment between
x and y. You can think of this in one of two ways. First, you can think of α
as being a parameter that ranges from one (none of the way) to zero (all of
the way), and represents how far along the segment from x to y we are. When
α = 0, we’re at y, and when α = 1, we’re at x. Between those two extremes, it
varies linearly. The other way to think of it is to rewrite

αx+ (1− α) = y + α (x− y) ,

where now we can think of x − y as being the distance from y to x, and the
parameter α as indicating the portion of that distance that we’ve “traveled.”

Definition 42. A set X in a real vector space V is a convex set if

∀x, y ∈ V : [∀α ∈ [0, 1] : αx+ (1− α) y ∈ V ] .

In other words, a set is convex if any convex combination of two of its elements
is back in the set.

The line segment between any two points in a convex set is thus completely
contained in that set.

Example 30. Every vector space is convex, somewhat obviously.

Example 31. Boyd, 2.2.2 and
2.2.3

If V is a normed vector space and if x ∈ V , then any ball centered
at x is convex. To see this, let its radius be r, so that the ball is given by

Br (x) = {x+ y | y ∈ V, ‖y‖ < r} .

Now suppose z1 = x + y1 and z2 = x + y2 ∈ Br (x), so that ‖y1‖ < r and
‖y2‖ < r. We will let z3 = x+ y3 be any point on the segment that joins z1 and
z2. Thus we will assume that

∃α ∈ [0, 1] : z3 = x+ y3 = α (x+ y1) + (1− α) (x+ y2) ,

and our goal is to show that ‖y3‖ < r, allowing us to conclude that z3 ∈ Br (x)
as well. This is not hard: factor out the x terms above to obtain,

x+ y3 = [α+ (1− α)]x+ αy1 + (1− α) y2

⇐⇒
y3 = αy1 + (1− α) y2.
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Now take norms on both sides, and use the triangle inequality:

‖y3‖ ≤ α ‖y1‖+ (1− α) ‖y2‖ ≤ αr + (1− α) r = r.

Definition 43. If X is a nonempty subset of a real vector space V , then the
convex hull of X is

conv (X) :=
{

m∑
i=1

αixi

∣∣∣∣∣ m ∈ N, xi ∈ X,αi ≥ 0,
m∑
i=1

αi = 1
}
.

We have already defined a convex combination of two points; the convex hull
extends that concept to three or more points. Analogous to how conv ({x, y})
is the line segment between x and y, we can think of conv ({x, y, z}) as being
the “triangle” bounded by x, y, and z.

Perhaps the best way to think of conv (X) is as “the convex set generated
by X.” This is a familiar idea: span (X) is the vector space generated by X, for
example, and is obtained by starting with X and then adding in all of the things
that have to be there to satisfy the definition of a vector space. In exactly the
same way, conv (X) is defined as if we started with X, and then we added in
everything else that needs to be there to make a convex set. In that regard, it
should not be surprising that conv (X) is the smallest convex set containing X.

Proposition 24. Boyd, 2.3.1If V is a real vector space and if X,Y ⊆ V are convex, then
X ∩ Y is convex.

Proof. Pick any two points in X ∩ Y ; they both live in X and they both live in
Y , by definition. Thus the line segment between them lives in both X and Y ,
and so it lives in their intersection as well.

5.2 Convex cones
So we’ve seen convex functions and general convex sets, and we know why
they’re nice to have. But the most important convex sets we will encounter are
convex cones. The optimization algorithms we focus on will all have feasible
sets that are (slices of) convex cones.

Definition 44. If X is a nonempty subset of a real vector space V and if

∀x ∈ X,∀α ≥ 0 : αx ∈ X,

then X is a cone.

Thus a cone is simply a subset of a real vector space that is closed under
nonnegative scaling.

Example 32. Any vector space is a cone, in a fairly obvious way.

Example 33. If you take any nonempty subset X of a real vector space and gen-
erate all nonnegative multiples of it, then the result K := {αx | x ∈ X,α ≥ 0}
must be a cone.

102



Cones are alright, but convex cones are better.

Definition 45. A convex cone is a cone that also happens to be convex. Like-
wise, a closed convex cone is a convex cone that just happens to be a closed set
(relative to the ambient vector space).

Just like we did with convex combinations, we can define “conic combina-
tions,” and use them to construct “conic hulls.”

Definition 46. If X is a nonempty subset of a real vector space V , then the
conic hull of X is

cone (X) :=
{

m∑
i=1

αixi

∣∣∣∣∣ m ∈ N, xi ∈ X,αi ≥ 0
}
.

This should look a lot like the definition of a convex hull, because it is. The
only difference is that we don’t require the coefficients in the conic hull to sum to
one—any collection of nonnegative coefficients will do. For identical reasons, we
think of cone (X) as being “the cone generated by X,” and cone (X) is also the
smallest cone that contains X. It’s also worth noting that cone (X) is nothing
other than all nonnegative multiples of conv (X).

Exercise 11 (cone convexity characterization). Assume that K is a cone
in some finite-dimensional real vector space V , and show that

K is convex
⇐⇒

∀x, y ∈ K : x+ y ∈ K.

There are a few other “special” types of cones that you’ll encounter. Let’s
get the names out of the way.

Definition 47. Alizadeh, Chapter
2 Definition 1;
Boyd, 2.4.1

Let V be a real, finite-dimensional vector space. A convex cone
K in V is solid if span (K) = V , and pointed if −K ∩ K = {0}. A pointed,
solid, and closed convex cone is proper .

Limiting your attention to proper cones can make life easier. A non-solid
cone can be thought of as a solid cone (in a subspace) embedded in a space that’s
too large. A non-pointed cone is the sum of a vector subspace and some other
pointed cone. In both cases, that extra vector space can kind-of be factored
out, and usually isn’t very interesting.

Let’s see some non-trivial examples of convex cones.

Example 34 (nonnegative orthant). The nonnegative orthant Rn+ in the real
vector space Rn is

Rn+ := {x ∈ Rn | ∀i ∈ {1, 2, . . . , n} : xi ≥ 0} .

In other words, Rn+ is the set of all vectors whose entries are all nonnegative. It
is a cone, because if x ∈ Rn+ and if α ≥ 0, then every component of αx looks
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like αxi ≥ 0, so αx ∈ Rn+. It is also convex, since if x, y ∈ Rn+ and α ∈ [0, 1],
then αx+(1− α) y is the sum of two vectors with nonnegative entries, and thus
has nonnegative entries itself. It is solid, since if {e1, e2, . . . , en} is the standard
basis then V = span ({e1, e2, . . . , en}) ⊆ span

(
Rn+
)

because each ei ∈ Rn+. It
is pointed, since if x and −x are both in Rn+, then they both have nonnegative
entries. This implies that x = 0, showing that −Rn+ ∩Rn+ = {0}. Finally, Rn+ is
closed as a subset of Rn: this is the hardest property to prove. Recall that the
intersection of closed sets is closed, and write

Rn+ =
n⋂
i=1
Hi

where
Hi = {x ∈ Rn | xi ≥ 0}

is the half-space corresponding to the ith dimension. If we can show that each
Hi is closed, then Proposition 24 will tell us that Rn+ is, too. So, we have merely
punted to showing that Hi is closed, but this is more tractable. One can verify
that

Hi = f−1
i ([0,∞])

where

fi : Rn → R
fi = x 7→ 〈x, ei〉

is pretty obviously continuous (it’s linear). Since we know that [0,∞] is closed,
the preimage definition of continuity tells us that Hi is, too.

Example 35 (Lorentz cone). Boyd, Example
2.3

The Lorentz cone in the real vector space Rn is

Ln+ :=
{
x ∈ Rn

∣∣∣∣ x1 ≥ 0,
√
x2

2 + x2
3 + · · ·+ x2

n ≤ x1

}
.

You will also encounter this written in block-form,

Ln+ :=
{

(t, x) ∈
(
R+,Rn−1) ∣∣ ‖x‖ ≤ t} .

and with the name “ice cream cone” or “second-order cone.” They all mean the
same thing. The name “ice cream cone” is perhaps the most descriptive: if you
think of t as being the height, then the condition that ‖x‖ ≤ t describes a disc
of radius t. As t gets bigger (as we go higher up in the cone), the radius of the
disc gets wider and wider. The resulting set looks just like an ice cream cone,
so long as we agree to call the first coordinate the “up/down” direction.

Exercise 3. Boyd, 2.2.3Verify that Ln+ is a proper cone in Rn. Use the sequential definition
of a closed set if that makes things easier.
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Example 36 (PSD cone). Boyd, 2.2.5Let Sn denote the subspace of symmetric matrices
within the larger real vector space Rn×n. The positive-semidefinite (PSD) cone
Sn+ in the real vector space Sn is

Sn+ := {A ∈ Sn | A is positive-semidefinite} .

We will leverage Proposition 20 to show that this is a proper cone. First note
that if A ∈ Sn+ and if α ≥ 0, then the eigenvalues of A are nonnegative and of
course the eigenvalues of αA are too (you just multiply the eigenvalues of A by
α to get those of αA). Thus Sn+ is a cone. To see that it is convex, suppose that
A,B ∈ Sn+, and apply the definition of positive-semidefiniteness to the convex
combination αA+ (1− α)B with α ∈ [0, 1]:

〈[αA+ (1− α)B]x, x〉 = α 〈Ax, x〉+ (1− α) 〈Bx, x〉 ≥ 0.

Thus Sn+ is a convex cone. It is pointed because if A and −A both belong to
Sn+, then by Proposition 20 the eigenvalues of A are all zero; that is, A = 0. To
see that it is solid, consider the following set,

b =
{
Eij := eie

T
j + eie

T
i + eje

T
j + eje

T
j

∣∣ i, j ∈ {1, 2, . . . , n}} .
Each element of this set is positive-semidefinite:

〈Eijx, x〉 = 〈ei, x〉 〈ei, x〉+ 2 〈ei, x〉 〈ej , x〉+ 〈ej , x〉 〈ej , x〉
= x2

i + 2xixj + x2
j

= (xi + xj)2

≥ 0.

The set b also spans Sn. To see this, note that when i = j, the matrix Eii =
4eieTi is diagonal and is a scalar multiple of the standard basis element eieTi for
Sn. When i 6= j, then

Eij − Eii/4− Ejj/4 = eie
T
j + eje

T
i

gives us the off-diagonal standard basis elements for Sn. Thus, the standard
basis for Sn is contained in span (b), and we have

span
(
Sn+
)
⊇ span (b) = Sn

because every element of b was in Sn+.
Finally, Sn+ is closed. For any x ∈ Rn, define

fx : Sn → R
fx = A 7→ 〈Ax, x〉

and consider the set f−1
x ([0,∞]). The function fx is linear and thus continuous

for all x, so this set is closed, and if we take the intersection over all x ∈ Rn, we
obtain (from the definition of positive-semidefinite)

Sn+ =
⋂
x∈Rn

f−1 ([0,∞]).

105



The arbitrary intersection of closed sets is closed; thus Sn+ is closed.
Another approach is to use the fact that the function λ : Sn → Rn that

takes a symmetric matrix to its vector of eigenvalues (in decreasing order, say)
is continuous. Its continuity follows from the fact that the eigenvalues are roots
of a characteristic polynomial function, and those roots depend continuously on
the coefficients of the polynomial (which themselves depend continuously on the
entries of the matrix) by Theorem 9. If you believe that, then we have already
shown that Rn+ is closed in Rn, and Proposition 20 says that Sn+ = λ−1 (Rn+)
from which it follows that Sn+ is closed.

The next definition is one of the most fundamental, even though it looks
quite arbitrary at first.

Definition 48. Alizadeh, Chapter
2 Definition 2;
Boyd, 2.6.1

If K is a subset of V , then the dual cone K∗ of K is given by

K∗ := {y ∈ V | 〈x, y〉 ≥ 0 for all x ∈ K} .

Here are a few useful facts about dual cones.

• The dual K∗ is a closed convex cone for any subset K ⊆ V .

• If K is a convex cone, then (K∗)∗ = cl (K).

• A subset K ⊆ V is a closed convex cone in V if and only if (K∗)∗ = K.

• A closed convex cone K is polyhedral if and only if its dual K∗ is polyhe-
dral.

It will take some experimentation to get a feel for the dual cone. It generally
points “in the same direction” as the original cone; the bigger the original cone
is, the smaller the dual is, and vice-versa. All vector subspaces are closed
convex cones, and the dual of a vector subspace is its orthogonal complement.
So, in a sense, the dual operation on cones generalizes the “perp” operation on
subspaces.

Exercise 4. Let W be a subspace of a finite-dimensional real inner-product
space V . Prove that W is a closed convex cone in V , and that W ∗ = W⊥.

To understand why the dual is useful, imagine we are in the middle of an op-
timization algorithm, moving through some set defined by constraint functions,
and sitting at the point x0. Those constraint functions (if they are nice!), give
rise to a convex cone K of feasible directions in which we can move. But what
will happen to the value of the function f if we move in those directions? If
∇f (x0) lies in K∗, then we can be sure that, at least locally, the function value
will increase no matter what direction d we choose, because 〈∇f (x0), d〉 ≥ 0 for
all d ∈ K. If we’re trying to minimize f , that means we found a local optimum!

Example 37. Recall the nonnegative orthant Rn+ from Example 34. This cone
is self-dual, meaning that its dual cone is equal to itself. To demonstrate this,
we will show that x ∈

(
Rn+
)∗ if and only if x ∈ Rn+.
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First, suppose that x ∈ Rn+. Then for any y ∈ Rn+, we have 〈x, y〉 = x1y1 +
x2y2 + · · · + xnyn ≥ 0, since each individual term xiyi is the product of two
nonnegative real numbers. And since 〈x, y〉 ≥ 0 for all y ∈ Rn+, we have x ∈(
Rn+
)∗ by definition.

On the other hand, suppose that x /∈ Rn+, so that xi < 0 for some i. Then
we can choose y = ei ∈ Rn+, the ith standard basis vector in Rn, to show that
x /∈

(
Rn+
)∗. Specifically, we have 〈x, y〉 = 〈x, ei〉 = xi < 0 which would be

nonnegative if x were in
(
Rn+
)∗. So, it isn’t.

SageMath can perform dual cone computations for us, so long as your cone
is polyhedral.

sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
sage: K.dual().rays()
M(1, 0, 0),
M(0, 1, 0),
M(0, 0, 1)
in 3-d lattice M
sage: K.dual().is_isomorphic(K)
True

Another fundamental example to keep in mind is the dual cone to a subspace,
which turns out to be its orthogonal complement.

Example 38. Suppose that W is a subspace of a finite-dimensional real inner-
product space V . Then W somewhat-obviously forms a closed convex cone, and
it has a dual cone.

If y ∈ W⊥, then clearly 〈y, x〉 = 0 for all x ∈ W , and thus y ∈ W ∗. This
shows that W⊥ ⊆W ∗.

On the other hand, if y ∈W ∗, then

∀x ∈W : (〈y, x〉 ≥ 0) ∧ (〈y,−x〉 ≥ 0)
⇐⇒

∀x ∈W : 〈y, x〉 = 0

where we have used the fact that −x ∈ W as well whenever x ∈ W . This last
statement says that y ∈ W⊥, showing that W ∗ ⊆ W⊥. Combining the two set
inclusions gives us W ∗ = W⊥.

Since all vector subspaces are closed convex cones, and since the dual cone
of a vector subspace is its orthogonal complement, closed convex cones and
their duals generalize subspaces and orthogonal complemenents. This is just
one more way to think about closed convex cones.
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5.3 Partially-ordered vector spaces
One important property of convex cones is that (under some additional con-
straints) they allow us to generalize the notion of an ordering, like “greater
than or equal to.” You may already have seen this used, for example, in Rn,
where x ≥ 0 means that all components of the vector x ∈ Rn are individu-
ally nonnegative. That only works well because the set of vectors in Rn whose
components are all nonnegative forms a particular type of convex cone.

Definition 49. Boyd 2.4.1;
Roman,
Preliminaries

A partially-ordered set, or poset, is a set P and a binary relation
“4” defined on P that satisfies three properties:

• Reflexivity: ∀x ∈ P : x 4 x.

• Antisymmetry: ∀x, y ∈ P : x 4 y and y 4 x implies x = y.

• Transitivity: ∀x, y, z ∈ P : x 4 y and y 4 z implies x 4 z.

A partially-ordered vector space is a real vector space (V,R) along with a
partial order 4 on V that satisfies two additional properties:

• Translation invariance: ∀x, y, z ∈ V : x 4 y =⇒ x+ z 4 y + z.

• Scaling invariance: ∀x, y ∈ V,∀α ∈ R : x 4 y and α ≥ 0 implies αx 4 αy.

In either case, we define the “greater than or equal to” version by y < x ⇐⇒
x 4 y.

Example 39. Let X = {1, 2, 3} ⊆ N. The powerset of X is the set of all subsets
of X,

P (X) = {∅, {1} {1, 2} , {1, 3} , {1, 2, 3} , {2} , {2, 3} , {3} , X} .

The “is a subset of” relation forms a partial order on the powerset of X:

• Reflexivity: if A ⊆ X, then clearly A ⊆ A.

• Antisymmetry: if A,B ⊆ X and if both A ⊆ B and B ⊆ A, then A = B
from basic set theory.

• Transitivity: if A,B,C ⊆ X and if A ⊆ B and B ⊆ C, then again, from
basic set theory, we know that A ⊆ C.

Example 40. Suppose that F is a field, and let R ⊆ F [X] be the set of all
nonzero monic polynomials in F [X].

We say that a polynomial p ∈ R divides another polynomial s ∈ R and we
write p | s if and only if there exists some q ∈ R such that s = pq. This relation
is a partial order on the set R. Note that the multiplicative identity X0 of F [X]
also belongs to R. For clarity, we will write 1R := X0 when referring to it inside
the set R.

For reflexivity, note that p | p holds, since letting q = 1R gives p = pq.
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For antisymmetry, suppose that both p | s and s | p, so there exist some
q1, q2 ∈ R such that s = pq1 and p = sq2. Substituting the second identity into
the first, we find that

s = sq2q1 ⇐⇒ s (1R − q2q1) = 0.

The fact that F is a field makes F [X] an integral domain by Theorem 10. In
an integral domain, two non-zero elements cannot multiply to zero. Thus from
s (1R − q2q1) = 0 we infer that q2q1 = 1R. Since deg (q1q2) is greater than or
equal to the degree of either factor, we infer that deg (q1) = deg (q2) = 0. In
other words, they consist of only one “constant” term each, and those two terms
must be unity because both polynomials are monic. Thus, q1 = q2 = 1R, and it
follows that s = pq1 = p. Antisymmetry is proved.

For transitivity, suppose that both p | s and s | t. Then there exist q1, q2 ∈ R
such that s = pq1 and t = sq2. But then if we substitute the first identity into
the second, we get t = pq1q2. Now we recall that the product of two monic
polynomials is monic, so we have expressed t as a monic multiple of p.

Theorem 22. If V is a finite-dimensional real vector space, then every proper
cone K in V induces a vector-space ordering on V by x 4K y ⇐⇒ y− x ∈ K.

Example 41. The usual notation x ≤ y for two vectors x, y ∈ Rn derives from
a cone ordering. By definition, x ≤ y if and only if 0 ≤ y−x, or y−x ≥ 0. But
this is equivalent to y−x ∈ Rn+. Thus, the component-wise ordering is the cone
ordering with K = Rn+:

x ≤ y ⇐⇒ x 4Rn
+
y.

Exercise 12 (partiality of cone ordering). The ordering in Theorem 22
is, in general, only partial. That means that there exists some cone K in an
appropriate vector space and two vectors x, y such that neither x 4K y nor
y 4K x. Find an example of this situation.

Exercise 13 (proof of cone ordering). Prove Theorem 22. Let V be
a finite-dimensional real inner-product space, and let K be a pointed closed
convex cone in V . Show that the relation 4K defined on V × V by

x 4K y ⇐⇒ y − x ∈ K

has the properties of reflexivity, antisymmetry, transitivity, translation invari-
ance, and scaling invariance. This suffices to prove the theorem.

Next, prove that if (x, y)i is a sequence in V ×V converging to (x̄, ȳ), and if

xi 4K yi for i = 1, 2, . . .

then x̄ 4K ȳ. This last property shows that inequality holds if we “pass to the
limit.” These are all nice properties that we’ve come to expect from the usual
“less than or equal to” ordering on R.
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In Exercise 13, you may have noticed that we did not require the cone K
to be solid. When the cone has a nonempty interior, it can be used to define
a strict version of the cone inequality via x ≺K y ⇐⇒ y − x ∈ int (K). This
is another “nice to have” property of the ordering—and one possessed by the
componentwise ordering induced by Rn+—but it isn’t strictly (ha ha) necessary.

While we are on the topic of partially-ordered sets, it is an opportune time
to introduce the concept of minimality, a notion that is central to optimization.

Definition 50. If P is a partially-ordered set under the relation 4, then p ∈ P
is a minimal element of P if and only if there does not exist a q ∈ P such that
both q 6= p and q 4 p.

If you have never seen the definition of “minimal” before, you might think
that it means the same thing as “minimum.” Au contraire, a minimal element is
simply not bigger than anything else. For example, if no two distinct elements
in the poset are related, then every element is minimal, because we never have
p 4 q when q 6= p. A minimum element on the other hand, has to be smaller
than every other element.

5.4 Solutions to exercises

Solution to Exercise 11 (cone convexity characterization). If K is con-
vex, then

∀x, y ∈ K : x+ y = 1
2 · 2x+ 1

2 · 2y ∈ conv ({2x, 2y}) ⊆ conv (K) = K.

On the other hand, if x, y ∈ K implies that x + y ∈ K, then for any α ∈ [0, 1]
we have

αx︸︷︷︸
∈K

+ (1− α) y︸ ︷︷ ︸
∈K

∈ K.

Solution to Exercise 12 (partiality of cone ordering). The set K = {0}
forms a pointed closed convex cone in R2. The ordering associated with this
cone is

x 4K y ⇐⇒ y − x ∈ {0} ⇐⇒ y − x = 0 ⇐⇒ x = y.

In R2, the standard basis vectors e1 = (1, 0)T and e2 = (0, 1)T are not equal;
therefore neither e1 4K e2 nor e2 4K e1.

Solution to Exercise 13 (proof of cone ordering).

• Reflexivity: x 4K x ⇐⇒ x − x ∈ K, but x − x = 0 belongs to every
cone: cones are nonempty by definition, which means that they contain
at least one element z, and we can thus take α = 0 in Definition 44 of a
cone to conclude that 0z = 0 ∈ K.
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• Antisymmetry: if x 4K y and y 4K x, then y − x ∈ K and x − y =
− (y − x) ∈ K, or y − x ∈ −K. Since K is pointed, the fact that y − x ∈
−K ∩K implies that y − x = 0, or that y = x.

• Transitivity: If x 4K y and y 4K z, then y − x ∈ K and z − y ∈ K.
Using the result from Exercise 11, we know that z−x = (y − x) + (z − y)
is back in K, since K is a convex cone.

• Translation invariance: if x 4K y, then y − x ∈ K. However, y − x =
(y + z)− (x+ z), so the result follows immediately.

• Scaling invariance: if x 4K y and if α ≥ 0, then y − x ∈ K implies that
α (y − x) ∈ K, since K is a cone. But α (y − x) = αy − αx ∈ K means
that αx 4K αy.

• Ability to pass to the limit: suppose that (x, y)i is a sequence in V × V
converging to (x̄, ȳ), and that xi 4K yi for all i ∈ N. From this we
conclude that the components xi and yi of the pairs (x, y)i must converge
individually to x̄ and ȳ. (This is justified by the “Pythagorean theorem” in
product spaces, which we discuss prior to Example 46 in a later chapter.)
Now, let s : V × V → V be the “subtract from” function defined by
s ((a, b)) = b−a. This function is always continuous in a finite-dimensional
real space by Proposition 2, or by Theorem 1 because subtraction is con-
tinuous on Rn.
We can define a new sequence (z)i by zi := yi − xi = s ((xi, yi)). Note
that each zi belongs to K since yi 4K xi. Thus if we take the limit,(

lim
i→∞

zi

)
∈ K,

because K is a closed set. However, using the fact that the function s is
continuous, we also have

lim
i→∞

zi = lim
i→∞

s ((xi, yi)) = s
(

lim
i→∞

(xi, yi)
)

= s ((x̄, ȳ)) = ȳ − x̄,

showing that ȳ − x̄ ∈ K. Or in other words, that x̄ 4K ȳ.
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Part II

Euclidean Jordan Algebras
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Chapter 6

What are Euclidean Jordan
algebras?

Definition 51. The algebra (V,F, ◦) is a Jordan algebra if F is not of charac-
teristic two, and if the multiplication satisfies the two conditions,

• Commutativity: ∀x, y ∈ V : x ◦ y = y ◦ x, and

• The Jordan identity: ∀x, y ∈ V : x ◦ ((x ◦ x) ◦ y) = (x ◦ x) ◦ (x ◦ y).
In that case, the algebra multiplication is called a Jordan product.

Warning 7: Jordan algebras are not associative

In general, Jordan algebras are not associative. There usually
exist some elements x, y and z in the algebra such that x◦(y ◦ z) 6=
(x ◦ y) ◦ z.

The “characteristic two” in Definition 51 is a technicality that prevents our
algebra from being junk. In practice, we will always have F = R. And we’ll be
working in a more specific structure than Jordan algebras, namely a “formally-
real Jordan algebra” or a “Euclidean Jordan algebra.” These are the same thing,
even though you will see both terms used with seemingly-different definitions.
Definition 52. Baes, Definition

2.2.9; Koecher,
Section VI.4

A formally-real Jordan algebra (V,R, ◦) is a Jordan algebra
over the reals where (x ◦ x) + (y ◦ y) = 0 implies that both x = 0 and y = 0.

Note that if we write x ◦ x as x2, then the condition x2 + y2 = 0 =⇒ x =
y = 0 is a condition that holds when x, y are real numbers but not when x, y
are complex. This is where the name “formally-real” comes from.
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Definition 53. Faraut and
Korányi, Section
III.1

A Euclidean Jordan algebra, or EJA, is a triple (V, ◦ , 〈·, ·〉)
consisting of a finite-dimensional Jordan algebra (V,R, ◦ ) over the real numbers,
and an inner product that satisfies

∀x, y, z ∈ V : 〈x ◦ y, z〉 = 〈y, x ◦ z〉 , (6.1)

and a multiplicative unit element 1V such that

∀x ∈ V : 1V ◦ x = x = x ◦ 1V .

Some comments on this definition are in order. Historically, formally-real
Jordan algebras were investigated first for their connection to quantum mechan-
ics (see Section 6.1). But it turns out that every finite-dimensional formally-real
Jordan algebra must have a unit element—this was proven back in 1934.

Theorem 23. Theorem 5 of
Jordan, von
Neumann, and
Wigner

Every finite-dimensional formally-real Jordan algebra possesses
a unit element.

It was later discovered that you can put a compatible inner-product on
a finite-dimensional formally-real Jordan algebra, turning it into a Euclidean
Jordan algebra and vice-versa.

Theorem 24. Faraut and
Korányi, Section
III.1 and
Proposition
VIII.4.2

A finite-dimensional real unital Jordan algebra is formally-real
if and only if there exists some inner-product on it that satisfies Equation (6.1).

Our Definition 53 of a Euclidean Jordan algebra is thus “retconned” to in-
clude things that a finite-dimensional formally-real Jordan algebra must ulti-
mately possess, without doing any of the work to prove it. This simplifies the
presentation greatly. We have also included “finite-dimensional” in our defini-
tion of a Euclidean Jordan algebra. This is not entirely standard, but we make
several excuses for our behavior:

1. If we don’t impose finite-dimensionality, then the existence of a unit ele-
ment is not clear, so we shouldn’t include that either. From then on we
would have to say “finite-dimensional unital Euclidean Jordan algebra”
everywhere, which is objectionable from an aesthetic point of view.

2. The name “Euclidean”refers to a Euclidean space, which generally means
a finite-dimensional real inner-product space. Insofar as is possible, we
would like the name of a thing to describe what it is.

3. It’s what all of our friends (particularly Faraut and Korányi) are doing.
This argument would not convince your mother, but it’s something.
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Simplification 4: All EJAs are finite-dimensional

Any n-dimensional Euclidean Jordan algebra is also a finite-
dimensional real inner-product space, and is therefore isometric
to Rn by Theorem 1. As a result, continuity and sequences in
Euclidean Jordan algebras work the same way that they do in
Rn. In particular, the Jordan multiplication (x, y) 7→ x ◦ y will
always be continuous by Proposition 5.

From now on, we will work only with Euclidean Jordan algebras as they are
defined in Definition 53. Some of our results hold in a more general Jordan
algebra, but for pedagogical reasons, we will always work in the simpler setting.

6.1 History
In 1932, the physicist Pascual Jordan (NOT Camille Jordan) set out to find an
algebraic setting for quantum mechanics. Back then, the “Copenhagen model”
said that physical observables are represented by Hermitian (or self-adjoint)
matrices. The problem was, that many operations on Hermitian matrices turn
out not to be observable; that is, they don’t give you back a Hermitian matrix!
For example, multiplication by an imaginary scalar:[

0 1
1 0

]∗
=
[
0 1
1 0

]
(
i

[
0 1
1 0

])∗
=
[

0 −i
−i 0

]
6= i

[
0 1
1 0

]
Or matrix multiplication: [

1 2
2 3

]
=
[
1 2
2 3

]T
[
0 1
1 0

]
=
[
0 1
1 0

]T
[
1 2
2 3

] [
0 1
1 0

]
=
[
2 1
3 2

]
6=
[
2 1
3 2

]T
.

(6.2)

So, Jordan tried to come up with an axiomatic system wherein doing things
to observables was also observable. The big idea was that most operations
of interest could be expressed in terms of quasi-multiplication that preserves
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symmetry,
(A,B) 7→ AB +BA

2 .

For sure, if A,B are symmetric, then(
AB +BA

2

)T
= (AB)T + (BA)T

2 = BTAT +ATBT

2 = BA+AB

2 .

This product turns out not to be associative, but it does satisfy the “weak
associativity” that we called the “Jordan identity,” namely x ◦

((
x2) ◦ y) =(

x2)◦ (x ◦ y), where we have taken the liberty of writing x◦x as x2. So, Jordan
made the weaker property one of the axioms of his system.

Another property that Jordan noticed is that, if you take the Hermitian
matrices with the symmetriced product, then X ◦ X = X2, where the latter
is squaring with respect to matrix multiplication. Thus X2 + Y 2 = 0 can
only be solved as X2 = −Y 2. If, without loss of generality, the X2 term is
nonzero, then there is some vector v such that X2v 6= 0, and in particular
Xv 6= 0. It follows that

〈
X2v, v

〉
= −

〈
Y 2v, v

〉
⇐⇒ ‖Xv‖2 = −‖Y v‖2 which

is impossible because the left-hand side is strictly positive and the right-hand
side is nonpositive, whatever it is. Thus, X2 = −Y 2 = 0. This algebra is
formally-real!

Jordan and his colleagues continued to study formally-real Jordan algebras.
In 1934, Jordan, Wigner, and von Neumann proved that all finite-dimensional
formally-real Jordan algebras (that is, Euclidean Jordan algebras) are con-
structed from only five basic building blocks. Only one of these does not come
from an associative algebra equipped with the symmetrized product, and those
are the kind that physicists were interested in. Moreover, the one good candi-
date only has dimension 27, and that’s too small for quantum mechanics. This
was disappointing: it means that—if we stick to finite dimensions—Jordan alge-
bras weren’t powerful enough to do the thing they were invented to do! Almost
50 years later, Efim Zel’manov (who won a related Fields medal) proved that
there are no other simple “exceptional” Jordan algebras. So much for that.

All was not lost, however. In the early 1990s, barrier functions were becom-
ing big deal in optimization because they led to efficient interior-point methods.
Osman Güler at UMBC showed that certain nice barrier functions were intrinsic
to symmetric cones [6], and recalled that every symmetric cone comes from a
Euclidean Jordan algebra. Thus, Jordan algebras came back into the spotlight.

6.2 Fundamental examples
Example 42 (Hadamard EJA). Let x and y be elements of the real vector space
Rn with the standard basis and usual inner product. The Hadamard product of
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x and y is defined by,

x ◦ y =


x1
x2
...
xn

 ◦

y1
y2
...
yn

 =


x1y1
x2y2

...
xnyn

 .
In other words, it is the component-wise product of the entries of x and y.

The Hadamard product is bilinear and commutative, because multiplication
of real numbers is bilinear and commutative, and we’re doing that component-
wise, which is also how equality is defined. It is associative for the same reason,
and associativity implies that the “Jordan identity” holds. The condition in
Equation (6.1) is easy to verify using the standard inner product on Rn,

〈x ◦ y, z〉 =
n∑
i=1

(xiyi) zi =
n∑
i=1

yi (xizi) = 〈y, x ◦ z〉 .

Finally, the unit element 1V in this algebra is (1, 1, . . . , 1)T , since

1V ◦ x =


1
1
...
1

 ◦

x1
x2
...
xn

 =


1x1
1x2

...
1xn

 = x,

regardless of what x is. So, (Rn, ◦ , 〈·, ·〉Rn) is a Euclidean Jordan algebra.
Example 43 (Jordan Spin EJA). Let x and y be elements of the real vector
space Rn with the standard basis and usual inner product. For convenience, we
will represent x and y in block form,

x =
[
x1
x̄

]
, y =

[
y1
ȳ

]
,

with x1, y1 denoting the first components of x, y as usual, and x̄, ȳ denoting the
remaining components. With that out of the way, we can define the product of
x and y to be

x ◦ y :=
[
x1
x̄

]
◦
[
y1
ȳ

]
=
[
〈x, y〉Rn

y1x̄+ x1ȳ

]
.

For example, in R4, if we let x = (1, 2, 3, 4)T and y = (1, 0, 1, 0)T , then, in block
notation

x1 = 1 , y1 = 1,

x̄ =

2
3
4

 , ȳ =

0
1
0

 ,
x ◦ y :=

[
〈x, y〉Rn

y1x̄+ x1ȳ

]
=


4

1

2
3
4

+ 1

0
1
0


 =


4
2
4
4

 .
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It’s not hard to see that this multiplication is bilinear, and that along with
〈·, ·〉Rn it satisfies the three additional properties of a Euclidean Jordan algebra.
The only difficulty is in the bookeeping of expressions like

x ◦ x =
[
〈x, x〉

x1x̄+ x1x̄

]
=
[
‖x‖2
2x1x̄

]
and

(x ◦ x) ◦ y =

 〈[‖x‖22x1x̄

]
,

[
y1
ȳ

]〉
y1 (2x1x̄) + ‖x‖2 ȳ

 =
[
‖x‖2 y1 + 2x1 〈x̄, ȳ〉
y1 (2x1x̄) + ‖x‖2 ȳ

]
.

This Euclidean Jordan algebra is known as the Jordan spin algebra.

Exercise 14 (spin algebra unit). Let (V, ◦ , 〈·, ·〉) be the Jordan Spin EJA,
so that V =

(
Rn−1 × R

) ∼= Rn and 〈·, ·〉 is the usual inner product. Find an
element e ∈ V such that for all x ∈ V , we have x ◦ e = e ◦x = x. Conclude that
1V = e.

Exercise 15 (spin algebra properties).
Let (V, ◦ , 〈·, ·〉) be the Jordan Spin EJA, and prove that the Jordan multi-

plication on V satisfies the four properties in Definitions 17, 51 and 53 necessary
for (V, ◦ , 〈·, ·〉) to form a Euclidean Jordan algebra:

1. Bilinearity,

2. Commutativity,

3. The Jordan identity x ◦ ((x ◦ x) ◦ y) = (x ◦ x) ◦ (x ◦ y),

4. The inner-product compatibility condition 〈x ◦ y, z〉 = 〈y, x ◦ z〉.

Example 44 (Real Symmetric EJA). In the real vector space of real symmet-
ric n-by-n matrices, the usual matrix product does not constitute an algebra
product because multiplying two symmetric matrices may not give you back
a symmetric matrix (see Inequality (6.2), for example). However, the “sym-
metrized product,”

X ◦ Y := XY + Y X

2 ,

does. This multiplication along with the inner product

〈X,Y 〉Sn := trace (XY )

forms a Euclidean Jordan algebra. To verify that claim, we have to check all of
the properties. First, it is commutative:

X ◦ Y = XY + Y X

2 = Y X +XY

2 = Y ◦X.
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We check bilinearity after checking commutativity so that it need only be
checked on one side:

(αX + Y ) ◦ Z = (αX + Y )Z + Z (αX + Y )
2

= αXZ + Y Z + αZX + ZY

2
= α

XZ + ZX

2 + Y Z + ZY

2
= α (X ◦ Z) + (Y ◦ Z) .

The Jordan identity is also satisfied:

X2 ◦ (X ◦ Y ) = X2 (X ◦ Y ) + (X ◦ Y )X2

2

= X2 (XY + Y X) + (XY + Y X)X2

4

= X3Y +X2Y X +XYX2 + Y X3

4 ,

X ◦
(
X2 ◦ Y

)
=
X
(
X2 ◦ Y

)
+
(
X2 ◦ Y

)
X

2

=
X
(
X2Y + Y X2)+

(
X2Y + Y X2)X

4

= X3Y +XYX2 +X2Y X + Y X3

4 .

Finally, the inner-product condition in Equation (6.1) holds:

〈X ◦ Y , Z〉Sn = 〈XY ,Z〉Sn + 〈Y X,Z〉Sn

2 = trace (XY Z) + trace (Y XZ)
2 ,

〈Y,X ◦ Z〉Sn = 〈Y,XZ〉Sn + 〈Y, ZX〉Sn

2 = trace (Y XZ) + trace (Y ZX)
2 .

These expressions are in fact equal. By cancelling trace (Y XZ) from both sides,
it obviously comes down to showing that trace (XY Z) = trace (Y ZX). This is
a well-known trace identity, but it can now be deduced from something much
more fundamental. If we let Y Z = A, then all we’re trying to show is that
trace (AX) = trace (XA). If you recall Theorem 21, the trace of a matrix is
simply the sum of its eigenvalues. The set of eigenvalues (that is, the spectrum)
of XA and AX are always the same (see for example Exercise 11 in Chapter 5
of Axler). Thus if we add them up, we also get the same thing.

Finally, we mention the somewhat-obvious fact that the unit element in this
algebra is the identity matrix I ∈ Sn, since

I ◦X = IX +XI

2 = X = XI + IX

2 = X ◦ I.
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Exercise 16 (nonassociativity of Real Symmetric EJA). Show that
Jordan multiplication in the Real Symmetric EJA is not associative by finding
an n ∈ N and three real symmetric matrices X,Y, Z ∈ Sn such that

(X ◦ Y ) ◦ Z 6= X ◦ (Y ◦ Z).

A somewhat less fundamental example is the trivial Euclidean Jordan alge-
bra. This algebra is fairly useless on its own, but it acts as a convenient sanity
check on our definitions.

Example 45 (Trivial EJA). Take 0 ∈ R and construct the real zero-dimensional
vector space V = {0} on which we define the following:

◦ = const0,

〈·, ·〉 = const0 .

These two functions obviously satisfy the laws of a Euclidean Jordan algebra,
because every element/product in the algebra is equal to every other elemen-
t/product in the algebra, and they’re all the real number zero. The same is true
of the inner-products, so for example to check bilinearity we compute

∀α ∈ R,∀x, y, z ∈ V : (αx+ y) ◦ z := 0 = 0 · 0 + 0 =: α (x ◦ z) + (y ◦ z) .

Likewise for commutativity,

∀x, y ∈ V : (x ◦ y) := 0 =: (y ◦ x) ,

The inner-product compatibility condition,

∀x, y ∈ V : 〈x ◦ y, x〉 := 0 =: 〈y, x ◦ z〉 ,

and the Jordan identity:

∀x, y ∈ V : x ◦ ((x ◦ x) ◦ y) := 0 =: (x ◦ x) ◦ (x ◦ y).

Moreover, since x = 0 is the only element of V ,

(0 ◦ x) := 0 = x = 0 =: (x ◦ 0) ,

for all elements x of the algebra. Thus, 0 ∈ V serves as the unit element for
this algebra. The structure ({0}, const0, const0) is therefore an example of a
Euclidean Jordan algebra, called the trivial Euclidean Jordan algebra.

One of the most important ways to construct a Euclidean Jordan algebra
is as the Cartesian product of two other Euclidean Jordan algebras. But first
let’s talk about Cartesian products of inner-product spaces. If (V,F) and (W,F)
are two vector spaces over the same field F, then the Cartesian product V ×W
forms a vector space in an obvious way. If 0V and 0W are the zero elements in V
and W respectively, then the zero vector in V ×W is (0V , 0W )T . Addition and
scalar multiplication are defined component-wise. We have written addition and
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scaling in V , W , and V ×W all the same way, but keep in mind that they’re
all different things. If α ∈ F,[

v1
w1

]
+
[
v2
w2

]
:=
[
v1 + v2
w1 + w2

]
,

α

[
v
w

]
:=
[
αv
αw

]
.

Equality in V ×W is determined componentwise, and since the addition and
scaling operations are both defined componentwise, the properties of a vector
space are automatically fulfilled by this construction. If, in addition, there are
two inner-products 〈·, ·〉V and 〈·, ·〉W defined on V and W , then we can use them
to define an inner-product on V ×W , too:〈[

v1
w1

]
,

[
v2
w2

]〉
V×W

:= 〈v1, v2〉V + 〈w1, w2〉W .

The fact that this works is less obvious, but we can check that it works. First,
it is linear in the first component:〈

α

[
v1
w1

]
+
[
v2
w2

]
,

[
v3
w3

]〉
V×W

:= 〈αv1 + v2, v3〉V + 〈αw1 + w2, w3〉W .

Now expanding and regrouping, we see that this is equal to

α 〈v1, v3〉V + 〈v2, v3〉V + α 〈w1, w3〉W + 〈w2, w3〉W
=

(α 〈v1, v3〉V + α 〈w1, w3〉W ) + (〈v2, v3〉V + 〈w2, w3〉W )
=

α

〈[
v1
w1

]
,

[
v3
w3

]〉
V×W

+
〈[

v2
w2

]
,

[
v3
w3

]〉
V×W

.

This proposed inner-product is also positive-definite. If (v, w) ∈ V × W is
non-zero, then one of its components is non-zero. Thus, in〈[

v
w

]
,

[
v
w

]〉
V×W

:= 〈v, v〉V + 〈w,w〉W ,

one of the terms 〈v, v〉V or 〈w,w〉W must be non-zero (because those we know
are inner-products, and thus are positive-definite). Finally, we check conjugate
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symmetry: 〈[
v2
w2

]
,

[
v1
w1

]〉
V×W

:= 〈v2, v1〉V + 〈w2, w1〉W

= 〈v1, v2〉V + 〈w1, w2〉W

= 〈v1, v2〉V + 〈w1, w2〉W

=
〈[

v1
w1

]
,

[
v2
w2

]〉
V×W

.

Again this property holds in V ×W because it held in V and W separately.
This inner-product has the additional nice property that it supplies a version

of the Pythagorean theorem on the product space:∥∥∥∥[vw
]∥∥∥∥2

=
〈[

v
w

]
,

[
v
w

]〉
= 〈v, v〉V + 〈w,w〉W = ‖v‖2V + ‖w‖2W .

The method described above is the standard way to define inner-products on
Cartesian product spaces. For example, the real numbers form a vector space
over themselves (feel free to check this), and 〈x, y〉R := xy defines an inner-
product on that space. We can see now that the usual inner-product on Rn is
nothing other than n copies of the inner-product space R, since, for example,〈[

x1
x2

]
,

[
y1
y2

]〉
R2

= x1y1 + x2y2 = 〈x1, y1〉R + 〈x2, y2〉R .

This technique can also be used to define a Cartesian product Euclidean Jordan
algebra where the Jordan product is performed componentwise.

Example 46 (Cartesian Product EJA). If
(
V1, ◦, 〈·, ·〉V1

)
and

(
V2, •, 〈·, ·〉V2

)
are

two Euclidean Jordan algebras, then we can define a Cartesian product algebra
(W, ?, 〈·, ·〉W ) on the set W := V1 × V2 by,[

x1
x2

]
?

[
y1
y2

]
:=
[
x1 ◦ y1
x2 • y2

]
,〈[

x1
x2

]
,

[
y1
y2

]〉
W

:= 〈x1, y1〉V1
+ 〈x2, y2〉V2

.

The unit element in W is 1W = (1V1 , 1V2)T .

Exercise 17 (Cartesian Product EJA properties). Give a heuristic
argument why the multiplication in a Cartesian Product EJA should be bilinear,
commutative, and satisfy the Jordan identity. Prove that the inner-product
compatibility condition holds.

122



The Cartesian product algegras are some of the most important examples
because it will turn out that every Euclidean Jordan algebra is isometric to some
Cartesian product algebra where the factors can be of only five “simple” types.
In fact, the Hadamard EJA on Rn is nothing more than a Cartesian product of
n Jordan spin algebras where each spin algebra is on R.

Definition 54. If (V, ◦ ) is a Jordan algebra and if x ∈ V , then we define

Lx : V → V

Lx = y 7→ x ◦ y

to be the “left multiplication by x” operator.

Some people write L (x) instead of Lx, but that leads to too many paren-
theses in some situations. In a more general setting, we would also need
a “right multiplication by x” operator; however Definition 51 says that left-
multiplication-by-x is the same thing as right-multiplication-by-x. So, we can
get away with only one.

Proposition 25. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V ,
then Lx is a self-adjoint linear operator on V . Moreover, for any α ∈ R and
x, y ∈ V , we have L(x+αy) = Lx + αLy; the map x 7→ Lx is linear.

Proof. In an algebra, the “multiplication” operation is always bilinear. Thus,
Lx is linear,

Lx (αy + z) := x ◦ (αy + z) = α (x ◦ y) + x ◦ z = αLx (y) + Lx (z) ,

and the fact that Lx is self-adjoint is an axiom stated in Equation (6.1).
To show that L(x+αy) = Lx + αLy for any α ∈ R and x, y ∈ V , we apply it

to an arbitrary z ∈ V and use the bilinearity of the multiplication:

L(x+αy) (z) := (x+ αy) ◦ z = x ◦ z + α (y ◦ z) = Lx (z) + αLy (z) .

In the algebra of functions B (V ), this means that L(x+αy) = Lx + αLy.

Corollary 9. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra with orthonormal
basis b and if x ∈ V , then the matrix of Lx with respect to b is symmetric.

Proof. Follows directly from Proposition 25 and Proposition 18.

Example 47. In the Jordan identity, we can write

(x ◦ y) = Lx (y) ,
(x ◦ x) ◦ (x ◦ y) = Lx2 (Lx (y))

and

(x ◦ x) ◦ y = Lx2 (y)
x ◦ ((x ◦ x) ◦ y) = Lx (Lx2 (y))
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to conclude that

∀y ∈ V : Lx2 (Lx (y)) = Lx (Lx2 (y))
⇐⇒

Lx2Lx = LxLx2 as functions.

Thus the Jordan identity is really only saying that two particular linear op-
erators commute in the algebra of linear operators (Example 8), where the
“multiplication” is function composition.

Here, and from now on, we denote the composition of linear operators by
juxtaposition (putting them next to each other). This is to avoid confusion
between the usual composition symbol and the Jordan product.

The use of Lx to denote left-multiplication by a fixed element x makes it eas-
ier for us to study another type of commutativity in Euclidean Jordan algebras,
one that we’re not always guaranteed to have.

Definition 55. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, then we say that
x, y ∈ V operator-commute if LxLy = LyLx.

In Example 47, we have thus shown that x and x2 operator-commute.

Warning 8: The meaning of commutativity

Beware that some authors say only “x and y commute” instead of
“x and y operator-commute” when they mean that LxLy = LyLx.
That is far too easy to confuse with the Jordan-product commu-
tativity guaranteed by Definition 51, however; so we will always
say “operator-commute” when referring to the commutativity of
the operators.

Exercise 18 (center of an EJA). If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan
algebra, then the center of the algebra is denoted by Z (V ) and is the set of
elements that operator-commute with everything else,

Z (V ) := {z ∈ V | ∀x ∈ V : LzLx = LxLz} .

To gain some familiarity with working in Euclidean Jordan algebras, let’s prove
a few easy facts about the center of an algebra.

1. First suppose that z ∈ Z (V ) that u, v ∈ V , and show that u ◦ (z ◦ v) =
z ◦ (u ◦ v).
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2. Next suppose that z ∈ Z (V ) and that u, v ∈ V , and show that v◦(z ◦ u) =
z ◦ (u ◦ v).

3. Combine the previous two items to show that if z ∈ Z (V ) then we have
L(u◦z) = LuLz.

4. Show that Jordan multiplication is associative on Z (V ) by picking any
x, y, z ∈ Z (V ) and showing that x ◦ (y ◦ z) = (x ◦ y) ◦ z.

Another important practical fact is that we can apply our knowledge of linear
algebra to compute the Jordan product.

Proposition 26. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, then its multi-
plication is completely described by a set of n matrices, each of which has size
n× n.

Proof. Let {e1, e2, . . . , en} be a basis for V . Definition 17 tells us that the
Jordan product ◦ is bilinear, so in the expression x ◦ y, we can express x and
y in terms of our basis and then expand using bilinearity:

x ◦ y =
(

n∑
i=1

xiei

)
◦

 n∑
j=1

yjej

 =
n∑
i=1

n∑
j=1

xiyj (ei ◦ ej) =
n∑
i=1

n∑
j=1

xiyjLei
(ej) .

Now each Lei
for i ∈ {1, 2, . . . , n} is a linear operator on V , and thus has a

representation as an n × n matrix with respect to the given basis. And there
are of course n such operators/matrices.

Thus we can compute the Jordan product fairly easily, assuming that we
know its “multiplication table” consisting of the matrices {Lei

| i = 1, 2, . . . , n}.
The same trick actually works for any algebra, not just a Jordan algebra.

Example 48. In the Hadamard EJA with the standard basis,

ei ◦ ej =
{
ei if i = j,
0 otherwise.

and we can use this to compute the “multiplication table” from Proposition 26:

Lei = eie
T
i for i = 1, 2, . . . , n.

SageMath makes it pretty easy to implement these finite-dimensional algebras
where we know how to multiply basis elements. It’s not strictly necessary, but
to emphasize Proposition 26 we will define the multiplication using the table
above.
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sage: class HadamardR3(CombinatorialFreeModule):
....: def __init__(self):
....: cat = FiniteDimensionalAlgebrasWithBasis(QQ)
....: gens = range(3)
....: super(HadamardR3,self).__init__(QQ,
....: gens,
....: category=cat)
....: def product_on_basis(self,i,j):
....: ei = self.monomial(i).to_vector()
....: ej = self.monomial(j).to_vector()
....: Lei = ei.column()*ei.row()
....: return self.from_vector(Lei*ej)
sage: J = HadamardR3()
sage: x = J.from_vector(vector([1,3,8]))
sage: y = J.from_vector(vector([5,2,1]))
sage: (x*y).to_vector()
(5, 6, 8)

The incomprehensible stuff here is mostly boilerplate. We’re creating a class
that happens to be a free module, and then telling SageMath that it’s also a
finite-dimensional algebra by way of specifying the category. We use the field
of rational numbers instead of the reals because real numbers and computers
don’t mix. But after that, we just tell it how to multiply basis elements, and
we can convert coordinate vectors to algebra elements and multiply them.

Exercise 5. Compute the multiplication table for the Jordan Spin EJA on R3.
Write a function in your favorite programming language that performs Jordan
multiplication based on a multiplication table (list of matrices), and use it to
test your answer.

What we’ve just done will be a major theme for the rest of the course. If
we need to prove a theorem or define a concept in a Jordan algebra, we’ll first
either translate to, or reason by analogy with, basic linear algebra. Then when
we’ve got what we want, we’ll convert back to the Jordan algebraic setting.

6.3 Solutions to exercises

Solution to Exercise 14 (spin algebra unit). If we try to solve x◦e = x for
all x, then we arrive at a system of equations in the n variables e1, e2, . . . , en:[

〈x, e〉
x1ē+ e1x̄

]
=
[
x1
x̄

]
.
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In particular this holds for x = (1, 0, 0, . . . , 0)T , and substituting that choice
into the system gives [

e1
ē

]
=
[
1
0

]
.

A quick check shows that e = (1, 0, 0, . . . , 0)T is indeed a unit element for this
algebra.

Solution to Exercise 15 (spin algebra properties). First we note that the
multiplication is commutative, because then it’s easier to show bilinearity. We
need only the fact that 〈x, y〉 = 〈y, x〉 in Rn, and the commutativity of vector
addition:

x ◦ y :=
[
〈x, y〉

x1ȳ + y1x̄

]
=
[
〈y, x〉

y1x̄+ x1ȳ

]
=: y ◦ x.

Now we show that the multiplication is bilinear. Suppose that α ∈ R. By
definition,

(αx+ y) ◦ z :=
[

〈αx+ y, z〉
z1(αx+ y) + (αx+ y)1 z̄

]
Since indexing is a linear operation on Rn; that is, since (αx+ y)i = αxi + yi,
we have for example

(αx+ y)i = (αx+ y)i+1 = αxi+1 + yi+1 = αx̄i + ȳi.

Thus the “bar” operation is linear too. It follows that

(αx+ y) ◦ z =
[

α 〈x, z〉+ 〈y, z〉
αz1x̄+ z1ȳ + αx1z̄ + y1z̄

]
= α (x ◦ z) + (y ◦ z) .

Since we have already shown that our multiplication is commutative, linearity
in the second argument follows from linearity in the first.

The inner-product compatibility condition is straightforward,

〈x ◦ y, z〉 =
〈[

〈x, y〉
x1ȳ + y1x̄

]
,

[
z1
z̄

]〉
= z1 〈x, y〉+ 〈x1ȳ + y1x̄, z̄〉

= z1 〈x, y〉+ x1 〈ȳ, z̄〉+ y1 〈x̄, z̄〉
= x1y1z1 + z1 〈x̄, ȳ〉+ x1 〈ȳ, z̄〉+ y1 〈x̄, z̄〉 ;

〈y, x ◦ z〉 =
〈[
y1
ȳ

]
,

[
〈x, z〉

x1z̄ + z1x̄

]〉
= y1 〈x, z〉+ 〈ȳ, x1z̄ + z1x̄〉

= y1 〈x, z〉+ x1 〈ȳ, z̄〉+ z1 〈ȳ, x̄〉
= y1x1z1 + y1 〈x̄, z̄〉+ x1 〈ȳ, z̄〉+ z1 〈ȳ, x̄〉 .

Finally, we check the Jordan identity using the inner-product compatibility
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condition and the identity 〈x, y〉 = x1y1 + 〈x̄, ȳ〉:

x ◦ x :=
[
‖x‖2
2x1x̄

]
(x ◦ x) ◦ y :=

[
〈x ◦ x, y〉

2y1x1x̄+ ‖x‖2 ȳ

]
x ◦ ((x ◦ x) ◦ y) :=

[
〈x, (x ◦ x) ◦ y〉(

‖x‖2 y1 + 2x1 〈x̄, ȳ〉
)
x̄+ x1

(
2y1x1x̄+ ‖x‖2 ȳ

)]

=
[

〈(x ◦ x) ◦ x, y〉
‖x‖2 y1x̄+ 2x1 〈x̄, ȳ〉 x̄+ 2x2

1y1x̄+ x1 ‖x‖2 ȳ

]
(x ◦ x) ◦ (x ◦ y) :=

[
〈x ◦ x, x ◦ y〉

‖x‖2 (x1ȳ + y1x̄) + 〈x, y〉 2x1x̄

]

=

 〈x ◦ (x ◦ x), y〉

‖x‖2 x1ȳ + y1 ‖x‖2 x̄+ 2x2
1y1x̄+ 2x1 〈x̄, ȳ〉 x̄.



Solution to Exercise 16 (nonassociativity of Real Symmetric EJA).

sage: def jp(A,B):
....: return (A*B + B*A)/2
sage: X = matrix([ [0,0],
....: [0,1] ])
sage: Y = matrix([ [ 0,-1],
....: [-1,-1] ])
sage: Z = matrix([ [0, 1],
....: [1, 0] ])
sage: jp(jp(X,Y),Z)
[-1/2 -1/2]
[-1/2 -1/2]
sage: jp(X,jp(Y,Z))
[ 0 -1/4]
[-1/4 -1]

Solution to Exercise 17 (Cartesian Product EJA properties). Scalar
multiplication, addition, and equality are all defined componentwise in a Carte-
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sian product space. So, for example, asking if

α

([
x1
x2

]
+
[
y1
y2

])
?

[
z1
z2

]
=
[
α (x1 + y1) ◦ z1
α (x2 + y2) • z2

]
= α

([
x1
x2

]
?

[
z1
z2

])
+
([
y1
y2

]
?

[
z1
z2

])
= α

[
x1 ◦ z1
x2 • z2

]
+
[
y1 ◦ z1
y2 • z2

]
is quite literally just asking if both ◦ and • are linear in the first component—
which of course they are, because they’re the algebra multiplication operations
in two Euclidean Jordan algebras. Likewise, the commutativity and weak as-
sociativity will be satisfied automatically because you would check them com-
ponentwise, and they hold componentwise. The only thing that needs to be
checked is the inner-product compatibility condition:〈[

x1
x2

]
?

[
y1
y2

]
,

[
z1
z2

]〉
W

:= 〈x1 ◦ y1, z1〉V1
+ 〈x2 • y2, z2〉V2

= 〈y1, x1 ◦ z1〉V1
+ 〈y2, x2 • z2〉V2

=
〈[
y1
y2

]
,

[
x1
x2

]
?

[
z1
z2

]〉
W

,

where the innermost equality holds because the inner-product compatibility
condition is satisfied separately for ◦ in V1 and for • in V2.

Solution to Exercise 18 (center of an EJA).

1. Apply the definition of Lu and Lz and use the fact that they commute:

u ◦ (z ◦ v) = Lu (Lz (v)) = Lz (Lu (v)) = z ◦ (u ◦ v).

2. Same trick. Apply the definitions, and use the fact that Lz and Lv com-
mute,

v ◦ (z ◦ u) = Lv (Lz (u)) = Lz (Lv (u)) = z ◦ (v ◦ u).

3. In the first item we found

u ◦ (z ◦ v) = z ◦ (u ◦ v),

but multiplication is commutative in a Euclidean Jordan algebra, so this
is equivalent to

u ◦ (z ◦ v) = z ◦ (v ◦ u).
Now in the second item, we showed that

v ◦ (z ◦ u) = z ◦ (v ◦ u).
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Since the right-hand sides of these equations are the same, the left-hand
sides are too. Thus,

u ◦ (z ◦ v) = v ◦ (z ◦ u).

Rearranging once more using the commutativity of the Jordan multipli-
cation, we wind up with,

u ◦ (z ◦ v) = (u ◦ z) ◦ v,

which says (in other words) that

LuLz (v) = L(u◦z) (v) .

Since that holds for an arbitrary v ∈ V , the two linear operators LuLz
and L(u◦z) are equal.

4. Again this follows from the commutativity of x, y, z and Lx, Ly, Lz:

x ◦ (y ◦ z) = x ◦ (z ◦ y)
= LxLz (y)
= LzLx (y)
= z ◦ (x ◦ y)
= (x ◦ y) ◦ z.
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Chapter 7

Power-associativity and
polarization

The big problem we face in a Jordan algebra is that it’s just really hard to do
anything without associativity. For example, we’ve used the notation x2 := x◦x
to denote the Jordan product of x with itself. You might think it’s safe to write
x3 to mean x ◦ x ◦ x, but a priori the expression x ◦ x ◦ x is meaningless! It
could be either x ◦ (x ◦ x) or (x ◦ x) ◦ x, and they may not be the same thing.
Thus the parentheses are required, and we can’t even write a simple power like
x3 using what we know now. This causes some problems:

• Nilpotent operators are defined in terms of powers of themselves.

• Minimal and characteristic polynomials are all about powers of operators.

• Generalized eigenvalues involve powers of their operator.

Et cetera. And all we have to work with is the Jordan identity, which is equiv-
alent to LxLx2 = Lx2Lx. How can we leverage this? Fortunately, the left-
multiplication operators are linear, and this lets us do some tricks.

7.1 Polarization identities
Proposition 27. Koecher, Chapter

III; Faraut and
Korányi,
Proposition
II.1.1.i; Baes,
Section 2.2.3

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, then

∀x, y ∈ V : 2LxL(x◦y) + LyLx2 = 2L(x◦y)Lx + Lx2Ly. (7.1)

Proof. Let z = x+ ty for some t ∈ R, and substitute into the Jordan identity:

∀z ∈ V : LzLz2 = Lz2Lz

⇐⇒
∀x, y ∈ V,∀t ∈ R : L(x+ty)L(x+ty)2 = L(x+ty)2L(x+ty).
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Now use Proposition 25 to expand,

L(x+ty) = Lx + tLy

L(x+ty)2 = L(x2+2t(x◦y)+t2y2) = Lx2 + 2tL(x◦y) + t2Ly2 ,

and to get (for all x, y and t)

(Lx + tLy)
(
Lx2 + 2tL(x◦y) + t2Ly2

)
=
(
Lx2 + 2tL(x◦y) + t2Ly2

)
(Lx + tLy)

⇐⇒
LxLx2 + 2tLxL(x◦y) + t2LxLy2 + tLyLx2 + 2t2LyL(x◦y) + t3LyLy2

=
Lx2Lx + 2tL(x◦y)Lx + t2Ly2Lx + tLx2Ly + 2t2L(x◦y)Ly + t3Ly2Ly.

Are we having fun yet? We can now cancel LxLx2 = Lx2Lx and t3LyLy2 =
t3Ly2Ly from both sides using the Jordan identity, which leaves

2tLxL(x◦y) + t2LxLy2 + tLyLx2 + 2t2LyL(x◦y)

=
2tL(x◦y)Lx + t2Ly2Lx + tLx2Ly + 2t2L(x◦y)Ly.

If we group by the coefficients t and t2, this is the same thing as

∀x, y ∈ V,∀t ∈ R :
t
(
2LxL(x◦y) + LyLx2 − 2L(x◦y)Lx − Lx2Ly

)
=

−t2
(
2LyL(x◦y) + LxLy2 − 2L(x◦y)Ly − Ly2Lx

)
.

If our conclusion is false, then there exist some x̃, ỹ that make it false. But then
we could take norms on both sides—that is, we could set,

n1 :=
∥∥2Lx̃L(x̃◦ỹ) + LỹLx̃2 − 2L(x̃◦ỹ)Lx̃ − Lx̃2Lỹ

∥∥
n2 :=

∥∥2LỹL(x̃◦ỹ) + Lx̃Lỹ2 − 2L(x̃◦ỹ)Lỹ − Lỹ2Lx̃
∥∥

and conclude that
∀t ∈ R : tn1 = t2n2

where n1 6= 0 if our conclusion is false. By choosing two particular values (t = 1
and t = 2) of t, we can easily see that this is impossible:

n1 = n2 (for t = 1)
2n1 = 4n2 (for t = 2).

Thus we must have n1 = 0, and the conclusion follows.

Proposition 28. Faraut and
Korányi,
Proposition
II.1.1.ii; Baes,
Section 2.3.3

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, then for all
x, y, z ∈ V we have

LxL(z◦y) + LzL(x◦y) + LyL(x◦z) = L(z◦y)Lx + L(x◦y)Lz + L(x◦z)Ly. (7.2)
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Proof. Replace x by (x+ z) in Proposition 27,

∀x, y, z ∈ V : 2L(x+z)L((x+z)◦y) + LyL(x+z)2 = 2L((x+z)◦y)L(x+z) + L(x+z)2Ly

and expand,

2LxL(x◦y) + 2LxL(z◦y) + 2LzL(x◦y) + 2LzL(z◦y) + LyLx2 + 2LyL(x◦z) + LyLz2

=
2L(x◦y)Lx + 2L(z◦y)Lx + 2L(x◦y)Lz + 2L(z◦y)Lz + Lx2Ly + 2L(x◦z)Ly + Lz2Ly

There are a few terms above that only involve two variables; cancel them using
Equation (7.1) (and divide everything by two) to obtain

LxL(z◦y) + LzL(x◦y) + LyL(x◦z) = L(z◦y)Lx + L(x◦y)Lz + L(x◦z)Ly

as desired.

Equation (7.2) is special because the right-hand side, when applied to some
w ∈ V , becomes a symmetric expression in x, y, z, w. We can thus permute
those variables to derive even more polarization identities. For example,
Proposition 29. Baes, Section

2.3.3
If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, then for all

y, z, u ∈ V we have

LuL(z◦y) + LzL(u◦y) + LyL(u◦z) = L(u◦(y◦z)) + LyLuLz + LzLuLy. (7.3)

Proof. Let x = u on both sides of Equation (7.2) and apply them to w:

∀u, z, y, w ∈ V :


u ◦ ((z ◦ y) ◦ w) + z ◦ ((u ◦ y) ◦ w) + y ◦ ((u ◦ z) ◦ w)

=
(z ◦ y) ◦ (u ◦ w) + (u ◦ y) ◦ (z ◦ w) + (u ◦ z) ◦ (y ◦ w)

Now let x = w on both sides of Equation (7.2) and apply them to u:

∀u, z, y, w ∈ V :


w ◦ ((z ◦ y) ◦ u) + z ◦ ((w ◦ y) ◦ u) + y ◦ ((w ◦ z) ◦ u)

=
(z ◦ y) ◦ (w ◦ u) + (w ◦ y) ◦ (z ◦ u) + (w ◦ z) ◦ (y ◦ u).

The right-hand sides of these expressions are equal, so the left-hand sides are
too!

∀u, z, y, w ∈ V :


[
LuL(z◦y) + LzL(u◦y) + LyL(u◦z)

]
(w)

=
w ◦ ((z ◦ y) ◦ u) + z ◦ ((w ◦ y) ◦ u) + y ◦ ((w ◦ z) ◦ u).

Now we use commutativity to rearrange the latter expression until it looks like
something acting on w,

∀u, z, y, w ∈ V :


w ◦ ((z ◦ y) ◦ u) + z ◦ ((w ◦ y) ◦ u) + y ◦ ((w ◦ z) ◦ u)

=[
L((z◦y)◦u) + LzLuLy + LyLuLz

]
(w) .
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Since the two square-bracketed operators are equal on all w ∈ V , they are equal
as operators, and that’s what we set out to prove.

That was a lot of work for apparently little gain. But the result is more im-
portant than it looks. Using the first polarization identity, we can immediately
prove the following:

Lemma 3. Koecher, Lemma
III.1

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, then x and x ◦ y
operator-commute if and only if x2 and y operator-commute.

Proof. Suppose that x and x◦y operator-commute. Then LxL(x◦y) = L(x◦y)Lx,
and we can cancel those terms on both sides of Equation (7.1) to obtain

LyLx2 = Lx2Ly,

which means exactly that x2 and y commute. On the other hand, if we start by
assuming that x2 and y operator-commute, we can cancel those terms from the
polarization identity to conclude that LxL(x◦y) = L(x◦y)Lx.

7.2 Proving power-associativity
Our goal is eventually to show that Jordan algebras are power-associative, as in
Definition 29. Recall that the problem was that x3 could have two meanings,
either x ◦ (x ◦ x) or (x ◦ x) ◦ x. To honor the promise we made in Conven-
tion 12, we will temporarily we will work around this difficulty by defining a
left-exponentiation operation.

Definition 56. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, we (temporarily)
define

x ◦ m := x ◦ (x ◦ (x ◦ · · · (x ◦ x)))︸ ︷︷ ︸
x appears m times

By convention we let x ◦ 0 = 1V and x ◦ 1 = x. Note that x ◦ 2 = x ◦ x = x2,
and in particular that x ◦ m = x ◦

(
x ◦ (m−1)) for m ≥ 2.

Proposition 30. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, if x ∈ V , and
if there exist I, J ∈ N and αij ∈ R such that P =

∑I
i=0
∑J
j=0 αijL

i
xL

j
x2 , then P

and Lx commute.

Proof. Do the multiplication, use the fact that the individual terms commute,
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and then undo the multiplication:

LxP = Lx

 I∑
i=0

J∑
j=0

αijL
i
xL

j
x2


=

I∑
i=0

J∑
j=0

αijL
i+1
x Ljx2

=
I∑
i=0

J∑
j=0

αijL
j
x2L

i+1
x

=

 I∑
i=0

J∑
j=0

αijL
j
x2L

i
x

Lx

=

 I∑
i=0

J∑
j=0

αijL
i
xL

j
x2

Lx

= PLx.

Theorem 25. Koecher Theorem
III.1

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V ,
then for all m ∈ N, there exist I, J ∈ N and αij ∈ R such that L(x◦m) =∑I
i=0
∑J
j=0 αijL

i
xL

j
x2 .

Proof. For m = 1 and m = 2, we have L(x◦1) = Lx and L(x◦2) = Lx2 , so the
base cases are handled. Next assume that the result holds for all m < k; we will
show that it holds for m = k ≥ 3 as well.

Our induction hypothesis combined with Proposition 30 says that Lx and
L(x◦m) commute for all m < k. Set u = x, y = x, and z = x ◦ k−2 in Equa-
tion (7.3) to obtain,

LxL((x◦k−2)◦x) + L(x◦k−2)L(x◦x) + LxL(x◦(x◦k−2))

=
L(x◦(x◦(x◦k−2))) + LxLxL(x◦k−2) + L(x◦k−2)LxLx.

Using commutativity, we can write
(
x ◦ k−2) ◦ x = x ◦

(
x ◦ k−2) = x ◦ k−1, and

by simplifying and rearranging the rest we can solve for the “biggest” power in
terms of the “smaller” powers,

Lx◦k = LxL(x◦k−1) + L(x◦k−2)Lx2 + LxL(x◦k−1)

− LxLxL(x◦k−2) − L(x◦k−2)LxLx.
(7.4)

Now we simply note that the sum/difference/product of two expressions of the
form in Proposition 30 again has the same form. As a result, our induction
hypothesis applied to Equation (7.4) shows that L(x◦k) has that form.
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Corollary 10. Koecher
Corollary III.1

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, if x ∈ V , and if
m,n ∈ N, then x ◦ m and x ◦ n operator-commute.

Proof. By Definition 55, x ◦m and x ◦ n operator-commute if L(x◦m) and L(x◦n)
commute. And Theorem 25 says that both L(x◦m) and L(x◦n) have the form

L(x◦m) =
I∑
i=0

J∑
j=0

αijL
i
xL

j
x2

L(x◦n) =
K∑
k=0

L∑
`=0

βk`L
k
xL

`
x2

for I, J,K,L ∈ N and αij , βk` ∈ R. By expanding the product, we get

L(x◦m)L(x◦n) =
I∑
i=0

J∑
j=0

K∑
k=0

L∑
`=0

αijβk`L
i
xL

j
x2L

k
xL

`
x2 .

But now, Lx and Lx2 commute! So we can move all of the terms that came
from L(x◦n) to the left of those that came from L(x◦m):

· · · = L(x◦m)L(x◦n) =
K∑
k=0

L∑
`=0

I∑
i=0

J∑
j=0

βk`αijL
k
xL

`
x2LixL

j
x2

= L(x◦n)L(x◦m).

Finally, the big result that we’ve been doing all this algebra for.
Theorem 26. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V , then

∀m,n ∈ N : (x ◦ m) ◦ (x ◦ n) = x ◦ (m+n) = (x ◦ n) ◦ (x ◦ m).

Proof. For m = 1 or n = 1, the result is trivial. Without loss of generality,(
x ◦ 1) ◦ (x ◦ n) = x ◦ (x ◦ n) = x ◦ (n+1) by Definition 56. It is similarly easy to

check the case where one (or both) of m,n is zero.
Let ` := m + n, and suppose that the result holds for ` < k, where we can

take k ≥ 3 since we’ve manually checked the cases where m+ n ∈ {0, 1, 2}. We
aim to show that the result holds for ` = k as well. Now, having checked the
case where one of the exponents is one, we can assume that either m > 1 or
n > 1. Without loss of generality (since we could always switch the order of the
m,n terms below), suppose that n > 1. Then

(x ◦ m) ◦ (x ◦ n) = (x ◦ m) ◦
(
x ◦
(
x ◦ (n−1)

))
= L(x◦m)Lx

(
x ◦ (n−1)

)
,

and Corollary 10 lets us rearrange this to

LxL(x◦m)

(
x ◦ (n−1)

)
= Lx

[
(x ◦ m) ◦

(
x ◦ (n−1)

)]
,

which, by the induction hypothesis, is simply

Lx

[
x ◦ (m+n−1)

]
= x ◦ (m+n).
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Let’s summarize these results in terms of our new definition.

Theorem 27. Koecher,
Theorem III.2;
Faraut and
Korányi,
Proposition II.1.2

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, if x ∈ V , and if
m,n ∈ N, then

• xm ◦ xn = xn ◦ xm = x(m+n); by Theorem 26, and

• LxmLxn = LxnLxm , by Corollary 10.

• The algebra (V, ◦ , 〈·, ·〉) is power-associative per Definition 29.

Convention 13: Power notation in an EJA

Since Theorem 27 shows that every Euclidean Jordan algebra is
power-associative, we will from now on write xk instead of x◦k to
indicate the product of x with itself, k times, in any order. This
is in agreement with Definition 29 and Convention 12.

137



Chapter 8

The unique spectral
decomposition

Recall that the main reason we care about power-associativity is that it allows
us to work in the associative subalgebra generated by a single element. Propo-
sition 12 gives us an explicit representation of that associative subalgebra, and
associative algebras are just plain easier to work with.

Since we now know that Euclidean Jordan algebras are power-associative, if
(V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V , then alg ({x}) forms
an associative Euclidean Jordan algebra after restricting the Jordan and inner
products. While alg ({x}) may not be very large, we know that things are at
least well-behaved there. We will see an application of this in a moment.

From one perspective, the reason that Euclidean Jordan algebras are so
useful in optimization is because they’re one of the most general structures whose
elements have eigenvalues and a spectral decomposition. We have hopefully
convinced you in Section 4.2 that having a spectral decomposition is rather
convenient. In this chapter, we’ll present one version of a spectral decomposition
(akin to the unique decomposition into projectors in linear algebra) that works
in a Euclidean Jordan algebra. We’ll then spend a good amount of time trying to
push that result through to a “full” decomposition like we get from diagonalizing
a symmetric matrix.

8.1 Idempotents
Definition 57. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if c ∈ V
satisfies c2 = c, then c is idempotent. The letter c is used by many authors to
denote an idempotent—don’t ask me why.
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Warning 9: Zero is an idempotent

Koecher defines idempotents to be non-zero but we don’t. Be
wary of the definitions when switching between references.

Proposition 31. Faraut and
Korányi, Chapter
III Section 1

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if c, d ∈ V
are idempotent with c ◦ d = 0, then 〈c, d〉 = 0.

Proof. Suppose c ◦ d = 0. Then

0 = 〈c, 0〉 = 〈c, c ◦ d〉 =
〈
c2, d

〉
= 〈c, d〉 .

Definition 58. Faraut and
Korányi, Chapter
III Section 1

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, then a subset
{c1, c2, . . . , ck} ⊆ V is a complete system of orthogonal idempotents if

• Each ci is idempotent.

• ci ◦ cj = 0 whenever i 6= j.

• c1 + c2 + · · ·+ ck = 1V .

When talking about idempotents, the term orthogonal a priori means that,
for example, c ◦ d = 0 rather than 〈c, d〉 = 0. As we saw a moment ago in
Proposition 31, this sort of orthogonality implies the usual kind. The two are
actually equivalent, but it’s not easy to prove. We will eventually learn that any
inner-product on a simple Euclidean Jordan algebra must be a positive scalar
multiple of the so-called canonical trace inner-product, and the canonical trace
inner product of c and d is zero only when c ◦ d = 0. One nice thing to know
about orthogonal idempotents (in this sense) is that they operator-commute.

Proposition 32. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if c, d ∈ V
are idempotent with c ◦ d = 0, then LcLd = LdLc.

Proof. Let x := c and y := d in Equation (7.1).

Corollary 11. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, if c is a set of
orthogonal idempotents in V , and if x, y ∈ V are both finite linear combinations
of the elements of c, then x and y operator-commute.

Proof. Suppose that x =
∑k
i=1 αici and y =

∑k
j=1 βjcj , where possibly some of

the αi ∈ R and βj ∈ R are zero, and each ci, cj ∈ c. Expand using linearity as
in Proposition 25 to find

LxLy =
k∑
i=1

k∑
j=1

αiβjLciLcj =
k∑
i=1

k∑
j=1

αiβjLcjLci = LyLx,
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where we were able to replace LciLcj with LcjLci thanks to Proposition 32.

The definition of a complete system of orthogonal idempotents should re-
mind the reader of the spectral theorem for linear algebra. One version of the
spectral theorem decomposes a self-adjoint operator into a linear combination
of orthogonal projections Pi onto the eigenspaces of L. Those projections all
sum to the identity operator, and satisfy P 2

i = Pi and PiPj = 0 when i 6= j.
Thus it is safe to say that a complete system of orthogonal idempotents is a
generalization of those projections. Unsurprisingly, they play a huge part in the
spectral theorem for Euclidean Jordan algebras.
Lemma 4. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, if {c1, c2, . . . , ck} is
a complete system of orthogonal idempotents, and if p ∈ R [X] with the two
associated functions,

p�R : R→ R, and
p�V : V → V,

then for all λ1, λ2, . . . , λk ∈ R, we have

p�V

(
k∑
i=1

λici

)
=

k∑
i=1

p�R (λi) ci.

Proof. If p = a0X
0 + a1X

1 + · · · + amX
m, then from the orthogonality and

idempotence of the ci, we have(
k∑
i=1

λici

)2

=
k∑
i=1

λ2
i ci,

and likewise for higher powers. It follows that

p�V

(
k∑
i=1

λici

)
= a01V +a1

(
k∑
i=1

λici

)
+a2

(
k∑
i=1

λ2
i ci

)
+ · · ·+am

(
k∑
i=1

λmi ci

)
.

By re-grouping this expression, we arrive at

p�V

(
k∑
i=1

λici

)
= a01V +

k∑
i=1

(
a1λi + a2λ

2
i + · · ·+ amλ

m
i

)
ci.

Now since 1V = c1 + c2 + · · ·+ cm, we can subtitute that into the first term and
then move the resulting a0ci into the corresponding terms of the sum,

p�V

(
k∑
i=1

λici

)
= a0 (c1 + c2 + · · ·+ cm) +

k∑
i=1

(
a1λi + a2λ

2
i + · · ·+ amλ

m
i

)
ci

=
k∑
i=1

(
a0 + a1λi + a2λ

2
i + · · ·+ amλ

m
i

)
ci

=
k∑
i=1

p�R (λi) ci.

140



8.2 The spectral theorem
Theorem 28 (unique EJA spectral theorem). Faraut and

Korányi Theorem
III.1.1

Suppose that (V, ◦ , 〈·, ·〉) is a
Euclidean Jordan algebra. If x ∈ V , then there exists a unique set of pairs
{(λ1, c1) , (λ2, c2) , . . . , (λk, ck)} ⊆ R× alg ({x}) such that

• The set {c1, c2, . . . , ck} forms a complete system of non-zero orthogonal
idempotents,

• The real numbers λ1 through λk are non-zero and distinct,

• x = λ1c1 + λ2c2 + · · ·+ λkck.

Proof. Let L̃x be the restriction of Lx to the d-dimensional subalgebra A :=
alg ({x}). Since Lx is self-adjoint on V by Proposition 25, it is also self-adjoint
on A; this follows trivially from Definition 37. It therefore has a spectral de-
composition with distinct real eigenvalues λi and spectral projectors Pi,

L̃x = λ1P1 + λ2P2 + · · ·+ λkPk.

Now let W be the space of self-adjoint linear operators on A, and note that W
forms a Euclidean Jordan algebra because it is basically the Real Symmetric
EJA. The first thing we want to claim is that, for each projection operator Pj ,
there exists a polynomial pj ∈ R [X] such that Pj = pj�W

(
L̃x

)
. Let’s just

construct some polynomials that will do what we want. Let

qj =
∏
{(X − λi) | i ∈ {1, 2, . . . , k} , i 6= j} ∈ R [X] .

Since the λj are distinct, qj is now a polynomial that is zero on all λi except
when i = j. Compute using Lemma 4,

qj�W
(
L̃x

)
= qj�R (λ1)P1 + qj�R (λ2)P2 + · · ·+ qj�R (λk)Pk
= 0 + 0 + · · ·+ qj�R (λj)Pj + 0 + 0 · · ·+ 0
= qj�R (λj)Pj .

Now since the coefficients of our polynomials are allowed to be in R, we can
simply divide:

pj := qj
qj�R (λj)

.

This will do the job. The reason we went to all of that trouble is so that we can
make the following definition. Define

cj := pj�V (x) ∈ A,

Since cj is a sum of multiples of products of x, we know that it lives in A. We
can thus legally write Lcj for its left-multiplication-by operator in A, and it is
easy to see using the associativity in A that

Lcj = Lpj�V (x) = pj�W
(
L̃x

)
= Pj .
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To verify the inner equality, simply apply both operators to an arbitrary y ∈ A
and use associativity. Also using associativity we can deduce that

∀y ∈ A : L(ci◦cj) (y) = (ci ◦ cj) (y) = ci ◦ (cj (y)) = Lci

(
Lcj (y)

)
,

which in turn implies,

L(ci◦cj) = Lci
Lcj

= PiPj =
{
Pi = Lci if i = j,

0 = L0 otherwise.

Finally, by linearity, we have

L(∑k

j=1
cj

) =
k∑
j=1

Lcj
=

k∑
j=1

Pj = L1A = L1V

and

L(∑k

j=1
λjcj

) =
k∑
j=1

λjLcj =
k∑
j=1

λjPj = L̃x.

If Lz = 0 for any z in a Euclidean Jordan algebra, then we have z = 0. Why?
Because (by the contrapositive), if z 6= 0, then Lz (1V ) = z 6= 0. It follows from
Axler’s Proposition 3.2 that the linear map z 7→ Lz is injective. In our case, we
can apply this to the previous three equations, one at a time, to conclude that

ci ◦ cj =
{
ci if i = j,

0 otherwise.
k∑
i=1

cj = 1V

k∑
i=1

λjcj = x.

This decomposition is unique by construction. We just showed that the decom-
position

L̃x =
k∑
j=1

λjLcj

is a decomposition of L̃x into orthogonal spectral projectors. If there were some
other complete orthogonal system {d1, d2, . . . , dm} and associated real numbers
δ1, δ2, . . . , δm, then we would also deduce (in exactly the same way) that

L̃x =
m∑
j=1

δjLdj
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However, the linear-algebra spectral decomposition, eigenspaces, and eigenval-
ues are themselves all unique, so we would then conclude that m = k. If we
additionally choose an ordering for the real numbers λi, then we must have
δj = λj and therefore Ldj

= Lcj
implying dj = cj . Without the ordering, the

uniqueness is only “up to a permutation.”

Typically we order the λi by λ1 ≥ λ2 ≥ · · · ≥ λk to assuage the uniqueness
concerns. You need to order them anyway if you want to think of, say, λ1 as
being a function of x. The “first real number λi” is meaningless, but the “largest
real number λi” is actually well-defined. Identifying the λi with functions is
useful if you want to show that they’re continuous. The λi will turn out to be
the “eigenvalues” of x, but we don’t know what that means yet.

But in any case, modulo some boring details, this first version of the spectral
decomposition is unique.

Warning 10: Zeros invalidate uniqueness

Refer back to Warning 5 about the operator spectral decomposi-
tion. There, we had to restrict ourselves to non-zero eigenvalues
and projections, and we have to do the same thing in the unique
EJA spectral theorem. Since the zero element in a Euclidean
Jordan algebra is an idempotent (see Warning 9), the version of
the spectral theorem in Faraut and Korányi (which allows the
idempotents to be zero) has a bug in it. You could easily add in
as many multiples of zero as you want to your decomposition to
make it non-unique.

Exercise 19 (equivalence of spectral decompositions for matrices).
Let L be any element of the Real Symmetric EJA, and show that its matrix
spectral decomposition into projections (via the spectral theorem for linear al-
gebra) and its Euclidean Jordan Algebra spectral decomposition (via the unique
EJA spectral theorem) are the same thing.

Recall that a matrix has two sorts spectral decompositions. Take, for exam-
ple, the identity matrix I ∈ Sn. The sole eigenspace (corresponding to λ = 1)
for I is Rn, and I itself projects onto that space. Thus I = 1I is the unique
spectral decomposition of I into spectral projections. But we can also diago-
nalize I by choosing any orthonormal basis {u1, u2, . . . , un} for Rn. Then the
matrix U that has those vectors as its columns trivially diagonalizes the identity
matrix,

I = UIUT = 1u1u
T
1 + 1u2u

T
2 + · · ·+ 1unuTn .
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But this choice is not unique, since any orthonormal basis of Rn will work the
same way. Uniqueness was obtained only by grouping all of the one-dimensional
projections uiuTi having the same corresponding eigenvalue—or all of them in
this case. Obtaining a full, non-unique decomposition into as many idempotents
as possible in a Euclidean Jordan algebra is much harder. But that’s our goal
moving forward.

8.3 Solutions to exercises

Solution to Exercise 19 (equivalence of spectral decompositions for
matrices). We have to show that the projections in the spectral theorem for
linear algebra satisfy Definition 58 of a complete system of orthogonal non-
zero idempotents in a Euclidean Jordan algebra. First of all, projections are
self-adjoint, so if we start with a symmetric matrix L ∈ Sn, then each Pi in
its spectral decomposition will also belong to Sn. Projections are idempotent
by definition, so Pi ◦ Pi = PiPi = Pi for all i. And the projections in the
spectral decomposition are onto orthogonal subspaces, which means that PiPj =
0 whenever i 6= j. This implies that

Pi ◦ Pj = PiPj + PjPi
2 = (0 + 0) /2 = 0.

Finally, the fact that I =
∑k
i=1 Pi is part of the matrix spectral theorem, and

we already know that I is the unit element of Sn considered as a Euclidean
Jordan algebra. The matrix spectral theorem also says they’re non-zero; there-
fore, {Pi}ki=1 is a complete system of non-zero orthogonal idempotents in the
Euclidean Jordan algebra Sn. Now, given an L ∈ Sn, the classical spectral
decomposition is

L =
k∑
i=1

λiPi

where the λi ∈ R are distinct and non-zero. However if we let ci = Pi, then
{ci}ki=1 is a complete system of non-zero orthogonal idempotents, and

L =
k∑
i=1

λici

is a valid EJA spectral decomposition according to the unique EJA spectral
theorem. Since the EJA spectral decomposition is unique, and since the matrix
spectral decomposition always agrees with it, they’re identical.
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Chapter 9

Minimal and characteristic
polynomials

Through the eigenspaces and their dimensions, the full spectral decomposition
for a linear operator is closely tied to its characteristic polynomial. And the
characteristic polynomial is, in turn, related to the minimal polynomial. To
achieve a full spectral decomposition in a Euclidean Jordan algebra, we will
have to study these concepts in a more general setting.

9.1 The minimal polynomial
One might wonder how big the associative subalgebra alg ((x)) is for a particular
x in the V . It turns our that some elements are better than others at generating
independent powers. The next definition captures this idea.

Definition 59. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V , then
the degree of x is

deg (x) := dim (alg ({x})) .

Clearly, deg (x) ≤ dim (V ) for all x.

For example, the degree of the unit element is 1 in any nontrivial algebra,
since all powers of 1V are the same (equal to 1V itself), and thus alg ({1V }) =
{α1V | α ∈ R} = span ({1V }), which clearly has dimension one.
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Warning 11: Many authors define degree incorrectly

Many authors define the degree of an element x to be

deg (x) := min
({
d ∈ N

∣∣ {x0, . . . , xd
}

is linearly-dependent
})
,

but this definition is subtly incorrect. To see why, take the ex-
ample x := 1V that we have already given. Its degree is supposed
to be one, but x0 = x1 = x2 = x3 = · · · = xd for any d ∈ N. As
a result,{

d ∈ N
∣∣ {x0, x1, . . . , xd

}
is linearly-dependent

}
=

{d ∈ N | {x} is linearly-dependent} .

The set {x} is always linearly-independent (when x 6= 0), so the
set of natural numbers above is actually empty; no choice of d ∈ N
will make {x} linearly-dependent. And since we can’t take the
minimum of an empty set, the given definition of deg (x) is invalid.

Why are we going to all this trouble? Recall from Warning 2 that an algebra
(with vector addition and algebra multiplication) might not form a ring if the
algebra multiplication isn’t associative. However, in a Euclidean Jordan algebra,
the subalgebra alg ({x}) is always associative because the big algebra is power-
associative. Thus alg ({x}) does form a ring, and we an use ring-theoretic tools
to chip away at it. Specifically, all of the polynomial tools that we developed
for and used in classical linear algebra.

Proposition 33. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, if x ∈ V , and
if we define

Ix := {p ∈ R [Λ] | p�V (x) = 0} ,

where p�V : V → V is as in Definition 30, then Ix is a ring ideal in R [Λ].

Proof. Corollary 6 shows that p 7→ p�V is an isomorphism, so ring ideals in one
ring are ring ideals the other.

The fact that Ix is a ring ideal is fairly easy to see. The zero polynomial/func-
tion is clearly zero on x. And if we evaluate [p+ q]�V (x) as p�V (x) + q�V (x),
then Ix is obviously closed under addition. Finally, if we multiply p ∈ Ix by any
q ∈ R [Λ], then [pq]�V (x) = q�V (x) ◦ p�V (x) = q�V (x) ◦ 0 = 0, so Ix is a ring
ideal.
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We won’t need this fact, but alg ({x}) and R [Λ] /Ix are isomorphic as rings
(Faraut and Korányi, II.2). The ring R [Λ] is a priori much larger than alg ({x}),
since the former contains all of the powers Λn for n ∈ N, while alg ({x}) contains
only a finite number of powers of x. However, modding out by Ix addresses that.
We can easily take f ∈ alg ({x}) to [f ] ∈ R [Λ] /Ix. To get back, let g ∈ [f ]
and note that g (x) = f (x) by the definition of Ix and the factor ring. Suppose
deg (x) = d. In the expression g (x) = f (x) =

∑∞
i=0 αix

i, we now simply rewrite
every xd, xd+1, . . . power in terms of the lower ones x0, x1, . . . , xd−1. This gets
us back to an (unique) element of alg ({x}). These operations should be inverse
ring homomorphisms, or isomorphisms. The idea is similar to how we proved
Proposition 12.
Corollary 12. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V , then
the ring ideal

Ix := {p ∈ R [Λ] | p�V (x) = 0}
where p�V : V → V is as in Definition 30 is generated by a single, unique,
monic polynomial that divides every other element of Ix.

Proof. Theorem 8 says that Ix is generated by a single polynomial µ. Defini-
tion 22 pretty much says that µ divides everything else.

Typically we would have ideal ({µ}) = ideal ({αµ}) for any nonzero scalar
α ∈ R, making it non-unique. However, scaling to make µ monic makes it
unique in this case. For if µ1 and µ2 are both monic and generate Ix, then they
have the same degree because they divide each other (see Example 14). We can
thus obtain a polynomial of lesser degree that is also zero on x, namely µ1−µ2
(see Example 13). That’s a contradiction unless µ1 − µ2 = 0, or µ1 = µ2.

Definition 60. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V , then
the minimal polynomial of x is the unique monic generator of the ring ideal Ix
in Corollary 12, and is written µx.

The name minimal polynomial derives from the fact that the “divides” or-
dering of Example 40 forms a partial order on the set of real monic nonzero
polynomials, and that with respect to that ordering, the chosen polynomial is
minimal in the sense of Definition 50.
Example 49. In the trivial Euclidean Jordan algebra of Example 45, the ele-
ment 0 ∈ V acts as the unit element. Thus the polynomial 1R[Λ] is isomorphic to
the map ξ 7→ 1V by Corollary 6. And since 1V = 0 in this case, the polynomial
1R[Λ] is clearly the monic polynomial of minimal degree that evaluates to zero
on 0 ∈ V . Therefore µ0 = 1R[Λ] is the minimal polynomial of the sole element
of the trivial Euclidean Jordan algebra.

In fact, we already have a way to compute the minimal polynomial of a given
element x in a Euclidean Jordan algebra. Let d = deg (x). Then by Corollary 5,
the set

{
x0, x1, . . . , xd−1} is a basis for alg ({x}). And since xd ∈ alg ({x}), we

can write xd as a linear combination,

xd = α0x
0 + α1x

1 + · · ·+ α(d−1)x
d−1.
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Rearranging, we obtain,

xd − α0x
0 + α1x

1 + · · ·+ α(d−1)x
d−1 = 0. (9.1)

Proposition 34. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V
with d := deg (x), then the minimal polynomial of x is

µx = Λd − a0Λ0 − a1Λ1 − · · · − a(d−1)Λd−1 ∈ R [Λ] ,

where the coefficients a0, a1, . . . , ad−1 are the coordinates of xd with respect to
the basis

{
x0, x1, . . . , xd−1} in alg ({x}).

Proof. We’ll show that µx is a monic minimal element of the ring ideal Ix defined
in Corollary 12. The claim then follows from its uniqueness.

Clearly, µx is monic, and Equation (9.1) shows that µx ∈ Ix. To see that
it is minimal, suppose that some other monic polynomial p ∈ Ix divides it, so
that µx = pq for some q. A priori, the degree of p is less than or equal to the
degree of µx (see Example 14), which gives us two cases.

Case 1 : the degree of p is strictly less than that of µx.

Since p ∈ Ix, we should have p�V (x) = 0. However, that would be a
contradiction: the set of powers

{
x0, x1, . . . , xd−1} appearing in p�V (x) =

0 is linearly-independent by Corollary 5, but p�V (x) = 0 expresses 0 ∈ V
as a nontrivial linear combination of its elements.

Case 2 : the degree of p is the same as µx.

In this case, µx − p has degree at most d − 1, because their Λd terms
cancel (see Example 13). But then notice that the difference µx−p belongs
to the set Ix, because Ix is an ideal. This would contradict the fact that p
is a minimal element of that ideal. We can thus evaluate µx − p�V (x) = 0
to reach the same contradiction that we did in the first case; evaluating
the polynomial writes 0 ∈ V as a nontrivial linear combination of linearly-
independent vectors.

Since both cases lead to a contradiction, p cannot exist, and µx is minimal.

Corollary 13. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V , then
deg (x) = deg (µx).

Example 50. The minimal polynomial of the unit element 1V in a nontrivial
algebra is µ1V

= Λ − 1R[Λ] ∈ R [Λ], since µ1V
�V (1V ) = 1V − 1V = 0 and no

monic polynomial of smaller degree satisfies the same property (there’s only one
monic degree-zero polynomial).

Exercise 20 (minimal polynomial of zero). Suppose that (V, ◦ , 〈·, ·〉) is
any Euclidean Jordan algebra of dimension n with n ≥ 1. Find the minimal
polynomial of 0 ∈ V .
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Example 51. Suppose x = (1, 0, 2)T in the Hadamard EJA. In this algebra, the
unit element is x0 = (1, 1, 1)T and x2 = (1, 0, 4)T . Using basic linear algebra, it
is not hard to see that

{
x0, x1, x2} is linearly-independent. But the dimension

of R3 is three, so it’s clear that x3 = (1, 0, 8)T must be a linear combination of
the lower powers. Indeed, x3 = 3x2 − 2x, which means that

µx = Λ3 − 3Λ2 + 2Λ ∈ R [Λ]

is the minimal polynomial of x by Proposition 34.

Exercise 21 (spin algebra minimal polynomial). Find the minimal
polynomial of x = (1, 2, 3)T in the Jordan Spin EJA on R3.

Proposition 35. Baes, Proposition
2.3.16

Suppose that (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra. If
x ∈ V with d := deg (x), and if L̃x denotes the restriction of Lx to alg ({x}),
then the minimal polynomial of x is the minimal polynomial of the matrix of L̃x
with respect to any basis.

Proof. We know that alg ({x}) = span
({
x0, x1, . . . , x(d−1)}) is a d-dimensional

vector space from the definition of deg (x). Let A := alg ({x}) for notational
convenience. Now x ∈ A of course, so L̃x is the left-multiplication-by-x operator
on A. The range of L̃x is also contained in A, as is easily seen by applying it
to the powers of x that form a basis for A. Thus we are justified in writing
L̃x ∈ B (A).

Since L̃x is a linear operator on a d-dimensional space, we know from the
Cayley-Hamilton theorem that the minimal polynomial of L̃x can have degree
at most d. Thus we can suppose that

p =
d∑
i=0

αiΛi ∈ R [Λ]

is the minimal polynomial of L̃x with two associated functions

p�B(A) : B (A)→ B (A) ,
p�V : V → V.

Then since p�B(A)

(
L̃x

)
= 0 from the definition of a minimal polynomial, we

can write (
p�B(A)

(
L̃x

))
(1A) = 0,

But now we notice that(
p�B(A)

(
L̃x

))
(1A) =

d∑
i=0

αi
(
xi ◦ 1A

)
=

d∑
i=0

αix
i = p�V (x) ,
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and by combining the two equations above, we see that p�B(A) (x) = 0. Thus,
from the Definition 60 of a minimal polynomial in a Euclidean Jordan algebra,
we know that µx divides p. However, µx is of degree d by Proposition 34. And
deg (p) ≤ d a priori, so we conclude that deg (µx) = deg (p) = d. Finally, since
both are monic by definition, we have µx = p.

We haven’t involved a matrix up to this point, but we can choose any basis
for A, after which p is by definition the minimal polynomial of the matrix of L̃x
with respect to that basis.

Example 52. Suppose x = (1, 0, 2)T in the Hadamard EJA. Since we saw in
Example 51 that alg ({x}) = span

(
x0, x1, x2) = R3, we know that the restric-

tion of Lx to alg ({x}) is simply Lx itself. If b = {e1, e2, e3} is the standard
basis for R3, then we can compute the matrix b (Lx) of L with respect to it by
computing

b (Lx (e1)) = b

1
0
2

 ◦
1

0
0

 = b

1
0
0

 =

1
0
0

 ,
b (Lx (e2)) = b

1
0
2

 ◦
0

1
0

 = b

0
0
0

 =

0
0
0

 ,
b (Lx (e3)) = b

1
0
2

 ◦
0

0
1

 = b

0
0
2

 =

0
0
2

 .
These are the three columns of b (Lx), so

b (Lx) =

1 0 0
0 0 0
0 0 2

 .
Now Proposition 35 tells us that the minimal polynomial of this matrix is the
minimal polynomial of x ∈ V , so we can ask SageMath to compute it for us.

sage: A = matrix(QQ, [ [ 1, 0, 0 ],
....: [ 0, 0, 0 ],
....: [ 0, 0, 2 ]])
sage: A.minimal_polynomial(’t’)
tˆ3 - 3*tˆ2 + 2*t

As expected, this agrees with the minimal polynomial we found in Exam-
ple 51 up to a renaming of the variable (which doesn’t matter if you recall
Section 3.1).
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Example 53. Suppose you want to apply Proposition 35 to compute the min-
imal polynomial of some element x in a Euclidean Jordan algebra. When
alg ({x}) is equal to the entire algebra, we don’t need to do much because the
restriction of Lx to alg ({x}) is just Lx itself. But what if alg ({x}) is strictly
smaller than the ambient algebra?

Fortunately, what you need to restrict a linear operator to some subspace is
a basis for that space, and we already know a basis for alg ({x}) by Corollary 5.
For example, consider the Jordan Spin EJA on R4. Let x = (1, 2, 0,−1)T ∈ R4,
and we’ll find the minimal polynomial of x using Proposition 35.

First, we need to find a basis for alg ({x}). To do that, we take successive
powers of x, until one of them can be written as a linear combination of the
earlier powers. If we start computing, we find that

x0 =


1
0
0
0

 , x1 =


1
2
0
−1

 , x2 =


6
4
0
−2

 .
The set

{
x0, x1} is linearly-independent by inspection, and it turns out that x2

can be written as a linear combination of those two, namely x2 = 4x0 + 2x1.
Thus,

{
x0, x1} forms a basis for alg ({x}). Now, it’s not obvious, but on R4,

the matrix of Lx with respect to the standard basis e is

e (Lx) =


1 2 0 −1
2 1 0 0
0 0 1 0
−1 0 0 1

 .
You can simply check this on an arbitrary y = (y1, y2, y3, y4)T . To restrict
this operator to alg ({x}), we recall that all it takes to uniquely define a linear
operator on some space is to define its action on a basis for that space. Thus
to define an operator L̃x on alg ({x}), we will specify its action on the basis
b :=

{
x0, x1}. And since all we’re doing is restricring Lx, we already know how

L̃x should act on those two vectors:

L̃x
(
x0) = x ◦ x0 = x = 0 · x0 + 1 · x1,

L̃x
(
x1) = x ◦ x = x2 = 4 · x0 + 2 · x1.

Here we have taken the liberty of expressing x2 in terms of the basis b. Now
we already know the matrix representation of L̃x with respect to b,

b
(
L̃x

)
=
[
b
(
L̃x
(
x0)) b

(
L̃x
(
x1))] =

[[
0
1

] [
4
2

]]
∼=
[
0 4
1 2

]
.

We can now use SageMath to find the minimal polynomial of this matrix, as well
as the minimal polynomial of e (Lx) so that we may contrast the two answers.
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sage: L_x = matrix(QQ, [[ 1, 2, 0, -1],
....: [ 2, 1, 0, 0],
....: [ 0, 0, 0, 0],
....: [-1, 0, 0, 1]])
sage: L_x_tilde = matrix(QQ, [[ 0, 4 ],
....: [ 1, 2 ]])
sage: L_x.minimal_polynomial()
xˆ4 - 3*xˆ3 - 2*xˆ2 + 4*x
sage: L_x_tilde.minimal_polynomial()
xˆ2 - 2*x - 4

The fact that we’re using a different basis in the subalgebra than in the
superalgebra is immaterial here. The minimal polynomial is invariant under
changes of basis. The attentive reader will notice that our invocation of Propo-
sition 35 here was overkill, since in the process of restricting Lx we had to
compute x2 = 4 · x0 + 2 · x1 from which the minimal polynomial can be directly
read off. Nevertheless, it’s nice to have a backup plan.

Exercise 22 (Hadamard EJA minimal polynomial). Suppose that x :=
(1, 0,−1, 0)T in the Hadamard EJA. First, find a basis for alg ({x}). Then use
your basis to find the matrix (with respect to that basis) of the linear operator

L̃x : alg ({x})→ alg ({x})
L̃x = y 7→ x ◦ y.

Finally, find the EJA minimal polynomial of x from the matrix minimal poly-
nomial of the operator L̃x.

Example 54. Let (V, ◦ , 〈·, ·〉) be the Real Symmetric EJA. In this algebra, the
“square” of a matrix is the same as its matrix-multiplication square:

X ◦X := XX +XX

2 = XX.

Moreover, the unit element of this algebra is the identity matrix I. As a result,
the symbols X0, X1, and X2 mean the same thing no matter which algebra
multiplication (matrix or Jordan) we choose. The same is true for higher powers,
thanks to power-associativity:

X ◦ (X ◦X) = X ◦ (XX) = X (XX) + (XX)X
2 = XXX,

and so on. Let p ∈ R [Λ] be any polynomial, and define the two polynomial
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functions associated to p,

p�Sn : Sn → Sn

p�V : V → V.

Recall Definitions 40 and 60. Since evaluating p�Sn and p�V on a symmetric
matrix X results in two identical expressions, the minimal polynomial of X in
one algebra must be its minimal polynomial in the other. In other words, the
minimal polynomial of X ∈ V is simply its minimal polynomial when considered
as a matrix in Sn.

For another approach, one could compare Propositions 23 and 34. The
coordinates—and thus the polynomials—will be the same in both cases because
the two subalgebras generated by X are isomorphic.

Exercise 23 (real symmetric minimal polynomial). Let (Sn, ◦ , 〈·, ·〉) be
the Real Symmetric EJA, and let

X :=

 3 −1 0
−1 3 0

0 0 3


be an element of the algebra. Find the eigenvalues of X, and use them to find
its EJA minimal polynomial.

Finally, we connect the minimal polynomual of an element to its decompo-
sition from the unique EJA spectral theorem.

Proposition 36. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, if x ∈ V , and
if x =

∑k
i=1 λick for a complete system of nonzero orthogonal idempotents

{c1, c2, . . . , ck} in V and distinct real numbers λ1, λ2, . . . , λk ∈ R, then

(Λ− λ1) (Λ− λ2) · · · (Λ− λk) ∈ R [Λ]

is the minimal polynomial of x.

Proof. If p ∈ R [Λ] is any polynomial, then Lemma 4 says that

p�V

(
k∑
i=1

λici

)
=

k∑
i=1

p�R (λi) ci.

However, the set {c1, c2, . . . , ck} is pairwise-orthogonal and its elements are
nonzero, so in particular it is linearly-independent. Thus,

k∑
i=1

p�R (λi) ci = 0 ⇐⇒ ∀i ∈ 1, 2, . . . , k : p�R (λi) = 0.

Combining these two equations, we see that

p�V (x) = 0 ⇐⇒ ∀i ∈ 1, 2, . . . , k : p�R (λi) = 0.
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But, the minimal nonzero monic polynomial that evaluates to zero on k distinct
real numbers λ1 through λk is clearly the product

(Λ− λ1) (Λ− λ2) · · · (Λ− λk) ∈ R [Λ] .

Thus, this must be the minimal polynomial of x in V as well.

The minimal polynomial is important in classical linear algebra because the
roots of its corresponding real function are the eigenvalues of its associated
matrix. In a Euclidean Jordan algebra, we will more or less use this as our
definition of the eigenvalues of an element; however, we need to go a bit further:
we don’t want just the eigenvalues—we also want to know their multiplicities!
This motivates us to go further, in search of an EJA characteristic polynomial.

9.2 Regular elements
Recall that a real symmetric n-by-n matrix A ∈ Sn can have between zero and n
distinct eigenvalues, each of which is a multiplicity-one root of the real function
that corresponds to the matrix’s minimal polynomial. This follows from the
Cayley-Hamilton Theorem 20, which says that the minimal polynomial defined
in Definition 40 must divide the characteristic polynomial of Proposition 22.
Let σ (A) denote the set of all eigenvalues of a matrix A, called the spectrum of
A. Then the minimal polynomial µA of A is

µA =

 ∏
λ∈σ(A)

(Λ− λ)

 ∈ R [Λ] ,

and it therefore has degree card (σ (A)). But, each real symmetric matrix also
has an associated characteristic polynomial, which is always of degree n—the
maximum degree for any minimal polynomial of an n-by-n matrix. If m (λ)
denotes the dimension of the eigenspace corresponding to the eigenvalue λ ∈
σ (A), then the characteristic polynomial γA is

γA =

 ∏
λ∈σ(A)

(Λ− λ)m(λ)

 ∈ R [Λ] .

The extra powers ensure that the characteristic polynomial always has degree n.
And in the matrix setting, we used Corollary 8 and the characteristic polynomial
to read off the sum (trace), product (determinant), and multiplicities of the
eigenvalues. These are all things that we’ll want to do in a Euclidean Jordan
algebra as well.

So where to start? In the n-by-n matrix setting, the maximum degree of
any minimal polynomial is n, which is far smaller than the n2 that we expect
a priori. There must be some maximum degree in a Euclidean Jordan algebra,
too; although we can say little about it at the moment.
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Definition 61. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, then its rank is

rank (V ) := max ({deg (x) | x ∈ V }) .

Even though the set V is usually infinite, the set of degrees is bounded between
1 and dim (V ). Thus the maximum is taken over a finite set and is well-defined.
And since each deg (x) ≤ dim (V ), we naturally have rank (V ) ≤ dim (V ).

Example 55. The rank of the Real Symmetric EJA in Sn is n. This is fairly
easy to see, because by Corollary 13, Example 54 and the Cayley-Hamilton
Theorem 20, we know that the maximum degree of any element X ∈ Sn is n.
Moreover the degree n is achieved by any X that has n distinct eigenvalues.

Example 56. The rank of the Hadamard EJA in n dimensions is n. The largest
possible dimension that deg (x) := dim (alg ({x})) could have in Definition 61
is clearly n. So if we can find an x with dim (alg ({x})) = n, then we will have
shown that the rank of the algebra is n.

Let x = (1, 2, . . . , n)T , and consider the powers x0, x1, . . . , xn−1. If we create
a matrix X whose columns are these powers of x, then

X =
[
x0 x1 x2 · · · xn−1] =


1 1 12 · · · 1n−1

1 2 22 · · · 2n−1

...
...

... . . . ...
1 n n2 · · · nn−1

 .
This is a famous matrix called the Vandermonde matrix, named after Alexandre-
Théophile Vandermonde. It is known that the determinant of this matrix is
non-zero if the numbers 1, 2, . . . , n are all distinct—which of course they are.
Thus the columns of the matrix form a linearly-independent set, meaning that

dim
(
span

({
x0, x1, . . . , xn−1})) = n,

and showing that alg ({x}) ⊆ Rn must actually be equal to Rn. Since the degree
of this particular x is as large as it can be (that is, n), the rank of of algebra
must also be n.

Exercise 24 (spin algebra rank). Let (V = Rn, ◦ , 〈·, ·〉) be a Jordan Spin
EJA for some n ≥ 2. Find the minimal polynomial of an arbitrary element
x = (x1, x̄)T ∈ V , and thereby show that the degree of any element in the
Jordan spin algebra is less than or equal to two. Having done that, find an
element having degree equal to two. Combine these facts to find the rank of
any spin algebra with n ≥ 2.

Definition 62. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V has
deg (x) = rank (V ), then x is a regular element of the algebra.

The main goal in this section is to prove that the regular elements are dense
in a Euclidean Jordan algebra. This will let us make continuity arguments for
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the entire algebra based on knowledge of the regular elements. But to prove
this innocent-looking claim, we unfortunately need some heavy machinery from
algebraic geometry. And before can can apply that, we need to know that
everything is made up of polynomials. Hearken back to Convention 10 for the
matrix-of-polynomials notation we’re about to use.

Lemma 5. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of dimension n with
basis b, then there exists a matrix Mb ∈ [Pn (R)]n×n such that

∀x ∈ V : Mb�Rn (b (x)) = b (Lx) .

Proof. Recall from Proposition 25 that the map x 7→ Lx is linear, and let
x = x1b1 + x2b2 + · · ·+ xnbn be the representation of an arbitrary x ∈ V with
respect to the basis b. Then using linearity, we have

Lx = L(x1b1+x2b2+···+xnbn) = x1Lb1 + x2Lb2 + · · ·+ xnLbn

and thus

b (Lx)ij = b (x1Lb1 + x2Lb2 + · · ·+ xnLbn
)ij

= x1b (Lb1)ij + x2b (Lb2)ij + · · ·+ xnb (Lbn)ij .

Each b (Lbk
)ij above is a constant, because the left-multiplication-by-bk matrix

is fixed. Thus we see that not only is the i, jth entry of b (Lx) the result of
evaluating a polynomial at (x1, x2, . . . , xn)T , but that said polynomial is linear.
It follows that if we define

M ij := b (Lb1)ij X1 + b (Lb2)ij X2 + · · ·+ b (Lbn
)ij Xn,

then the matrix
Mb :=

[
M ij

]
does the job: evaluating (Mb)ij = M ij at (x1, x2, . . . , xn)T gives us the i, jth
entry of b (Lx).

It is important that one polynomial matrix works for every element x of
the algebra in the preceding lemma. As a result, we need only compute its
polynomial entries once, delaying their evaluation until we are given a specific
x for which we want to know b (Lx).

Example 57. Take the Hadamard EJA on R4 and the standard basis b. If
b (x) = (x1, x2, x3, x4)T , then the left-multiplication-by-x operation is repre-
sented by the matrix

b (Lx) =


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 ,
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since if b (y) = (y1, y2, y3, y4)T , then
x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4



y1
y2
y3
y4

 =


x1y1
x2y2
x3y3
x4y4

 = x ◦ y.

In this case, the 42 = 16 polynomials

M ij :=
{
Xi if i = j,

0 otherwise
∈ R [X1, X2, X3, X4]

give us the entries of b (Lx) when we evaluate the corresponding functions at
the coordinates b (x)1 = x1, b (x)2 = x2, et cetera, of x. For example, if
b (x) = (1, 2, 3, 4)T , then

M22�R4 : R4 → R

M22�R4 = (x1, x2, x3, x4)T 7→ x2

M22�R4 (1, 2, 3, 4) = M22�R4 (b (x)1 ,b (x)2 ,b (x)3 ,b (x)4) = 2,

which tells us the 2, 2 entry of

b (Lx) =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 .
Example 58. In the Jordan Spin EJA on R3, if we let b (x) = (x1, x2, x3)T ,
then with respect to the standard basis b, we have

b (Lx) =

x1 x2 x3
x2 x1 0
x3 0 x1

 ,
since if b (y) = (y1, y2, y3)T , thenx1 x2 x3

x2 x1 0
x3 0 x1

y1
y2
y3

 =

x1y1 + x2y2 + x3y3
x2y1 + x1y2
x3y1 + x1y3

 =

 〈x, y〉

y1

[
x2
x3

]
+ x1

[
y2
y3

]
which is nothing other than b (x ◦ y). And clearly, the entries of b (Lx) are
given by (linear) polynomials in the b-coordinates of x.

Exercise 25 (general left multiplication in the Real Symmetric EJA).
In the Real Symmetric EJA, first find a basis b for S2. Then let b (x) =
(x1, x2, . . .)T be the coordinates of an arbitrary x ∈ S2 with respect to that
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basis, and find the matrix b (Lx) of Lx with respect to b. Your matrix b (Lx)
should be filled with polynomial expressions in x1, x2, and so on. Conclude
that there exist

(
dim

(
S2))2 polynomials M ij that, when evaluated at the b-

coordinates of x, give you the matrix b (Lx). To check your answer, let

x :=
[
1 2
2 3

]
and y :=

[
1 −1
−1 1

]
.

Your matrix b (Lx) should satisfy

b (Lx) b (y) = b (Lx (y)) = b (x ◦ y) .

Corollary 14. In the context of Lemma 5, define p0 to be the embedding of
b (1V ) into [Pn (R)]n×1. Then for all k ∈ N, the polynomial column-matrices
pk := (Mb)k p0 satisfy,

∀x ∈ V : pk�Rn (b (x)) = b
(
xk
)
.

Proof. The statement holds by definition for p0. And for k ≥ 1, we have by
Proposition 10 that,[

(Mb)k p0

]
�Rn (b (x)) = [Mb�Rn (b (x))]k (b (1V ))

= b (Lx)k b (1V )
= b

(
xk
)
.

Example 59. Sticking with Jordan Spin EJA on R3, let b (x) = (x1, x2, x3)T .
Then

x2 =

x1
x2
x3

 ◦
x1
x2
x3

 =

x2
1 + x2

2 + x3
3

2x1x2
2x1x3


and

x3 =

x1
x2
x3

 ◦
x2

1 + x2
2 + x2

3
2x1x2
2x1x3

 =

x3
1 + 3x1x

2
3 + 3x1x

2
2

3x2
1x2 + x3

2 + x2x
2
3

3x2
1x3 + x2

2x3 + x3
3


The entries of x3 are obviously polynomials in the b-coordinates x1, x2, x3

of x; and moreover, this same expression can be obtained by exponentiating the
matrix of polynomials that give us the entries of b (Lx).

Suppose Mb is the matrix from Lemma 5 whose entries M ij ∈ R [X1, X2, X3]
give us the (i, j)th entry of b (Lx). Then from our previous examples,

Mb =

X1 X2 X3
X2 X1 0
X3 0 X1

 , 1V =

1
0
0

 ,
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and

(Mb)3 (1V ) = (Mb)2

X1
X2
X3

 =

X2
1 +X2

2 +X2
3 2X1X2 2X1X3

2X1X2 X2
1 +X2

2 X2X3
2X1X3 X2X3 X2

1 +X2
3

X1
X2
X3


=

X3
1 + 3X1X

2
3 + 3X1X

2
2

3X2
1X2 +X3

2 +X2X
2
3

3X2
1X3 +X2

2X3 +X3
3

 .
Evaluating this at X1 = 1, X2 = 2, X3 = 3 should tell us that x3 is when
x = (1, 2, 3)T :

x3 =

 1 + 3 · 9 + 3 · 4
3 · 2 + 8 + 2 · 9
3 · 3 + 4 · 3 + 27

 =

40
32
48

 .
We can use matrices with polynomial entries in SageMath to let us easily com-
pute all Jordan-algebraic powers of any element:

sage: R = PolynomialRing(QQ,["X1","X2","X3"])
sage: X1,X2,X3 = R.gens()
sage: L_x = matrix(R, [ [X1,X2,X3],
....: [X2,X1, 0],
....: [X3, 0,X1] ])
sage: idV = vector(R, [1,0,0])
sage: cube_of_x = (L_xˆ3)*idV
sage: cube_of_x.column()
[X1ˆ3 + 3*X1*X2ˆ2 + 3*X1*X3ˆ2]
[ 3*X1ˆ2*X2 + X2ˆ3 + X2*X3ˆ2]
[ 3*X1ˆ2*X3 + X2ˆ2*X3 + X3ˆ3]
sage: cube_of_x(X1=1, X2=2, X3=3)
(40, 32, 48)

Definition 63. Sottile [15],
Definition 1.1.1

If S ⊆ Pn (F) is a collection of polynomials and if F is a field,
then

V (S) := {z ∈ Fn | ∀f ∈ S : f�Fn (z) = 0}

is an affine variety.

An affine variety is simply the set of common solutions to a system of poly-
nomial equations, much like a vector subspace is the set of common solutions to
a system of linear equations. In fact, vector subspaces are affine varieties when
the polynomial equations in the system all happen to be linear.

Definition 64. Sottile [15],
Theorem 1.3.1 and
Definition 1.3.2

If F is a field, then the Zariski topology on Fn is the topology
whose closed sets are are the affine varieties in Fn.
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Exercise 26 (Zariski topology). A topology on Rn is a collection of subsets
T ⊆ P (Rn) called “closed sets” that satisfy the following conditions:

1. The empty set is a closed set: ∅ ∈ T .

2. The entire space is a closed set: Rn ∈ T .

3. If A ∈ T and B ∈ T are both closed sets, then (A ∪B) ∈ T is a closed
set as well.

4. If {Ai | i ∈ I} ⊆ T is any collection of closed sets, then their intersection(⋂
i∈IAi

)
∈ T is a closed set as well.

Each affine variety in Rn is a subset of Rn. The goal of this exercise is to verify
that the set of all affine varieties on Rn,

T := {V (S) | S ⊆ Pn (R)} , (9.2)

forms a topology on Rn. You should do this in four steps:

1. Find an S ⊆ Pn (R) such that V (S) = ∅. This shows that ∅ belongs to
the set T defined by Equation (9.2).

2. Find an S ⊆ Pn (R) such that V (S) = Rn. This shows that Rn belongs
to the set T defined by Equation (9.2).

3. Suppose that S, T ⊆ Pn (R) and show that

V (S) ∪ V (T ) = V (Q) ,

where

Q := {pq | p ∈ S, q ∈ T} ,
V (Q) = {z ∈ Rn | [pq]�Rn (z) = p�Rn (z) q�Rn (z) = 0} .

Since each p and q here belongs to Pn (R), their product does too. Thus
Q ⊆ Pn (R), showing that (V (S) ∪ V (T )) = V (Q) ∈ T .

4. Suppose {Si | i ∈ I} is some collection of sets Si ⊆ Pn (R), and show that

⋂
i∈I
V (Si) = V

(⋃
i∈I

Si

)
.

Then since each Si is a subset of Pn (R), their union is a subset of Pn (R)
as well, showing that

⋂
i∈IV (Si) ∈ T .

Theorem 29. Sottile [15],
Theorem 1.3.5

A nonempty open subset of Rn in the Zariski topology is open
and dense in the Euclidean topology on Rn.
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Lemma 6. Suppose (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of dimension n
and rank r, and let R := Pn (R). Then there exists a regular element ξ ∈ V , a
basis bξ of V , and an n-by-n matrix Aξ ∈ Rn×n such that det (Aξ) ∈ R and

∀x ∈ V : det (Aξ)�Rn (bξ (x)) 6= 0 ⇐⇒ x is regular .

Proof. Definition 61 of the rank of an EJA says that the rank is the maximum
degree achieved by any element, so we know that some element has its degree
equal to the rank of the algebra. Let ξ ∈ V be that element; then ξ is regular by
definition, and

{
ξ0, ξ1, . . . , ξr−1} is linearly-independent because it forms a basis

of alg ({ξ}). Now let {er+1, . . . , en} be a basis for the orthogonal complement
of alg ({ξ}) in V . It follows that bξ :=

{
ξ0, ξ1, . . . , ξr−1, er+1, . . . , en

}
is a basis

for V , and so we’ve found ξ and bξ already.
Corollary 14 says that there exist polynomials matrices pj ∈ Rn×1 such that

∀x ∈ V : pj�Rn (bξ (x)) = bξ
(
xj
)
.

Define a matrix Aξ ∈ Rn×n whose jth column is pj for j < r, and whose remain-
ing columns are the standard basis vectors bξ (er+1) , . . . ,bξ (en), interpreted as
having entries in R. For example, bξ (en) is the vector in Rn×1 with a 1R ∈ R
in the nth position and 0R elsewhere. These additional columns serve mainly
to ensure that Aξ is square so that its determinant will exist.

Now each entry of Aξ is a polynomial in R, and so Aξ itself belongs to
the module whose elements are n-by-n matrices with entries in R and whose
“scalars” are again polynomials in R. This module was discussed in Example 15.
Since R is a commutative ring and since Aξ ∈ Rn×n, Definition 35 shows that
det (Aξ) is a well-defined element of R itself. And as a result, det (Aξ)�Rn is
a function from Rn to R. Since p 7→ p�Rn is a ring homomorphism (Proposi-
tion 10), the explicit formula in Definition 35 further implies that

det (Aξ)�Rn = z 7→ det ([Aij�Rn (z)]) .

Thus det (Aξ)�Rn is the same function that we’d get from evaluating each Aij�Rn

on the argument, and then taking the determinant of the resulting real n-by-n
matrix.

At this point, we note that x is regular if and only if the set
{
x0, x1, . . . , xr−1}

is linearly-independent if and only if the set
{
bξ
(
x0) ,bξ (x1) , . . . ,bξ (xr−1)}

is linearly-independent. Since those are the first r columns of [Aij�Rn (bξ (x))],
and a matrix’s determinant is nonzero if and only if its columns are linearly-
independent, it follows that det (Aξ)�Rn (bξ (x)) 6= 0 if and only if x is regular.

Theorem 30. Baes, Proposition
2.7.24; Faraut
and Korányi,
Proposition II.2.1

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of dimension n,
then the set of its regular elements is open and dense in V .

Proof. We will show that the set of regular elements of V contains a nonempty,
open subset of V in the Zariski topology. From Theorem 29 it then follows that
the set of regular elements is open and dense in the Euclidean topology, which
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is the “usual” topology induced by a norm on a finite-dimensional vector space.
All norms on a finite-dimensional vector space are equivalent (Proposition 1) in
the sense they all result in the same topology, so we don’t have to worry about
what inner product V carries.

Recall the regular element ξ ∈ V , the basis bξ, and the polynomial det (Aξ) ∈
Pn (R) from Lemma 6. Consider the Zariski-closed affine variety,

V ({det (Aξ)}) = {z ∈ Rn | det (Aξ)�Rn (z) = 0} .

The complement of this variety is nonempty, since the regular element ξ satisfies

det (Aξ)�Rn (bξ (ξ)) = 1 6= 0

by the construction of Aξ. Lemma 6 itself shows that

{bξ (x) | x is irregular} ⊆ V ({det (Aξ)}) ,

and if we now take complements on both sides, we obtain

(Rn \ V ({det (Aξ)})) ⊆ {b (x) | x is regular}

The set on the left is nonempty and Zariski-open, and therefore dense in Rn in
both topologies. The right-hand side, being its superset, is also dense in both
topologies. Now we apply the (continuous, since it’s linear) inverse b−1 (·) of
the basis representation to the set on the right to finally conclude that

b−1
ξ ({bξ (x) | x is regular}) = {x | x is regular}

is dense in the norm topology on V .

Remark 4. The previous result means that regular elements are in fact pretty
regular, as far as elements of the algebra are concerned. Conversely, irregular
elements are not. This likens linguistically to the fact that “singular” matrices
are rather more rare to come across than those that are not.

9.3 The characteristic polynomial
We’ll use the rank of a Euclidean Jordan algebra to try to formulate a definition
of a characteristic polynomial. We’ll start with the goal that, if x is a regular
element in V , then its minimal polynomial should be its characteristic polyno-
mial, because that’s how it works for matrices. Keeping that in mind, here’s an
outline of the next few steps:

1. Let x ∈ V be a regular element.

2. Assume that the characteristic polynomial of x is the minimal polynomial
µx of x, which we can compute.
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3. Show that µx can be obtained from some more-complicated polynomial
function Γ that takes the coordinates of x with respect to the basis b and
returns µx.

4. Prove that coefficients of Γ live in Pn (R).

5. Conclude that Γ�Rn̄ (b (x)) is both the characteristic and minimal poly-
nomial of every regular x ∈ V .

6. Define the characteristic polynomial γy of an arbitrary y ∈ V to be
Γ�Rn̄ (b (y)), essentially extending the definition for regular elements by
continuity to the non-regular elements.

In other words, we’re going to find a formula for the characteristic polynomial
that makes sense for regular elements, and then use it for every element. This
works for two reasons. First, regular elements all have the same rank. This
lets us construct a system of a known size, namely rank (V ), and solve it using
“standard” linear algebra to find coefficients for the polynomial Γ that work
for any regular element. Second, the regular elements are dense, as we saw in
Theorem 30. This allows us to extend the definition of Γ to irregular elements
using the continuity of polynomials.

Proposition 37. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of dimension n
with basis b and if n̄ := {1, 2, . . . , n}, then there exists a Ψ ∈ Pn (R) [Λ] such
that for all x ∈ V , the associated function Ψ�Rn̄ defined in Theorem 12 satisfies

Ψ�Rn̄ : Rn → R [Λ]
Ψ�Rn̄ = b (x) 7→ γLx .

Proof. Keeping in mind Section 3.3, Theorem 19 says that for a given x,

γLx
:= γb(Lx) = det (ΛI − b (Lx)) ∈ R [Λ] .

However, Lemma 5 says that the matrix b (Lx) is obtained as Mb�Rn (b (x))
using the polynomial matrix Mb ∈ [Pn (R)]n×n. Define A to be the embedding
of Mb into [Pn (R) [Λ]]n×n, and recall from Theorem 12 that the map M 7→
M�Rn̄ acts like a homomorphism. Then

Ψ := det (ΛI −A) ∈ Pn (R) [Λ]

satisfies

Ψ�Rn̄ (b (x)) = det ((ΛI)�Rn̄ (b (x))−A�Rn̄ (b (x)))
= det (ΛI − b (Lx)) ∈ R [Λ] ,

showing that Ψ is indeed what we want.
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Example 60. Recall Example 58, where we showed that, with respect to the
standard basis b,

b (Lx) =

x1 x2 x3
x2 x1 0
x3 0 x1

 for all b (x) ∈ R3.

The nine polynomials pij ∈ R [X1, X2, X3] associated with this matrix are

p11 = X1, p12 = X2, p13 = X3,

p21 = X2, p22 = X1, p23 = 0,
p31 = X3, p32 = 0, p33 = X1.

Thus,

Ψ = det (ΛI − [pij ]) = det

Λ−X1 −X2 −X3
−X2 Λ−X1 0
−X3 0 Λ−X1

 .

Expanding this according to the determinant formula gives us

Ψ = Λ3 − 3Λ2X1 + 3ΛX2
1 −X3

1 − ΛX2
2 +X1X

2
2 − ΛX2

3 +X1X
2
3 .

Suppose b (x) = (1, 2, 3)T . Then if we evaluate Ψ�R3 at the coordinates of x,
we obtain

Ψ�R3

(
(1, 2, 3)T

)
= Λ3 − 3Λ2 + 3Λ− 1− 4Λ + 4− 9Λ + 9

= Λ3 − 3Λ2 − 10Λ + 12.

On the other hand, the matrix of Lx with respect to b is,

b (Lx) =

1 2 3
2 1 0
3 0 1

 ,
and SageMath tells is that its characteristic polynomial is

sage: A = matrix(QQ, [ [1,2,3],
....: [2,1,0],
....: [3,0,1] ])
sage: A.characteristic_polynomial(’t’)
tˆ3 - 3*tˆ2 - 10*t + 12
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The next theorem is Faraut and Korányi’s version of the big characteristic
polynomial result. We state it only for contrast with our own. Faraut and
Korányi prove the existence of a “minimal polynomial of” function for regular
elements in the algebra, which they then extend (by continuity) to the irregular
elements, calling the result a characteristic polynomial. But there is an annoying
practical detail: the basis coordinates in their result are with respect to a regular
element, and we have no idea how to find a regular element!

Theorem 31. Faraut and
Korányi,
Proposition II.2.1

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r and dimen-
sion n, then there exists a regular element ξ ∈ V , a basis bξ, and polynomials a0
through ar−1 in Pn (R) such that the minimal polynomial of any regular element
x ∈ V is

Λr +
r−1∑
i=0

ai�Rn (bξ (x)) Λi ∈ R [Λ] .

That said, we’re going to do pretty much the same thing, but with an ar-
bitrary basis. The ability to bring our own basis will be incredibly useful,
because most of our examples have had nice basis elements with integer entries.
Our “characteristic polynomial of” function will also stem from polynomial in
(Pn (R)) [Λ] whose “coefficients” a0 through ar−1 live in Pn (R). The trick will
be finding those coefficients, and that’s what the next result does. While proving
it, we’ll deviate from our usual approach (Section 3.3) of omitting the embed-
ding of a polynomial into its fraction field. The bookkeeping is itself the hard
part of the proof.

Theorem 32. Let (V, ◦ , 〈·, ·〉) be a Euclidean Jordan algebra of dimension
n ≥ 1 and rank r with basis b. Define R := Pn (R) with its embedding ι into
F := Frac (R), and let p0 through pn ∈ Rn be as in Corollary 14. Then if s ∈ N
with s ≤ r, the system[

ι (p0) ι (p1) · · · ι (ps−1)
]
a = ι (ps) (9.3)

has a solution a ∈ Fn×1 if and only if s = r.

Proof. First we show that {ι (p0) , ι (p1) , . . . , ι (pr−1)} is linearly-independent
over F. Suppose that

r−1∑
k=0

(
ck
dk

)
ι (pk) = 0Fn×1 . (9.4)

If all of the ck are zero, then we are done, so suppose that ρ ∈ N is the largest
index such that cρ 6= 0R. If ρ = 0, we contradict ourselves with(

c0
d0

)
ι (p0) = 0Fn×1 ⇐⇒ c0p0 = 0Rn×1 ⇐⇒ c0 = 0R,

since p0�Rn (z) = b (1V ) 6= 0Rn for all z ∈ Rn. Thus we may suppose that ρ ≥ 1
to avoid empty sums and products in what follows. Cancelling the denominators
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in Equation (9.4) and rearranging, we arrive at

ρ−1∏
j=0

dj
1R

( cρ
1R

)
ι (pρ) +

ρ−1∑
k=0

 ρ∏
j=0
j 6=k

dj
1R

( ck1R

)
ι (pk) = 0Fn×1 .

Or, in terms of the fraction-field embedding,ρ−1∏
j=0

ι (dj)

 ι (cρ) ι (pρ) +
ρ−1∑
k=0

 ρ∏
j=0
j 6=k

ι (dj)

 ι (ck) ι (pk) = ι (0Rn×1) ,

which by injectivity reduces toρ−1∏
j=0

dj

 cρpρ +
ρ−1∑
k=0

 ρ∏
j=0
j 6=k

dj

 ckpk = 0Rn×1 . (9.5)

We have assumed that cρ 6= 0R, and the dj are all non-zero because they started
out as denominators in F. The set of regular elements in V is open and dense
(Theorem 30), as are the sets where the dj�Rn and cρ�Rn are nonzero—so we
can find a regular element x ∈ V such that

α :=

ρ−1∏
j=0

dj

�Rn (b (x)) cρ�Rn (b (x)) 6= 0R.

If we evaluate Equation (9.5) at b (x) and divide by this α 6= 0R, then we arrive
at an expression of the form

b (xρ) + α−1
ρ−1∑
k=0

βkb
(
xk
)

= 0Rn×1

for some collection of βk ∈ R. Inverting the basis-representation map now gives

xρ +
ρ−1∑
k=0

(
α−1βk

)
xk = 0V .

But this is the result of evaluating a monic univariate polynomial of degree ρ < r
at x. Since x is regular, it has degree r, and Corollary 13 and Definition 62 say
that the result cannot be zero for ρ < r. We conclude that indeed all of the ck
are zero, and our claim that {ι (p0) , ι (p1) , . . . , ι (pr−1)} is linearly-independent
follows. This shows that Equation (9.3) has no solution for s < r.

Now if, on the other hand, we have s = r, then Equation (9.3) has a solution.
To see this, extend the linearly-independent set {ι (p0) , ι (p1) , . . . , ι (pr−1)} to
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a basis for Fn by appending elements q̃1, q̃2, . . . , q̃n−r. Without loss of gener-
ality we assume that each entry of each q̃k has denominator one. This can be
accomplished without destroying the linear-independence of the set by scaling
each q̃k by the least common multiple of their denominators, and thus we may
presume that these new basis elements satisfy q̃k = ι (qk) for some qk ∈ Rn, and
that therefore there exists a nonsingular matrix Q ∈ Rn×n with

ι (Q) :=
[
ι (p0) ι (p1) · · · ι (pr−1) ι (q1) ι (q2) · · · ι (qn−r)

]
∈ Fn×n.

Every entry of ι (Q) has denominator 1R, and the determinant of ι (Q) is
nonzero because its columns are linearly-independent. As a result, we can apply
Cramer’s rule to find the unique solution ã = (a0, a1, . . . , an−1)T to the system
ι (Q) ã = ι (pr):

ai :=
det
(
ι (Q)i→ι(pr)

)
det (ι (Q)) ∈ F. (9.6)

It remains to be seen that ai = 0F when i ≥ r, so that no ι (qk) are present in
the solution and that therefore a := (a0, a1, . . . , ar−1)T solves Equation (9.3).
However, this follows relatively easily from the properties of the determinant.
First notice that by definition we have ai = 0F if and only if det

(
ι (Q)i→ι(pr)

)
=

0F. This determinant is a sum/product of elements of F, so we can apply ι−1

to conclude that ai = 0F if and only if det (Qi→pr
) = 0R. But det (Qi→pr

)
must be zero for i ≥ r, since the corresponding function from Rn → R is
zero on the b-coordinates of any regular element x, the power xr being a real
linear combination of the lower powers in that case. More explicitly, using
Proposition 10 and Definition 35,

det (Qi→pr )�Rn (b (x)) = det (Qi→pr�Rn (b (x)))

and the latter is zero on the dense subset (Theorem 30) of regular x ∈ V by the
linear-dependence of

{
x0, x1, . . . , xr

}
in that case. By continuity we conclude

that det (Qi→pr )�Rn and hence det (Qi→pr ) are zero when i ≥ r.

Note that the solutions we obtain in the previous result still belong to the
fraction field of Pn (R). Ultimately we’d like them to live in Pn (R) itself; for
that we’ll use an old Lemma of Gauss. The proof is omitted, because I don’t
know where to find it.

Lemma 7 (Gauss’s lemma). Baes, Lemma
2.3.26

Let Frac (R) denote the fraction field of a given
ring R. If R is a unique factorization domain, if p ∈ R [Λ] is monic, and if
q ∈ Frac (R) [Λ] divides p, then q ∈ R [Λ].

Finally we can state our characteristic polynomial theorem. Beware that
our coefficients ai differ in sign from those of (say) Faraut and Korányi. I prefer
to write the polynomial as a simple sum; other authors choose to play with the
coefficients so that the expressions for trace and determinant become simpler.
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Theorem 33. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r and dimen-
sion n with basis b, then there exist polynomials a0 through ar−1 in R := Pn (R)
such that the minimal polynomial of any regular x ∈ V is

µx = Λr +
r−1∑
i=0

ai�Rn (b (x)) Λi ∈ R [Λ] .

As a result, there exists a polynomial

Γ = Λr +
r−1∑
i=0

aiΛi ∈ R [Λ]

such that its associated function Γ�Rn̄ is the “minimal polynomial of” function
for (basis coordinates of) regular elements.

Proof. Theorem 32 gives us a solution ã = (ã0, ã1, . . . , ãr−1)T ∈ Frac (R)n to
Equation (9.3), so that

pr = ã0p0 + ã1p1 + · · ·+ ãr−1pr−1,

or equvalently:

pr −
r−1∑
i=0

ãipi = 0.

Suppose for the moment that these ãi belonged to R instead of Frac (R). Then
by letting ai := −ãi, we would have for all regular x ∈ V ,

pr�Rn (b (x)) +
r−1∑
i=0

ai�Rn (b (x)) pi�Rn (b (x)) = 0.

Considering the definition of pk from Corollary 14, this would be equivalent to,

b (xr) +
r−1∑
i=0

ai�Rn (b (x)) b
(
xi
)

= 0.

This equation is in Rn, but if we apply b−1 to both sides, we obtain

xr +
r−1∑
i=0

ai�Rn (b (x))xi = 0V

in the Euclidean Jordan algebra. Thus it would follow that Γ is the minimal
polynomial for any regular x ∈ V . With that in mind, our job is to prove that
these ai actually live in R, and not Frac (R). Or at least, that their denominator
is 1R in Frac (R). This will require a bit of a digression. You are encouraged to
read Chapter B before proceeding.

For the moment, we can still define Γ := Λr+
∑r−1
i=0 aiΛi using the coefficients

ai that we found, but under the assumption that Γ ∈ Frac (R) [Λ]. Recall the
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polynomial Ψ ∈ R [Λ] from Proposition 37 that generates the characteristic poly-
nomial of every Lx for x ∈ V via the relationship Ψ�Rn (b (x)) = γLx ∈ R [Λ].
We’d like to show that Γ divides Ψ, allowing us to apply Gauss’s lemma. Basi-
cally the plan is that if Γ doesn’t divide Ψ, then there is no q ∈ Frac (R) [Λ] such
that Ψ = qΓ, and we want to prove that by applying both sides (as functions)
to regular elements x. But doing that requires us to know how to treat rational
functions as actual functions. This is a very subtle business, and requires a
careful application of the tools developed in Chapter B.

First things first: let’s embed the coefficients of Ψ into Frac (R), so that
Ψ ∈ Frac (R) [Λ] and each of its coefficients has a denominator of one. We do
this only so that Ψ and Γ live in the same space.

Next, note that the set of regular elements of V is open and dense in V
by Theorem 30. The coefficients of Ψ all have representatives with a one in
the denominator, and 1�Rn is obviously non-zero on the set of regular elements.
Moreover each ai has a representative with a denominator that is nonzero; the
one given in in Equation (9.6) must be nonzero on the dense set of regular
elements to avoid contradicting their degree. Let D−1 denote the set of b-
coordinates of the regular elements in V . It follows that both Ψ and Γ have
associated functions Ψ�D−1 and Γ�D−1 by the discussion in Chapter B.

Now, suppose that Γ does not divide Ψ in Frac (R)�Λ. Then

∀q ∈ Frac (R) [Λ] : Ψ 6= qΓ.

Each q here has a finite number—call it J—of non-zero coefficients ej/fj and
Theorem 29 shows that each fj is nonzero on some open dense subset of Rn. Call
those sets Dj , and let Dq :=

⋂J
j=−1Dj . This set is again open and dense, and

now all each of Ψ�Dq
, q�Dq

, and Γ�Dq
exist. Using the injectivity of f 7→ f�Dq

,

∀q ∈ Frac (R) [Λ] : Ψ�Dq
6= q�Dq

Γ�Dq

which simply means that

∀q ∈ Frac (R) [Λ] ,∃z ∈ Dq : Ψ�Dq
(z) 6= q�Dq

(z) Γ�Dq
(z) .

But for any q and any regular x we have Ψ�Dq
(b (x)) = γLx

and Γ�Dq
(b (x)) =

µx, so
∀q ∈ Frac (R) [Λ] ,∃x ∈ b−1 (Dq) : γLx 6= q�Dq

(b (x))µx. (9.7)

Now notice that

γLx
�V (x) = 0 ⇐⇒

[
γLx
�B(V ) (Lx)

]
(1V ) = 0,

since the Cayley-Hamilton theorem for matrices, Theorem 20, tells us that
γLx
�B(V ) (Lx) is the zero operator. Thus γLx

�V (x) = 0, and γLx
must live

in a ring ideal that is generated by its minimal element µx as in Definition 60
and Proposition 34. In other words, µx divides γLx for any x. This contradicts
Equation (9.7), so we were wrong when we supposed that Γ does not divide Ψ.
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As a result, there does exist some q ∈ Frac (R) [Λ] such that Ψ = qΓ. Here’s
why we introduced that strange lemma of Gauss. The polynomial Ψ is monic,
and has coefficients that are essentially in R, since all we did was embed them
into Frac (R). Thus we can apply Lemma 7 to show that, in fact, both q and
Γ have coefficients with ones in the denominator. Reversing the R ↪→ Frac (R)
embedding, we can think of q and Γ as living in R [Λ], which is what we wanted
all along.

Somewhat trivially, this gives us a “characteristic polynomial of” function for
regular elements, since morally the “minimal polynomial of” and “characteristic
polynomial of” functions should be the same for regular elements.

Corollary 15. In the context of Theorem 33, Γ�Rn̄ ◦b is the “minimal polyno-
mial of” function on the set of regular elements in V .

All that remains to upgrade this “minimal polynomial of” to “the charac-
teristic polynomial of” is to notice that Γ�Rn̄ ◦ b can be applied to any element
of the underlying Euclidean Jordan algebra, and not just to regular elements.
This leads us to define the characteristic polynomial of an arbitrary element in
a way that makes “the characteristic polynomial of” a tautology. Later we will
collect more evidence that this is a good choice.

Definition 65. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if Γ and b
are as in Theorem 33, then the characteristic polynomial of x ∈ V is γx :=
Γ�Rn̄ (b (x)).

Exercise 27 (spin algebra inverse via minimal polynomial). Let x :=
(1, 2, 3)T be an element of the Jordan Spin EJA on R3. In Exercise 21, we found
the minimal polynomial of x to be

µx = −12X0 − 2X1 +X2 ∈ R [X] .

Taking your inspiration from Exercise 10 where the matrix characteristic poly-
nomial was used, find an element y in the spin algebra such that x ◦ y = 1V .
(Note: this alone does not show that y is the inverse of x. We define the inverse
in a Euclidean Jordan algebra in a moment, in Definition 66.)

Note that the function x 7→ Γ�Rn (b (x)) in Definition 65 is continuous:
it’s the composition of a polynomial function on Rn, which is continuous by
Proposition 14, with a linear operator. This is going to help us prove things
about the irregular elements, of which there are fortunately not too many. For
example, the next result we’re going to prove is an analogue of the Theorem 20
in a Euclidean Jordan algebra. The result is obvious for regular elements, but
we’ll need the continuity of the “characteristic polynomial of” function to extend
the result to irregular elements. A quick exercise shows why such a result might
be nice to have.

Corollary 16 (EJA Cayley-Hamilton). Alizadeh,
Theorem, 14

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan
algebra and if x ∈ V , then γx�V (x) = 0.
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Proof. The characteristic polynomial of a regular element is its minimal polyno-
mial and is therefore zero when evaluated at that regular element by definition.
Using Theorem 29, we can suppose that xn is a sequence of regular elements
converging to x, and define δn := xn − x so that xn = x + δn. Note that as
xn → x, we have δn → 0. Now,

0 = lim
n→∞

γxn
�V (xn)

= lim
n→∞

[Γ�Rn (b (xn))]�V (xn)

= lim
n→∞

[
Λr +

r−1∑
i=0

ai�Rn (b (x+ δn)) Λi
]
�V (x+ δn)

= lim
n→∞

(x+ δn)r +
r−1∑
i=0

ai�Rn (b (x+ δn)) (x+ δn)i .

Since the expression under the limit is a composition of continuous functions by
Proposition 14, we can move the limit inside its argument x + δn, and use the
fact that δn → 0 to arrive at

0 = xr +
r−1∑
i=0

ai�Rn (b (x))xi = [Γ�Rn (b (x))]�V (x) = γx�V (x) .

Corollary 17. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V , then
the minimal polynomial of x divides the characteristic polynomial of x.

Proof. By Definition 60, the minimal polynomial of x is the unique monic gen-
erator of an ideal that contains γx by Corollary 16.

Corollary 18. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V ,
then the characteristic polynomial γx of the element x divides the characteristic
polynomial γLx

of the operator Lx.

Proof. We already showed in Theorem 33 that Ψ = qΓ for some q ∈ Pn (R),
where Ψ is the polynomial such that Ψ�Rn̄ (b (x)) = γLx

. So, stick the b-
coordinates of x into Ψ�Rn̄ = q�Rn̄Γ�Rn̄ .

Definition 66. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, if x ∈ V , and if
there exists a y ∈ alg ({x}) such that x ◦ y = y ◦ x = 1V , then x is invertible
and y is the inverse of x. In that case, we write x−1 to denote the inverse of x,
and use x−k as an abbreviation for

(
x−1)k.

We require the inverse of x to belong to not only the big algebra, but specif-
ically the subalgebra of V generated by x. This is done intentionally so that the
inverse of any element will be unique, thereby justifying our use of the phrase
“the inverse” in Definition 66. It also serves another purpose: since alg ({x})
is associative, requiring x−1 to belong to alg ({x}) allows us to cancel positive
powers with negative ones. For example, we can simplify x−2x3 to x, since we
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can use associativity to pair up the two x−1 with an x and then replace them
with the unit element.

Proposition 38. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V is
invertible, then the inverse of x is unique.

Proof. Suppose y1, y2 ∈ alg ({x}) are both inverses of x, so that they satisfy
y1 ◦ x = 1V and y2 ◦ x = 1V . Then multiplying the first equation on the left by
y2 gives y2◦(y1 ◦ x) = y2. Now alg ({x}) is associative, so we can re-parenthesize
(y2 ◦ y1) ◦ x = y2, and then use commutativity to switch the order of y1, y2:

(y1 ◦ y2) ◦ x = y2.

Use associativity again to conclude that

y2 = y1 ◦ (y2 ◦ x) = y1 ◦ 1V = y1.

The associativity of alg ({x}) is key to showing that the inverse of x is unique,
when it exists, as the following example shows.

Example 61. Take (V, ◦ , 〈·, ·〉) to be the Real Symmetric EJA on S2, and let

X :=
[
1 0
0 −1

]
, Y1 :=

[
1 0
0 −1

]
, Y2 :=

[
1 1
1 −1

]
∈ V = S2.

Then
X ◦ Y1 = X2 =

[
1 0
0 −1

] [
1 0
0 −1

]
=
[
1 0
0 1

]
= 1V ,

and

X ◦ Y2 =
([

1 0
0 −1

] [
1 1
1 −1

]
+
[
1 1
1 −1

] [
1 0
0 −1

])
/2

=
([

1 1
−1 1

]
+
[
1 −1
1 1

])
/2

= 1
2

[
2 0
0 2

]
= 1V .

Thus both Y1 and Y2 act like the inverse of X ∈ S2.

We now define a determinant and trace for Euclidean Jordan algebras by
analogy with Theorem 21 and Corollary 8. The determinant will then influence
the invertibility of an element, just like it does for matrices.

Definition 67. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r and if

γx = a0z
0 + a1z

1 + a2z
2 + · · ·+ ar−1z

r−1 + zr ∈ R [z]

is the characteristic polynomial of x ∈ V , then by analogy with Corollary 8, we
define the determinant of x to be

det (x) := (−1)r a0 = (−1)r γx (0)

172



and define the trace of x to be

trace (x) := −ar−1.

Proposition 39. Faraut and
Korányi,
Proposition II.2.4

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r, if
x ∈ V with det (x) 6= 0, and if the characteristic polynomial of x is

γx = a0z
0 + a1z + a2z

2 + · · ·+ zr ∈ R [z] ,

then x is invertible and

x−1 = (−1)r+1 (
a11V + a2x

1 + · · ·+ xr−1) / det (x) .

Proof. We check that the claimed inverse is indeed an inverse. Since the algebra
multiplication is commutative, we need only check it on the left, using the
definition of det (x) from Definition 67. Apply Corollary 16 to obtain

γx (x) = a01V + a1x+ a2x
2 + · · ·+ xr = 0

⇐⇒
a1x+ a2x

2 + · · ·+ xr = −a01V
⇐⇒

x ◦
−
(
a11V + a2x

1 + · · ·+ xr−1)
a0

= 1V

⇐⇒

x ◦
(−1)r+1 (

a11V + a2x
1 + · · ·+ xr−1)

(−1)r a0
= 1V

⇐⇒

x ◦
(−1)r+1 (

a11V + a2x
1 + · · ·+ xr−1)

det (x) = 1V .

This shows that the thing we claimed to be an inverse actually acts like an
inverse. Note also that

(−1)r+1 (
a11V + a2x

1 + · · ·xr−1) /det (x) ∈ alg ({x}) ,

since it’s a linear combination of powers of x. As a result, it satisfies Definition 66
and is the unique inverse of x.

9.4 Solutions to exercises

Solution to Exercise 20 (minimal polynomial of zero). The zero polyno-
mial is not monic, so it’s out. And no non-zero constant polynomial p = a0 ∈
R [X] will work, since if p�V = x 7→ a01V with a0 6= 0 is the associated function,
then p�V (0) = a01V 6= 0.
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Thus, the smallest possible degree that the minimal polynomial of 0 could
have is one. Let p = X ∈ R [X]. Then p is clearly monic, and of the smallest
possible degree. Moreover, p�V (0) = 0. Thus, µ0 = X ∈ R [X] is the minimal
polynomial of 0.

Solution to Exercise 21 (spin algebra minimal polynomial). From
Exercise 14, we know that x0 = (1, 0, 0)T and of course we were told that
x1 = (1, 2, 3)T . Obviously no scalar multiple of x0 will give us x1, so we try
degree two. An easy computation shows that x2 = x ◦ x = (14, 4, 6)T . Can we
solve

a0 + a1x = x2

⇐⇒

a0

1
0
0

+ a1

1
2
3

 =

14
4
6


for a0, a1 ∈ R? Sure. Using either linear algebra or just by staring hard enough
at the problem, it’s clear that a1 = 2 and then we must have a0 = 12. From
Proposition 34, we know that the minimal polynomial is found from the first
power that is a linear combination of the lower powers, and thus

µx = −a0X
0 − a1X +X2 = −12X0 − 2X +X2 ∈ R [X]

is the minimal polynomial of x.

Solution to Exercise 22 (Hadamard EJA minimal polynomial). The
unit element in this algebra is (1, 1, 1, 1)T , and cubing x gives you back x.
Therefore the set

b :=

x0 =


1
1
1
1

 , x1 =


1
0
−1

0

 , x2 =


1
0
1
0




must span alg ({x}). The set b is also obviously linearly-independent, so it’s a
basis for alg ({x}). Now we can find the matrix of of the linear operator

L̃x : alg ({x})→ alg ({x})
L̃x = y 7→ x ◦ y.

with respect to the basis b:

L̃x
(
x0) = x1 = 0x0 + 1x1 + 0x2,

L̃x
(
x1) = x2 = 0x0 + 0x1 + 1x2,

L̃x
(
x2) = x3 = 0x0 + 1x1 + 0x2.
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If we put those coefficients into the columns of a matrix, we get the representa-
tion of L̃x with respect to b,

b
(
L̃x

)
=

0 0 0
1 0 1
0 1 0

 .
Proposition 35 says that the minimal polynomial of this matrix is the minimal
polynomial of x, so we can simply ask SageMath to find it:

sage: A = matrix(QQ, [ [0,0,0],
....: [1,0,1],
....: [0,1,0] ])
sage: A.minimal_polynomial(’t’)
tˆ3 - t

Solution to Exercise 23 (real symmetric minimal polynomial). Since
the matrix

X :=

 3 −1 0
−1 3 0

0 0 3


is symmetric, R3 has an orthonormal basis consisting of eigenvectors of X by
the spectral theorem for linear algebra. A simple computation (or a computer)
shows that the eigenvectors of X are u1 = (1,−1, 0)T , u2 = (0, 0, 1)T , u3 =
(1, 1, 0)T . After normalizing them, we can construct a matrix whose columns
are those eigenvectors,

U :=

 1/
√

2 0 1/
√

2
−1/
√

2 0 1/
√

2
0 1 0

 ,
and then use it to diagonalize X:

UTXU =

1/
√

2 −1/
√

2 0
0 0 1

1/
√

2 1/
√

2 0

 3 −1 0
−1 3 0

0 0 3

 1/
√

2 0 1/
√

2
−1/
√

2 0 1/
√

2
0 1 0


=

4 0 0
0 3 0
0 0 2

 .
This diagonal matrix has three distinct eigenvalues, so its matrix minimal poly-
nomial can be read off,

µX = (Λ− 4) (Λ− 3) (Λ− 2) ∈ R [Λ] .
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Since matrix-multiplication exponentiation is identical to Jordan-product expo-
nentiation in Sn, this must also be the minimal polynomial of X in the Euclidean
Jordan algebra, just as we saw in Example 54.

Solution to Exercise 24 (spin algebra rank). If we write an arbitrary
element x ∈ V in block form, then

x0 =
[
1
0̄

]
, x1 =

[
x1
x̄

]
, x2 =

[
‖x‖2
2x1x̄

]
.

If we stare at this for a second, it becomes clear that x2 is a linear combination
of x0 and x1: [

‖x‖2
2x1x̄

]
=
(
‖x‖2 − 2x2

1

)[1
0̄

]
+ 2x1

[
x1
x̄

]
As a result, the minimal polynomial of x (which was completely arbitrary) has
degree two at most. We may need fewer, but we cannot need more powers of x.

Let e = (1, 1, . . . , 1)T now be the vector of n ones. For this element,

e0 =
[
1
0̄

]
and e1 =

[
1
ē

]
.

Clearly, e1 cannot be written as a linear combination (that is, a scalar multiple)
of e0, and vice-versa. Thus deg (e) > 1. We showed that the maximum degree of
any element in this algebra is two, and then we found an element of degree two
or more. It follows that the rank of the algebra, which was the largest degree
attained by an element in the algebra, must be two.

Solution to Exercise 25 (general left multiplication in the Real Sym-
metric EJA). The simplest (but not normalized!) basis for S2 is

b =
{
b1 =

[
1 0
0 0

]
, b2 =

[
0 1
1 0

]
, b3 =

[
0 0
0 1

]}
.

Thus S2 is three-dimensional, and

x =
[
x1 x2
x2 x3

]
=⇒ b (x) =

x1
x2
x3

 .
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To find the matrix of Lx, we only need to compute b-coordinates:

b (Lx (b1)) = b
(([

x1 x2
x2 x3

] [
1 0
0 0

]
+
[
1 0
0 0

] [
x1 x2
x2 x3

])
/2
)

= 1
2b
([

2x1 x2
x2 0

])
=
(
x1,

x2

2 , 0
)T

,

b (Lx (b2)) = b
(([

x1 x2
x2 x3

] [
0 1
1 0

]
+
[
0 1
1 0

] [
x1 x2
x2 x3

])
/2
)

= 1
2b
([

2x2 x1 + x3
x1 + x3 2x2

])
=
(
x2,

x1 + x3

2 , x2

)T
,

b (Lx (b3)) = b
(([

x1 x2
x2 x3

] [
0 0
0 1

]
+
[
0 0
0 1

] [
x1 x2
x2 x3

])
/2
)

= 1
2b
([

0 x2
x2 2x3

])
=
(

0, x2

2 , x3

)T
.

Putting these into a matrix as its columns, we obtain

b (Lx) =

x1 x2 0
x2
2

x1+x3
2

x2
2

0 x2 x3

 .
Clearly, the entries of this matrix correspond to elements of R [X1, X2, X3]. For
example if M22 = (X1 +X3) /2, then M22�R3

(
(x1, x2, x3)T

)
= (x1 + x3) /2

gives us the entry b (Lx)22.
To check, we substitute x1 = 1, x2 = 2, and x3 = 3, and then apply the

resulting matrix to b (y) = (1,−1, 1)T

b (Lx) b (y) =

1 2 0
1 2 1
0 2 3

 1
−1
1

 =

−1
0
1

 .
Does this check out? Indeed,

b (x ◦ y) = b
(([

1 2
2 3

] [
1 −1
−1 1

]
+
[

1 −1
−1 1

] [
1 2
2 3

])
/2
)

= b
([
−1 0
0 1

])
= (−1, 0, 1)T .
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Solution to Exercise 26 (Zariski topology).

1. Let f := X0
1 ∈ Pn (R), and S := {f}. Then

V (S) = {z ∈ Rn | f�Rn (z) = 0} =
{
z ∈ Rn

∣∣ z0
1 = 1 = 0

}
= ∅,

showing that ∅ ∈ T .

2. Let f = 0 ∈ Pn (R), and S := {f}. Then

V (S) = {z ∈ Rn | f�Rn (z) = 0} = {z ∈ Rn | 0 = 0} = Rn,

showing that Rn ∈ T .

3. First suppose that z ∈ V (S) ∪ V (T ) so either z ∈ V (S) or z ∈ V (T ). In
the first case, we have p�Rn (z) = 0 for all p ∈ S. Thus,

p�Rn (z) q�Rn (z) = 0 · q�Rn (z) = 0

for all p ∈ S and q ∈ T , showing that z ∈ V (Q). On the other hand, if
z ∈ V (T ), the situation is almost identical;

p�Rn (z) q�Rn (z) = p�Rn (z) · 0 = 0

for all p ∈ S and q ∈ T , showing that z ∈ V (Q). Combining the two, we
have V (S) ∪ V (T ) ⊆ V (Q).
For the other inclusion, suppose that z ∈ V (Q). Checking a truth table,
we see that z ∈ V (S)∪V (T ) is logically equivalent to z /∈ V (S) =⇒ z ∈
V (T ) and z /∈ V (T ) =⇒ z ∈ V (S). Thus, without loss of generality,
we can suppose that z /∈ V (S), and try to show that z ∈ V (T ). Since
z /∈ V (S), there exists some p0 ∈ S such that p0�Rn (z) 6= 0. However,
z ∈ V (Q), so in particular we have

∀q ∈ T : p0�Rn (z) q�Rn (z) = 0.

Since we’re in the real numbers, we can just multiply both sides by
[p0�Rn (z)]−1 to conclude that q�Rn (z) = 0 for all q ∈ T , or that z ∈ V (T ).

4. This one is just a rearrangement of equivalent logical sentences,

z ∈
⋂
i∈I
V (Si) ⇐⇒ ∀i ∈ I ∀f ∈ Si : f�Rn (z) = 0

m

∀f ∈
⋃
i∈I

Si : f�Rn (z) = 0 ⇐⇒ z ∈ V

(⋃
i∈I

Si

)
.
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Solution to Exercise 27 (spin algebra inverse via minimal polynomial).
Since the polynomial function associated with µx evaluates to zero on x, we have

−121V − 2x+ x2 = 0.

Rearranging,

−121V = 2x− x2 ⇐⇒ x
1
12 (x− 21V ) = 1V .

Thus, 1
12 (x− 21V ) = 1

12 (−1, 2, 3)T acts like an inverse of x. We can check,1
2
3

 ◦
 1

12

−1
2
3

 = 1
12

 −1 + 4 + 9

1
[
2
3

]
+ (−1)

[
2
3

] =

1
0
0

 = 1V .
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Chapter 10

A full spectral
decomposition

10.1 Eigenvalues
There is a reason we went to all of that trouble to define the characteristic poly-
nomial in a Euclidean Jordan algebra. In the matrix case, we showed that some
interesting matrix functions—the determinant and trace—can be computed us-
ing the characteristic polynomial. We also showed that these two functions were
the product and sum of an operator’s eigenvalues, respectively. What should
“eigenvalues” be in a Euclidean Jordan algebra? Now that we have a character-
istic polynomial at our disposal in a Euclidean Jordan algebra, we can finally
make sense of this question.

Definition 68. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V , then
the eigenvalues of x are the roots of γx�R.

Theorem 34. Koecher, Chaper
VI Theorem 11

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V , then
all of the eigenvalues of x are real.

Proof. Recall that Lx is self-adjoint by Proposition 25. It therefore has real
eigenvalues by Theorem 17, and its characteristic polynomial factors over R.
Now factor γx into a product of monic irreducible terms, and note that γx
divides γLx by Corollary 18. We can thus apply Corollary 3 to conclude that
the roots of γx�R must be real as well.

Since every element x in a Euclidean Jordan algebra has only real eigenval-
ues, its characteristic polynomial γx factors into a product of degree-one terms.
Completely by analogy with the matrix case, this means that the determinant
of x in the EJA is the product of its eigenvalues and its trace in the EJA is the
sum of its eigenvalues.
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Corollary 19. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if x ∈ V , then
det (x) is the product of the eigenvalues of x, and trace (x) is the sum of the
eigenvalues of x.

Proof. First use Theorem 34 to factor γx ∈ R [Λ],

γx = (Λ− λ1) (Λ− λ2) · · · (Λ− λr) ,

and then follow the exact same steps as in Corollary 8 to find

det (x) := (−1)r a0 = λ1λ2 · · ·λr, and
trace (x) := −ar−1 = λ1 + λ2 + · · ·+ λr.

Example 62. Suppose that (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank
r. We saw in Example 50 that the minimal polynomial of the unit element is Λ−
1 ∈ R [Λ]. Since the minimal polynomial divides the characteristic polynomial
by Corollary 17, and since the characteristic polynomial of every element has
degree r, we conclude that γ1V

= (Λ− 1)r. It follows that det (1V ) = 1 and
trace (1V ) = r, since there are r roots of γ1V

�R and they’re all 1.

Exercise 28 (eigenvalues of idempotents). If c is idempotent in some Eu-
clidean Jordan algebra V , use Proposition 36 and the fact that c = 1c+0 (1V − c)
to find the possible minimal polynomials, eigenvalues, and characteristic poly-
nomials of c.

10.2 Jordan frames
The way we get from the unique spectral decomposition in the spectral theorem
for linear algebra to the matrix diagonalization one is by taking an eigenspace
E and its corresponding projector PE , and then decomposing PE into (for ex-
ample) PE = P1 +P2 +P3 where P1, P2, P3 are projections onto one-dimensional
subspaces of E. If E = span ({e1, e2, e3}), then P1 would be the projection onto
the span of e1, and so on. This decomposition is not unique because it depends
on the basis that you choose for the eigenspace. In the matrix case, you can
choose any orthonormal basis {u1, u2, . . .} of the eigenspace, and then the one-
dimensional projectors look like u1u

T
1 . This too has an analogy in a Euclidean

Jordan algebra.

Definition 69. Let (V, ◦ , 〈·, ·〉) be a Euclidean Jordan algebra and c ∈ V be a
non-zero idempotent. If there do not exist two non-zero idempotents c1, c2 ∈ V
such that c = c1 + c2, then c is a primitive idempotent. A complete system of
orthogonal primitive idempotents is called a Jordan frame.

Finding Jordan frames can be tricky. Even if you are able to “guess” a
complete system of orthogonal idempotents, it usually won’t be easy to show
that those idempotents are primitive. What follows is the simplest possible case.
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Example 63. In the Hadamard EJA on Rn, the standard basis {e1, e2, . . . , en}
is a Jordan frame. It’s not hard to see that each ei is idempotent; and naturally
the ei are mutually orthogonal. To show that each ei is primitive, we shall
suppose that ei = c + d for two idempotents c and d, and then show that one
of c or d must necessarily be zero.

Since ei has a 1 in its ith position and zeroes elsewhere, the equation ei = c+d
implies that di = ci − 1, and that dj = −cj for all other j 6= i. But of course,
cj = c2j for all j if c is idempotent. A priori, that means that cj ∈ {0, 1} for all j.
But if cj = 1 for any j 6= i, then the corresponding entry of d is dj = −cj = −1,
which would contradict the idempotence of d. Thus cj = 0 and dj = −cj = 0
for all j 6= i. Now consider the ith entry of c. Either ci = 0, which means that
c = 0, or ci = 1, whence we deduce that di = ci − 1 = 0. In either case, one of
c or d is zero.

Since decomposing ei into the sum of two other idempotents cannot be done
unless one of those idempotents is zero, each ei is primitive. It follows from the
definition now that {e1, e2, . . . , en} is a Jordan frame.

Lemma 8. if (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if c, c1, c2 ∈ V are
non-zero idempotents such that c = c1 + c2, then 〈c1, c2〉 = 0.

Proof. The fact that c is idempotent means that

c1 + c2 = c = c2 = (c1 + c2)2 = c21 + 2c1 ◦ c2 + c22 = c1 + 2c1 ◦ c2 + c2.

Subtracting c1 + c2 from both sides gives 2c1 ◦ c2 = 0, implying that c1 ◦ c2 = 0.
Now Proposition 31 shows that 〈c1, c2〉 = 0.

Lemma 9. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r and if x =∑k
i=1 λici is the spectral decomposition of x ∈ V from the unique EJA spectral

theorem, then k ≤ r and x is regular if and only if k = r.

Proof. Combining Corollary 13 and Proposition 36 we have

k = deg (µx) = deg (x) ≤ rank (V ) = r.

Proposition 40. Let (V, ◦ , 〈·, ·〉) be a Euclidean Jordan algebra and let x =∑k
i=1 λici be the spectral decomposition of x ∈ V from the unique EJA spectral

theorem. If x is regular, then each idempotent ci is primitive.

Proof. For the contrapositive, suppose not. If, say, c1 is not primitive, then we
can write it as c1 = ca1 + cb1 where

〈
ca1 , c

b
1
〉

= 0 by Lemma 8. The resulting set{
ca1 , c

b
1, c2, c3, . . . , ck

}
is thus still a complete system of orthogonal idempotents,

and this process can be repeated until we obtain a Jordan frame. The procedure
must terminate eventually because each time we decompose ci into cai + cbi , we
gain an element that is pairwise orthogonal to everything else. Since we are in
a finite dimensional space, we can’t keep doing that. When we can’t any more,
the idempotents that we have are primitive.
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In any case, suppose that we’ve done this until we have a Jordan frame
{d1, d2, . . . , d`}, where ` > k by the assumption that some ci was not primitive.
Now

x := 1d1 + 2d2 + · · ·+ `d`

is an element of V , but Proposition 36 tells us that

(X − 1) (X − 2) · · · (X − `) ∈ R [X]

is the minimal polynomial of x. This is a contradiction, since the minimal
polynomial has degree ` > k, and k = r is the rank of V by Lemma 9.

We’ll need one more stepping stone before proving the full spectral decom-
position. Neither Faraut and Korányi nor Baes mention why the idempotents
in the following spectral decomposition should be non-zero, which is a fairly
important detail. By analogy with the symmetric matrices, we would like to
show that the idempotents all have norms greater than (or equal to) some fixed
number—one, it turns out. The map (x, y) 7→ trace (x ◦ y) in a Euclidean Jor-
dan algebra turns out to be an associative, symmetric, and positive-definite
bilinear form—that is, an inner-product. It thus induces a norm, and then with
respect to that norm, the idempotents have norm one. However, the proof that
(x, y) 7→ trace (x ◦ y) is an associative bilinear form is rather difficult, so we’d
like to defer it until Section 10.4.

Lemma 10. If (V, ◦ , 〈·, ·〉V ) is a Euclidean Jordan algebra, then the function

‖·‖L : V → R
‖x‖L := max ({‖Lx (y)‖V | y ∈ V, ‖y‖V = 1})

is a norm on V .

Proof. The domain and codomain of ‖·‖L are satisfactory, so we need only prove
the three properties, all of which follow from the fact that ‖·‖V is itself a norm.
First, the triangle inequality:

‖x+ z‖L := max
({∥∥L(x+z) (y)

∥∥
V

∣∣ y ∈ V, ‖y‖V = 1
})

= max ({‖Lx (y) + Lz (y)‖V | y ∈ V, ‖y‖V = 1})
≤ max ({‖Lx (y)‖V + ‖Lz (y)‖V | y ∈ V, ‖y‖V = 1})
≤ ‖x‖L + ‖z‖L .

Then absolute homogeneity:

‖αx‖L := max ({‖Lαx (y)‖V | y ∈ V, ‖y‖V = 1})
= max ({‖αLx (y)‖V | y ∈ V, ‖y‖V = 1})
= max ({|α| ‖Lx (y)‖V | y ∈ V, ‖y‖V = 1})
= |α|max ({‖Lx (y)‖V | y ∈ V, ‖y‖V = 1})
= |α| ‖x‖L .
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And finally, positive-definiteness:

x 6= 0 =⇒ ‖x‖L := max ({‖Lx (y)‖V | y ∈ V, ‖y‖V = 1})

≥
∥∥∥∥Lx( 1V

‖1V ‖V

)∥∥∥∥
V

= ‖x‖V
‖1V ‖V

> 0.

10.3 The spectral theorem (again)
Theorem 35 (full EJA spectral theorem). Faraut and

Korányi Theorem
III.1.2

Suppose that (V, ◦ , 〈·, ·〉) is a Eu-
clidean Jordan algebra of rank r. If x ∈ V , then there exists a Jordan frame
{c1, c2, . . . , cr} and real numbers λ1 ≥ λ2 ≥ . . . ≥ λr such that

x = λ1c1 + λ2c2 + · · ·+ λrcr.

The numbers λi are the eigenvalues of x, and this decomposition is unique in
the following sense: if {d1, d2, . . . , dr} is a Jordan frame in V and if there exist
real numbers µ1 ≥ µ2 ≥ · · · ≥ µr such that

x = µ1d1 + µ2d2 + · · ·+ µrdr,

then µi = λi for all i, and ∑
{i | λi=t}

ci =
∑

{i | µi=t}

di

for any real number t.

Proof. If x is regular, then we can apply the unique EJA spectral theorem, to
find

x = λ1c1 + λ2c2 + · · ·+ λkck

where λi ∈ R and {c1, c2, . . . , ck} is a complete system of orthogonal system of
idempotents. From Lemma 9 we see that k = r, and then Proposition 40 shows
that each ci is primitive. Thus

x = λ1c1 + λ2c2 + · · ·+ λrcr

is a spectral decomposition of x in terms of a Jordan frame. Now Proposition 36
tells us that the minimal polynomial (which is the same as the characteristic
polynomial, for regular elements) of x is

µx = (Λ− λ1) (Λ− λ2) · · · (Λ− λr) ∈ R [Λ] .

Definition 68 says that the roots of µx�R are the eigenvalues of x, and those are
clearly λ1, λ2, . . . , λr. For regular elements, the theorem is proved.
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The next thing we need to do is justify the claim that the numbers λi are
continuous functions of x when x is irregular. Since x is regular, it has r distinct
eigenvalues, so the fact that we have used strict inequality is not a problem. In
this setting, the characteristic polynomial of x is monic and all of the roots of
γx�R are of multiplicity one, so Theorem 9 can be applied to conclude that each
number λi is in fact obtained from a continuous function λi : V → R applied
to x. The roots of γx�R are continuous in the coefficients of γx, but those
coefficients are continuous in (the coordinates of) x by Theorem 33. Likewise,
we can think of the elements ci of the Jordan frame as being functions of x.
Without saying anything about their continuity, we can suppose ci : V → V
is a function that takes a regular element x and returns the idempotent paired
with λi (x) in the unique spectral decomposition of x.

With that out of the way, we’re ready to tackle irregular elements. If x is
not regular, then Theorem 30 lets us suppose that x(n) is a sequence of regular
elements whose limit is x. Each x(n) has its own spectral decomposition,

x(n) =
[

r∑
i=1

λi

(
x(n)

)
ci

(
x(n)

)]
→ x.

Since this sequence is convergent, it is contained in some compact—and therefore
bounded—subset of V by Theorems 3 and 6. Yet each individual Jordan frame{
ci
(
x(n)) ∣∣ i = 1, 2, . . . , r

}
is complete. So,

c1

(
x(n)

)
+ c2

(
x(n)

)
+ cr

(
x(n)

)
= 1V .

If we take norms on both sides and square using the fact that the ci
(
x(n)) are

orthogonal, ∥∥∥c1 (x(n)
)∥∥∥2

+
∥∥∥c2 (x(n)

)∥∥∥2
+
∥∥∥cr (x(n)

)∥∥∥2
= ‖1V ‖2 .

This shows that each sequence ci
(
x(n)) is itself bounded, because the number

‖1V ‖2 is fixed. In particular, that sequence is contained in the closed (and com-
pact) ball of radius ‖1V ‖, which is a compact set. It therefore has a subsequence
ci

(
x(nk(i))

)
that converges by Theorem 5.

Likewise, each sequence λi
(
x(nk(i))

)
is bounded, because we have already

shown that the λi are continuous, and thus Proposition 4 says that the image
of λi on whatever compact set contains the sequence x(nk(i)) is also compact
(and thus bounded). As a result, there exists another subsequence x

(
nk(i)`(i)

)
.

Before the notation gets any further out-of-hand, let lcm (Z) denote the least
common multiple of the elements of Z ⊆ N, and then let

g (n) := lcm
({
nk(i)`(i)

∣∣∣ i = 1, 2, . . . , r
})

,

so that the subsequences x(g(n)), ci
(
x(g(n))), and λi

(
x(g(n))) all converge re-

gardless of i. Now, the limit of a subsequence of a convergent sequence is the
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same as the limit of that convergent sequence. So,

lim
n→∞

x(g(n)) = lim
n→∞

[
r∑
i=1

λi

(
x(g(n))

)
ci

(
x(g(n))

)]
= x.

Since we defined the characteristic polynomial of an irregular element x to be
the limit of the characteristic polynomials of regular elements, the sequences
λi
(
x(g(n))) here must converge to the associated root of γx�R. We don’t know

what the subsequence ci
(
x(g(n))) converges to, but we know it converges to

something—call it ci (x). Since real-number multiplication is continuous, the
limits can be moved inside the product,

x = lim
n→∞

x(g(n)) = lim
n→∞

[
r∑
i=1

λi

(
x(g(n))

)
ci

(
x(g(n))

)]

=
r∑
i=1

[
lim
n→∞

λi (x)
] [

lim
n→∞

ci

(
x(g(n))

)]
=

r∑
i=1

λi (x) ci (x) .

To complete the proof, we need to show that the limits ci (x) ∈ V form a Jordan
frame. First, we note that they sum to the identity, since they are a limit of
Jordan frames:

r∑
i=1

ci

(
x(g(n))

)
= 1V

=⇒

lim
n→∞

[
r∑
i=1

ci

(
x(g(n))

)]
= lim
n→∞

1V

=⇒
r∑
i=1

ci (x) = 1V .

They are also idempotent, since the Jordan algebra multiplication is continuous
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by Proposition 5:

ci

(
x(g(n))

)
◦ ci

(
x(g(n))

)
= ci

(
x(g(n))

)
=⇒

lim
n→∞

[
ci

(
x(g(n))

)
◦ ci

(
x(g(n))

)]
= lim
n→∞

ci

(
x(g(n))

)
=⇒[

lim
n→∞

ci

(
x(g(n))

)]
◦
[

lim
n→∞

ci

(
x(g(n))

)]
= ci (x)

=⇒
ci (x) ◦ ci (x) = ci (x) .

They are orthogonal for the same reason; bilinear operators are continuous
on finite-dimensional spaces, and the inner-product on V is bilinear:

∀i 6= j :
〈
ci

(
x(g(n))

)
, cj

(
x(g(n))

)〉
= 0

=⇒

∀i 6= j : lim
n→∞

[〈
ci

(
x(g(n))

)
, cj

(
x(g(n))

)〉]
= lim
n→∞

0

=⇒

∀i 6= j :
〈[

lim
n→∞

ci

(
x(g(n))

)]
,
[

lim
n→∞

cj

(
x(g(n))

)]〉
= 0

=⇒
∀i 6= j : 〈ci (x), cj (x)〉 = 0.

If we can show that each ci (x) is non-zero, it will follow (from their orthogonal-
ity) that the elements of {ci (x) | i = 1, 2, . . . , r} are distinct, and that therefore
there are indeed r elements in that set. In other words, that it is a Jordan
frame. But first, we need to show that no ci (x) can be zero.

Let c ∈ V be any idempotent, and consider the norm of c defined in
Lemma 10. We can choose c itself inside the maximum to deduce that

‖c‖L := max ({‖Lc (y)‖V | y ∈ V, ‖y‖V = 1})

≥
∥∥∥∥Lc( c

‖c‖V

)∥∥∥∥
V

=
∥∥∥∥ c

‖c‖V

∥∥∥∥
V

= ‖c‖V
‖c‖V

= 1.

Thus ‖c‖L ≥ 1 for any idempotent c, and in particular for each ci
(
x(g(n))) in

the sequence that converges to ci (x). The inequality holds in the limit as well,
so ‖ci (x)‖L ≥ 1 for all i. Now we apply Proposition 1, and we find that there
exists a single α > 0 such that ‖ci (x)‖V ≥ α > 0 for i = 1, 2, . . . , r. In other
words, no ci (x) is zero.

Refer back to Examples 24 and 27 where we used the spectral decomposition
to easily compute powers of a symmetric matrix. The full EJA spectral theorem
can be used in a similar way.
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Example 64. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r and if
x ∈ V has full spectral decomposition x = λ1c1 + λ2c2 + · · · + λrcr, then
x2 = λ2

1c1+λ2
2c2+· · ·+λ2

rcr. This is easy to see using the bilinearity of the Jordan
product and the fact that the elements of the Jordan frame {c1, c2, . . . , cr} are
orthogonal, and it easily extends to higher powers.

Remark 5. The unique spectral decomposition of an element can be obtained
from its full spectral decomposition. If x = λ1c1 + λ2c2 + · · · + λrcr is the full
decomposition of an element x, then the idempotents with common coefficients
can be grouped and combined to obtain an expression of the form x = µ1d1 +
µ2d2 + · · ·+ µkdk where k ≤ r, the µj are distinct, and the dj form a complete
system of orthogonal (but not necessarily primitive) idempotents. This latter
expression satisfies the conditions for being the unique decomposition in unique
EJA spectral theorem, so it must in fact be that unique decomposition.

Exercise 29 (eigenvalues of primitive idempotents). Let (V, ◦ , 〈·, ·〉) be
a nontrivial Euclidean Jordan algebra of rank r, and c ∈ V be idempotent. Use
the full spectral decomposition and the result of Exercise 28 to show that if c is
primitive, then γc = Λr−1 (Λ− 1).

10.4 The canonical trace inner product
In this section, we prove the existence of a “canonical” inner product that exists
on any Euclidean Jordan algebra, namely the map (x, y) 7→ trace (x ◦ y). This
inner product has several nice properties that make the rest of what we want
to do a lot easier. Of course, proving that (x, y) 7→ trace (x ◦ y) is in fact an
inner product is not so easy. Recall from Definition 13 the properties that this
function needs to have. A few of them are “easy,” at this point anyway, so we’ll
get them out of the way.

Proposition 41. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r, if
α ∈ R and if x ∈ V , then trace (αx) = α trace (x), and trace

(
x2) ≥ 0 with

trace
(
x2) = 0 if and only if x = 0.

Proof. If the eigenvalues of x are {λ1, λ2, . . . , λr} in the full EJA spectral the-
orem, it is easy to see that the eigenvalues of αx are {αλ1, αλ2, . . . , αλr}, and
that the trace of x is therefore

∑r
i=1 αλi = α (

∑r
i=1 λi) = α trace (x). Likewise,

we saw in Example 64 that the eigenvalues of x2 are
{
λ2

1, λ
2
2, . . . , λ

2
r

}
, so that

trace (x) =
∑r
i=1 λ

2
i ≥ 0 with equality if and only if each λi (and thus x itself)

is zero.

Next we’ll show that the trace is linear. This isn’t easy to derive directly,
so we’ll have to go back and look at the form of the coefficients in the “char-
acteristic polynomial of” function, recalling that the trace of x was obtained
from a particular coefficient polynomial evaluated on the basis coordinates of x
(Corollary 19).
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Proposition 42. In Theorem 33, the coefficients ai of polynomial Γ are them-
selves homogeneous polynomials of degree r−i. In particular, the trace coefficient
ar−1 is homogeneous of degree one (a linear form).

Proof. We show that the functions ai�Rn are homogeneous of degree r − i, and
the result follows from Proposition 11.

If x ∈ V , then the characteristic polynomial of x factors (from its spectral
decomposition, for example) as

γx = (Λ− λ1 (b (x))) (Λ− λ2 (b (x))) · · · (Λ− λr (b (x))) .

where the λi are continuous functions that compute the eigenvalues of x from
its basis representation as in the full EJA spectral theorem. Suppose we define
the convenience function

λ : V → Rn

λ := x 7→ (λ1 (b (x)) , λ2 (b (x)) , . . . , λr (b (x)))T ,

and a polynomial

Ω := (Λ− Λ1) (Λ− Λ2) · · · (Λ− Λr) ∈ R [Λ1,Λ2, . . . ,Λr,Λ] .

Then
∀x ∈ V : Ω�Rn̄ (λ (x)) = γx = Γ (b (x)) .

Thus the coefficient functions—call them ci�Rn— of Ω must be equal to the
coefficient functions ai�Rn of Γ. But it is well-known that (up to a factor of −1)
expanding the product Ω produces as the coefficients ci (and thus the coefficients
ai as well) the elementary symmetric polynomials of degree r− i in the variables
Λ1,Λ2, . . . ,Λr. In fact, we proved this for c0 and cr−1 back in Corollary 8, and
the others are similar. So, for example, we have −cr−1 = Λ1 + Λ2 + · · · + Λr.
And in general, each ci has the form

ci =
d1∑
j1=0

d2∑
j2=0
· · ·

dn∑
jn=0

β(j1,j2,...,jn)Λj11 Λj22 · · ·Λjn
n ,

where each nonzero index (j1, j2, . . . , jn) satisfies j1 + j2 + · · ·+ jn = r − i.
Note quickly that the full spectral decomposition shows that λ (αx) = αλ (x)

for all α ∈ R and x ∈ V . Then evaluate, for an arbitrary x ∈ V ,

ai�Rn (αb (x)) = ai�Rn (b (αx))
= ci�Rn (λ (αx)) = ci�Rn (αλ (x))

=
d1∑
j1=0

d2∑
j2=0
· · ·

dn∑
jn=0

b(j1,j2,...,jn)α
j1αj2 · · ·αjnλ1 (b (x))j1 · · ·λn (b (x))jn

= αr−ici�Rn (λ (x)) = αr−iai�Rn (b (x)) .

Proposition 11 now shows that each ai is itself a homogeneous polynomial of
degree r − i.
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Corollary 20. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r and di-
mension n with basis b, then the trace function from V to R is additive.

Proof. For any x ∈ V , we have trace (x) = ar−1�Rn ◦ b by Corollary 19. We
just showed that the polynomial ar−1 ∈ Pn (R) is homogeneous of degree one.
It can therefore be expressed as

ar−1 = c1X1 + c2X2 + · · ·+ cnXn,

for coefficients ci ∈ R. It follows that,

trace (x+ y)
= ar−1�Rn (b (x+ y))
= ar−1�Rn (b (x) + b (y))
= c1 (b (x)1 + b (y)1) + c2 (b (x)2 + b (y)2) + · · ·+ cn (b (x)n + b (y)n)
= ar−1�Rn (b (x)) + ar−1�Rn (b (y))
= trace (x) + trace (y) .

This same argument could be used to show that the trace is homogeneous if we
had not already done that in Proposition 41.

The following is an immediate consequence of the trace’s linearity.

Corollary 21. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, then the map
(x, y) 7→ trace (x ◦ y) from V to R is bilinear.

And finally, we can prove the following important fact about Jordan frames.

Proposition 43. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r, then
trace (c) = 1 for any primitive idempotent c ∈ V , and any Jordan frame in V
has exactly r elements.

Proof. We showed in Exercise 29 that any primitive idempotent has exactly one
non-zero eigenvalue λ1 = 1 and that therefore trace (c) = λ1 + 0 + 0 + · · ·+ 0 =
1. Now, the elements of any Jordan frame must sum to the unit element by
definition, and trace (1V ) = r from Example 62. So if {c1, c2, . . . , ck} ⊆ V is
a Jordan frame, then by linearity, trace (1V ) = r =

∑k
i=1 trace (ck) = k. We

conclude that k = r.

10.5 Solutions to exercises

Solution to Exercise 28 (eigenvalues of idempotents). First note that
if c = 0, then the minimal polynomial of c is Λ ∈ R [Λ], as we showed in
Exercise 20. Likewise, if c = 1V , then we showed in Example 50 that the
minimal polynomial of c is Λ− 1R [Λ].
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If neither c nor (1V − c) is zero, then {c, 1V − c} is a complete system of
nonzero orthogonal idempotents, and Proposition 36 can be applied to the ex-
pression c = 1c + 0 (1V − c) to conclude that µc = Λ (Λ− 1). In any case,
the eigenvalues of c (the roots of its minimal polynomial) are contained in the
set {0, 1}. Its minimal polynomial is thus of the form µc = Λm1 (Λ− 1)m2

for m1,m2 ∈ {0, 1}, and its characteristic polynomial is therefore of the form
Λk (Λ− 1)r−k for some k ∈ {0, 1, . . . , r}.

Solution to Exercise 29 (eigenvalues of primitive idempotents). Sup-
pose c is primitive and thus non-zero. Exercise 28 showed that γc is of the form
Λk (Λ− 1)r−k for some k, but if k < r− 1, then the full spectral decomposition
of c looks like c = 1d1 + 1d2 + · · · + λrdr, contradicting the fact that c was
supposed to be primitive. As a result, k ≥ r − 1, but k cannot be equal to r
since that would make c equal to zero.
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Chapter 11

Peirce decompositions

The Peirce decomposition (pronounced “purse”) is a bigger idea from the theory
of algebras. To get started, we’ll need one final polarization identity.

Proposition 44. Faraut and
Korányi
Proposition
II.1.1.iii

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, then

∀x, z ∈ V : 2LxLzLx + L(x2◦z) = 2L(x◦z)Lx + L(x2)Lz. (11.1)

Proof. Apply both sides of the polarization identity Equation (7.1) to an arbi-
trary z ∈ V :

∀x, y, z ∈ V : 2LxL(x◦y) (z) + LyLx2 (z) = 2L(x◦y)Lx (z) + Lx2Ly (z) ,

Expand what this means,

∀x, y, z ∈ V :


2 (x ◦ ((x ◦ y) ◦ z)) + y ◦

(
x2 ◦ z

)
=

2 ((x ◦ y) ◦ (x ◦ z)) + x2 ◦ (y ◦ z)
,

use the commutativity of the Jordan product to rearrange,

∀x, y, z ∈ V :


2 (x ◦ (z ◦ (x ◦ y))) +

(
x2 ◦ z

)
◦ y

=
2 ((x ◦ z) ◦ (x ◦ y)) + x2 ◦ (z ◦ y)

,

and then put things back in terms of left-multiplication-by operators acting on
y, now, instead of z:

∀x, y, z ∈ V : 2LxLzLx (y) + L(x2◦z) (y) = 2L(x◦z)Lx (y) + L(x2)Lz (y) .

Since this holds for all y ∈ V , we conclude that the operators on both sides are
equal, which was the desired result.
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11.1 With respect to an idempotent

Exercise 30 (Peirce decomposition). Suppose that (V, ◦ , 〈·, ·〉) is a Eu-
clidean Jordan algebra, and let c ∈ V be idempotent. Substitute c for both x
and z in Proposition 44 to obtain a polynomial expression in Lc that is equal
to zero.

Factor your expression, and use standard linear algebra (particularly, what
you know about the minimal polynomial of Lc) to find a set of three real numbers
that contains all of eigenvalues of Lc. Conclude that V decomposes into an
orthogonal direct sum of three eigenspaces. (Use the convention that if λ is not
an eigenvalue of Lc, then the eigenspace of Lc corresponding to λ is {0}.)

If you solved Exercise 30, then you know that for any idempotent c in a
Euclidean Jordan algebra V , the operator Lc has at most three eigenvalues, all
coming from the set

{
0, 1

2 , 1
}

. Since Lc is self-adjoint with respect to the alge-
bra’s inner product, the vector space V therefore decomposes into an orthogonal
direct sum of the three (possibly-trivial) eigenspaces,

V = V (c, 0)⊕ V
(
c,

1
2

)
⊕ V (c, 1),

where, for example, V (c, 0) denotes the eigenspace of Lc in V corresponding to
the eigenvalue λ = 0. This notation is fairly standard, so let’s make it official.

Definition 70 (Peirce subspaces, part 1). If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan
algebra and if c ∈ V is idempotent, then we define

V (c, λ) := {x ∈ V | Lc (x) = λx}

to be the eigenspace of Lc corresponding to the eigenvalue λ ∈
{

0, 1
2 , 1
}

.

Examples of Peirce subspaces abound. Let’s start with something trivial.

Example 65. If (V, ◦ , 〈·, ·〉) is any Euclidean Jordan algebra, then 1V is idem-
potent, and 1V ◦ x = x for all x ∈ V . As a result, 1V has only the single
eigenvalue λ = 1 whose corresponding eigenspace is V (1V , 1) = V . Its other
two eigenspaces are then necessarily V (1V , 0) = V

(
1V , 1

2
)

= {0}. You can of
course write V = V ⊕{0} ⊕ {0} if you so desire. An equally-silly decomposition
arises from the idempotent 0 ∈ V .

Example 66. Let c = 1
2
(
1, 1

2 ,
1
2 ,

1
2 ,

1
2
)T in the Jordan Spin EJA on R5. A quick

check shows that c2 = c. With respect to the standard basis b in Rn, we can
“compute” the matrix of Lc by substituing the entries of c into a matrix of the
form we found in Example 58:

b (Lc) =


c1 c2 c3 c4 c5
c2 c1 0 0 0
c3 0 c1 0 0
c4 0 0 c1 0
c5 0 0 0 c1

 =


1
2 1/4 1/4 1/4 1/4

1/4 1
2 0 0 0

1/4 0 1
2 0 0

1/4 0 0 1
2 0

1/4 0 0 0 1
2

 .
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If we ask a computer to find the eigenspaces of this matrix, we see that

V (c, 0) = span




1/2
−1/4
−1/4
−1/4
−1/4


 , V (c, 1) = span




1/2
1/4
1/4
1/4
1/4


 ,

V

(
c,

1
2

)
= span




0
1
0
0
−1




0
0
1
0
−1




0
0
0
1
−1


 .

Two of the Peirce subspaces in Definition 70 are special in that they not only
form vector subspaces of V , but in fact form subalgebras.

Proposition 45. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if c ∈ V is
idempotent, then V (c, 0) and V (c, 1) form Euclidean Jordan subalgebras of V .
Moreover, the unit element of V (c, 1) is c.

Proof. As is typical of these sorts of proofs, we show only that the two subspaces
V (c, 0) and V (c, 1) are closed under the given Jordan product. All that would
then remain, if we are being pedantic (and we are), is to restrict the Jordan and
inner-product from the superalgebra onto the subspaces.

To show that V (c, 0) is closed, take any z, w ∈ V (c, 0). Set x := c and z be
itself in Equation (11.1). Using c2 = c and c ◦ z = 0, we can cancel two terms
immediately,

2LcLzLc + L(c2◦z) = 2L(c◦z)Lc + L(c2)Lz

⇐⇒
2LcLzLc = L(c2)Lz.

Again we can replace the remaining c2 by c, and apply both sides of this equation
to our w ∈ V (c, 0) to find that

2LcLz (c ◦ w) = Lc (z ◦ w) .

The left-hand side here is zero, because c ◦w is. Thus we conclude that z ◦w is
an eigenvector of Lc corresponding to λ = 0. Since z, w were arbitrary elements
of V (c, 0), this shows that V (c, 0) is closed under the given Jordan product.

The idea for V (c, 1) is similar. Take z, w ∈ V (c, 1). Set x := c and let z be
itself in Equation (11.1). Using c2 = c and c ◦ z = z,

2LcLzLc + L(c2◦z) = 2L(c◦z)Lc + L(c2)Lz

⇐⇒
2LcLzLc + Lz = 2LzLc + LcLz.
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If we apply both sides to w = c ◦ w and start rearranging things,
2LcLz (c ◦ w) + z ◦ w = 2Lz (c ◦ w) + Lc (z ◦ w)

⇐⇒
2Lc (z ◦ w) + z ◦ w = 2 (z ◦ w) + Lc (z ◦ w)

⇐⇒
Lc (z ◦ w) = z ◦ w.

As before, this completes the proof that V (c, 1) is closed. It goes without saying
that c lives in V (c, 1), and that c ◦ bx = x for all x in V (c, 1) by definition. It
follows that c is the unit element in the algebra V (c, 1).

11.2 With respect to a Jordan frame
Definition 71 (Peirce subspaces, part 2). If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan
algebra of rank r and if c := {c1, c2, . . . , cr} is a Jordan frame in V , then the
diagonal Peirce subalgebras of V are

Vii (c) := V (ci, 1)
and the off-diagonal Peirce subspaces of V are

Vij (c) := V

(
ci,

1
2

)
∩ V

(
cj ,

1
2

)
.

11.3 Some consequences
Lemma 11. Faraut and

Korányi Lemma
X.2.2

If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r and if
x, y ∈ V operator-commute, then there exists a Jordan frame {c1, c2, . . . , cr}
and sets of real numbers {λ1, λ2, . . . , λr} and {µ1, µ2, . . . , µr} such that

x = λ1c1 + λ2c2 + · · ·+ λrcr and y = µ1c1 + µ2c2 + · · ·+ µrcr.

In other words, x and y have full Euclidean Jordan algebra spectral decomposi-
tions with respect to the same Jordan frame. Conversely, if x and y have full
spectral decompositions with respect to a common Jordan frame, then x and y
operator-commute.

Proof. The converse is easy: the elements of a Jordan frame are orthogonal
idempotents, so Corollary 11 applies.

For the other direction. Let x have unique the spectral decomposition x =
λ1d1 + λ2d2 + · · · + λkdk where k < r and where d := {d1, d2, . . . , dk} is a
complete system of (not necessarily primitive) orthogonal idempotents. With
respect to d, we can consider the Peirce decomposition of y,

y =
k∑
i=1

i∑
j=1

yij =
k∑
i=1

yii +
k∑
i=1

i−1∑
j=1

yij ,

yij ∈ Vij (d) .
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Our goal will be to use the fact that x and y operator-commute to show that the
yij = 0 whenever j 6= i. We’ll do this by applying the operator LyLx−LxLy = 0
to x itself, so there are a few intermediate terms for us to compute. First,

y ◦ x =
k∑
i=1

k∑
m=1

λm (yii ◦ dm) +
k∑
i=1

i−1∑
j=1

k∑
m=1

λm (yij ◦ dm) .

We know that dm ∈ V (dm, 1), and using Proposition IV.1.1 in Faraut and
Korányi, we see that Vii (d) ◦ Vmm (d) = {0} when m 6= i. Thus the products
yii ◦ dm are nonzero only when m = i. Similarly, Theorem IV.2.1 in Faraut and
Korányi shows that Vmm (d) ◦Vij (d) is nonzero only when m = i or m = i. We
therefore need only retain two terms (corresponding to m = i and m = j of the
sum

∑k
m=1 λm (yij ◦ dm)). After making both of these simplifications, we’re left

with

y ◦ x =
k∑
i=1

λi (yii ◦ di) +
k∑
i=1

i−1∑
j=1

λi (yij ◦ di) + λj (yij ◦ dj) .

Now we use the fact that yii is an eigenvectors of Ldi with eigenvalue one, and
that yij is an eigenvector of both Ldi

and Ldj
, both with eigenvalues one-half:

y ◦ x =
k∑
i=1

λiyii + 1
2

k∑
i=1

i−1∑
j=1

λiyij + λjyij

That’s it for y ◦ x. We also need to know y ◦ x2, but there’s a shortcut for that.
Simply compute

x ◦ x =
(

k∑
i=1

λidi

)
◦

 k∑
j=1

λjdj

 =
k∑
i=1

k∑
j=1

λiλj (di ◦ dj) =
k∑
i=1

λ2
i di

where the last equality follows since di ◦dj is non-zero only when j = i. Thus x2

has the same spectral decomposition as x itself. . . except with the eigenvalues
squared. So to compute y ◦ x2, we can simply replace each λi with λ2

i in the
expression for y ◦ x:

y ◦ x2 =
k∑
i=1

λ2
i yii + 1

2

k∑
i=1

i−1∑
j=1

λ2
i yij + λ2

jyij

Finally, we’ll need to know x ◦ (y ◦ x). There are no new tricks here, just more
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tedious computation with x =
∑k
m=1 λmdm:

x ◦ (y ◦ x) =
k∑
i=1

k∑
m=1

λmλi (dm ◦ yii)

+ 1
2

k∑
i=1

i−1∑
j=1

k∑
m=1

λmλi (dm ◦ yij)

+ 1
2

k∑
i=1

i−1∑
j=1

k∑
m=1

λmλj (dm ◦ yij) .

By exactly the same reasoning we applied earlier, each of these lines can be
expanded and/or simplied to,

x ◦ (y ◦ x) =
k∑
i=1

λ2
i yii

+ 1
2

k∑
i=1

i−1∑
j=1

λ2
i

1
2yij + λjλi

1
2yij

+ 1
2

k∑
i=1

i−1∑
j=1

λiλj
1
2yij + λ2

j

1
2yij ,

which leaves us with

x ◦ (y ◦ x) =
k∑
i=1

λ2
i yii + 1

4

k∑
i=1

i−1∑
j=1

(
λ2
i + 2λiλj + λ2

j

)
yij .

Now, we are ready to start the problem! Recall that LyLx − LxLy is the zero
operator, and apply it to x ∈ V to conclude that y ◦ x2 − x ◦ (y ◦ x) = 0.
Substitute in the two big expressions that we just found for those terms, and
conclude that

0 = 1
2

k∑
i=1

i−1∑
j=1

λ2
i yij + λ2

jyij −
1
4

k∑
i=1

i−1∑
j=1

(
λ2
i + 2λiλj + λ2

j

)
yij

=
k∑
i=1

i−1∑
j=1

(
1
4λ

2
i −

1
2λiλj + 1

4λ
2
j

)
yij

=
k∑
i=1

i−1∑
j=1

(
λi − λj

2

)2
yij .

Since the yij live in orthogonal vector spaces, the only way this sum can be zero
is if each term is zero. The lambdas were distinct, and j is strictly less than i
in each of the terms, so in particular it is not equal to i and λi − λj 6= 0. We
conclude that each yij is zero above, and that therefore y =

∑k
i=1 yii.
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Recall now that each pair of xii and yii in Vii = V (di, 1) live in the same
subalgebra (this was Proposition 45). Within each Vii where di is the unit
element, we can therefore use the full EJA spectral theorem to decompose

yii =
pi∑
`=1

µ`di,`,

where di,1, di,2, . . . , di,pi
are orthogonal primitive idempotents that sum up to

di. Adding everything up, we get

y =
k∑
i=1

yii =
k∑
i=1

pi∑
`=1

µ`di,`,

which must be the full spectral decomposition of y in V itself: in the the full
collection of all di,`, the idempotents remain orthogonal and primitive since the
spaces Vii are orthogonal to one another. But we can also decompose x in terms
of this Jordan frame! Since di =

∑pi

`=1 di,`, we have

x =
k∑
i=1

λidj =
k∑
i=1

pi∑
`=1

λidi,`.

After relabeling some subscripts, these are two full spectral decompositions of
x and y with respect to the same Jordan frame.

The preceding lemma is a powerful tool. Here is an example application.

Theorem 36. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r and if
x ∈ V , then det (x) 6= 0 if and only if x is invertible.

Proof. If det (x) 6= 0, then we have already seen in Proposition 39 how to
construct the inverse of x.

Conversely, if det (x) = 0, then by Corollary 19, some eigenvalue of x is
zero. Use the full EJA spectral theorem to write x = λ1e1 + λ2e2 + · · ·+ λrer,
and suppose without loss of generality that λ1 = 0. If x were invertible, it
would operator-commute with x−1, so we use Lemma 11 to write x−1 = µ1e1 +
µ2e2 + · · ·+ µrer. Now x ◦ x−1 is supposed to be 1V ; however, multiplying out
the spectral decompositions gives an expression involving only e2, e3, . . . , er.
Notably, e1 is missing. Since 1V = e1 + e2 + · · · + er, this is a contradiction:
e1 cannot be replaced by a linear combination of the remaining elements of the
Jordan frame.

Corollary 22. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r and if
x ∈ V is invertible with full spectral decomposition x =

∑r
i=1 λici, then its

inverse is x−1 =
∑r
i=1 λ

−1
i ci.

Proof. Since x is invertible, we have
∏r
i=1 λi = det (x) 6= 0 by Corollary 19

and Theorem 36, so each eigenvalue λi must be nonzero. We can therefore
legally define y :=

∑r
i=1 λ

−1
i ci. It is easy to see that x ◦ y = 1V .
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The tricky part, then, is showing that y ∈ alg ({x}). The fact that we want to
exploit here is that in the unique EJA spectral theorem, each of the idempotents
already belongs to alg ({x}). The idempotents in the full decomposition may
not belong to alg ({x}), but if you group them by eigenvalues and add them up,
you recover the (non-primitive) idempotents from the unique decomposition.
We mentioned this briefly in Remark 5.

So, group together all of the ci that have the same coefficient λ−1
i and relabel

them dj and µ−1
j to obtain y =

∑k
j=1 µ

−1
j dj , where now the µj are distinct, and

the dj form a system of orthogonal (but not necessarily primitive) idempotents.
Since λi = λj if and only if λ−1

i = λ−1
j , the set {d1, d2, . . . , dk} is exactly

the same complete system of orthogonal system of idempotents in the unique
spectral decomposition of x, because we obtained them in the same way (by
grouping according to coefficients) that we would have if we started with the full
spectral decomposition of x. The only change is that we grouped by λ−1

i rather
than the λi themselves; but, this amounts to the same thing. So, each dj belongs
to alg ({x}), and as a result, y itself belongs to alg ({x}), since subalgebras are
closed under additional and scaling.

Example 67. Example 63 showed that the standard basis {e1, e2, . . . , en} forms
a Jordan frame in the Hadamard EJA on Rn. If x = (x1, x2, . . . , xn)T , then we
can write

x = x1e1 + x2e2 + · · ·+ xnen.

By its uniqueness, this must be the full spectral decomposition of x. Its eigen-
values are therefore x1, x2, . . . , xn, and by Theorem 36, x is invertible if and
only if det (x) = x1x2 · · ·xn 6= 0, which is then equivalent to saying that all
coordinates xi are nonzero.

When x is invertible, Corollary 22 thus shows that

x−1 =
(

1
x1

)
e1 +

(
1
x2

)
e2 + · · ·+

(
1
xn

)
en.

You should compare this with Example 24.

Corollary 23. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra of rank r, then the
set of invertible elements of V is dense in V .

Proof. We show that the set {x ∈ V | det (x) 6= 0} is dense in V ; then Theo-
rem 36 can be applied. Let x ∈ V be given. We aim to find a y ∈ V , arbitrarily
close to x, such that det (y) 6= 0. Use the full EJA spectral theorem to write
x = c1λ1 + c2λ2 + · · ·+ crλr. If all of the λi are nonzero, then great; take y := x
and we are done. If not, define y := λ̂1c1 + λ̂2c2 + · · · + λ̂rcr for some real
numbers λ̂i that we imagine to be perturbations of the λi. It’s easy to see that

‖x− y‖2 = 〈x− y, x− y〉 =
r∑
i=1

(
λi − λ̂i

)2
‖ci‖2
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can be made as small as necessary by choosing the λ̂i nonzero and sufficiently
close to λi. And if all of the λ̂i are chosen to be nonzero, then

det (y) =
r∏
i=1

λ̂i 6= 0

by Corollary 19.

11.4 Solutions to exercises

Solution to Exercise 30 (Peirce decomposition). Set x := c and z := c in
Equation (11.1) to obtain

2LcLcLc + L(c2◦c) = 2L(c◦c)Lc + L(c2)Lc.

Simplify using the fact that c2 = c,

2LcLcLc + Lc = 2LcLc + LcLc

⇐⇒
2L3

c − 3L2
c + Lc = 0,

and then factor:

Lc
(
2L2

c − 3Lc + L0
c

)
= 0

⇐⇒
Lc
(
2Lc − L0

c

) (
Lc − L0

c

)
= 0.

The left-hand side corresponds to the polynomial

p := X
(
2X −X0) (X −X0) ∈ R [X] ,

and since the corresponding function p�B(V ) evaluates to zero on Lc, p must
be a multiple of the minimal polynomial of Lc. But the roots of µLc�R are the
eigenvalues of Lc, and the roots of p�R are 0, 1

2 , and 1. Thus if λ is an eigenvalue
of Lc, then λ ∈

{
0, 1

2 , 1
}

.
One of the axioms of a Euclidean Jordan algebra says that Lc is self-adjoint

with respect to 〈·, ·〉, so the spectral theorem for linear algebra says that V is
an orthogonal direct sum of the eigenspaces of Lc. There may be elements of{

0, 1
2 , 1
}

that are not eigenvalues of Lc, for example when c = 1V and λ = 1 is
the only eigenvalue of L1V

. However, by convention, the eigenspaces associated
with the “unused” eigenvalues are the trivial space {0}, and we can include them
in the orthogonal direct sum without changing its value.
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Chapter 12

Quadratic representations

If you remember its history from way back in Section 6.1, the Jordan prod-
uct operation arose as a generalization of the matrix operation LA := X 7→
(AX +XA) /2 defined on the space of real-symmetric or complex-Hermitian
matrices. This operation was chosen as the prototype because it preserves sym-
metry (or conjugate-symmetry), unlike regular matrix multiplication, and there-
fore results in a bilinear algebra multiplication that is closed: if you multiply
two elements of a Jordan algebra, you get another one back.

There is another matrix operation that takes one symmetric matrix to an-
other, and has several other nice properties as well. For any A ∈ Sn, define the
map PA := X 7→ AXA. If we take the domain of PA to be Sn, then clearly its
codomain is also Sn, since

(PA (X))T = (AXA)T = ATXTAT = AXA = PA (X) .

When A is invertible, this is called a matrix congruence.

Definition 72. Two matrices X,Y ∈ Rn×n are congruent if there exists an
invertible A ∈ Rn×n such that Y = ATXA.

Matrix congruence has several properties that look nice to us:

• It is an equivalence relation on Sn.

• Sylvester’s law of inertia states that two real symmetric matrices have the
same number of positive, negative, and zero eigenvalues if and only if they
are congruent.

• Diagonalizing a real symmetric matrix as in the spectral theorem for linear
algebra is a special case of congruence where the invertible matrix happens
to be orthogonal.

• Unitary similarity invariance: if U is any orthogonal matrix, then X and
UXU have the same eigenvalues.
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Recall the change-of-basis formula from Example 21. If you start with a
representation e (L) of a linear operator L ∈ B (V ) with respect to a basis
e ⊆ V , then its representation b (L) with respect to another basis b can be
found by applying the similarity transformation X 7→ e

(
A−1)Xe (A) to the

matrix X = e (L). Here, as in Example 21, A ∈ B (V ) is the invertible operator
that sends e to b.

Congruence captures this same notion of a “change of basis,” but for an
inner-product rather than a linear operator. Every inner product on a finite-
dimensional real vector space is of the form (x, y) 7→ 〈b (L) b (x),b (y)〉Rn for
some self-adjoint positive-definite L ∈ B (V ) and basis b of V (we prove this
later in Proposition 48.) Since e

(
A−1 (z)

)
= b (z) for all z in V ,

〈b (L) b (x),b (y)〉Rn

=
〈
b (L) e

(
A−1x

)
, e
(
A−1y

)〉
Rn

=
〈
b (L) e

(
A−1) e (x), e

(
A−1) e (y)

〉
Rn

=
〈
e
(
A−1)T b (L) e

(
A−1) e (x), e (y)

〉
Rn
.

As you may suspect, all of these concepts can be extended to complex inner-
product spaces whose representation matrices have entries in C, and where the
conjugate-transpose is used in place of the transpose. One nice property that PX
does not have, however, is linearity. Clearly, X 7→ PX is not a linear function,
and thus (X,Y ) 7→ PX (Y ) is not bilinear, since for any α ∈ R,

P(αX) (Y ) = (αX)Y (αX) = α2PX (Y ) .

The appearance of a squared term there is where the name quadratic represen-
tation comes from. Is there a way to express PX in terms of the Jordan product
LX on Sn, and vice-versa? Indeed there is.

Definition 73 (Quadratic representation). If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan
algebra and if x ∈ V , then then quadratic representation of x is the operator,

Px : V → V

Px := 2L2
x − Lx2 .

In other words, Px is the map y 7→ 2 (x ◦ (x ◦ y))− x2 ◦ y.

As you should expect by now, the quadratic representation of X in the Real
Symmetric EJA is nothing other than the map Y 7→ XTY X. Note that, unlike
x 7→ Lx, the map x 7→ Px is not linear. The resulting operator Px is however
linear on V for any x.

Example 68. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra and if X,Y ∈ V ,
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then

PX (Y ) = 2 (X ◦ (X ◦ Y ))−X2 ◦ Y

= 2
(
X ◦ XY + Y X

2

)
− X2Y + Y X2

2

= X2Y +XYX +XYX + Y X2

2 − X2Y + Y X2

2
= XYX.

Since X is symmetric, we could just as well have written this result as XTY X.

So this not only shows that Px can be expressed in terms of Lx, but it also
motivates our definition of Px in a general Euclidean Jordan algebra: it’s a
generalization of matrix conjugation. The quadratic representation also shares
several nice properties with matrix conjugation.

Exercise 31 (properties of the quadratic representation). Suppose
that (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra, that α ∈ R, and that x, y ∈ V .
Prove the following easy properties of the quadratic representation using the
definitions and (in one case) the polarization identity Equation (11.1).

1. Px and Lx commute as operators.

2. Pαx = α2Px.

3. Px (1V ) = x2.

4. If x is invertible, then Px
(
x−1) = x.

5. If x is invertible, then PxL(x−1) = Lx.

Proposition 46 (Inverse of quadratic representation). If (V, ◦ , 〈·, ·〉) is a Eu-
clidean Jordan algebra and if x ∈ V , then x is invertible if and only if Px is
invertible; and in either case, we have (Px)−1 = P(x−1).

Proof. Suppose x is invertible. Set z := x−2 in Equation (11.1) and simplify,

2LxLx−2Lx + L(x2◦x−2) = 2L(x◦x−2)Lx + L(x2)Lx−2

⇐⇒
L1V

= 2LxLx−2Lx + 2L(x◦x−2)Lx + L(x2)Lx−2

⇐⇒
idV = 2LxLx−2Lx + 2Lx−1Lx + L(x2)Lx−2 .
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Now rearrange things a bit using the fact that Lx, Lx2 and Lx−2 all commute
by Corollaries 11 and 22:

idV = 2LxLx−2Lx + 2Lx−1Lx + L(x2)Lx−2

⇐⇒
idV = 2L2

xLx−2 + L(x2)Lx−2 + 2Lx−1Lx

⇐⇒
idV =

[
2L2

x + L(x2)
]
Lx−2 + 2Lx−1Lx.

Observe now that the grouped expression above is simply Px. Moreover, using
the result from Exercise 31, we can replace Lx by PxLx−1 :

idV = PxLx−2 + 2Lx−1PxLx−1

Once more we note that Px commutes with Lx−1 , since both Lx and Lx2 do.
Thus we can factor this as,

idV = PxLx−2 + 2Lx−1PxLx−1

= Px [Lx−2 + 2Lx−1Lx−1 ]
= PxPx−1 ,

showing that Px−1 acts as an inverse to Px.
For the other direction we assume that P−1

x exists, and start by showing
that P−1

x (alg ({x})) = alg ({x}). From the definition of Px it is clear that
Px (alg ({x})) ⊆ alg ({x}), but the dimensions of the two vector spaces must
be the same if Px is invertible. If one vector space of dimension n is con-
tained in another vector space of dimension n, then they must be equal; hence
Px (alg ({x})) = alg ({x}), and we can apply P−1

x to both sides.
Next we note that Lx and P−1

x commute. We already know that Px and Lx
commute from Exercise 31, so write both

Lx = P−1
x PxLx = P−1

x LxPx

and
Lx = LxP

−1
x Px.

Hitting both of these on the right with P−1
x shows that Lx and P−1

x commute.
Finally, Exercise 31 shows that Px (1V ) = x2 which is equivalent to 1V =

P−1
x x2 = P−1

x Lx (x). Commuting the two operators gives

LxP
−1
x (x) = x ◦

[
P−1
x (x)

]
= 1V ,

implying that P−1
x (x) acts as an inverse to x. Since x ∈ alg ({x}), the argument

above shows that P−1
x (x) ∈ alg ({x}) as well, so it is indeed the inverse of x,

meaning that x is invertible. The other direction in this proof combined with
the uniqueness of the inverse now shows that P−1

x = Px−1 .
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12.1 Solutions to exercises

Solution to Exercise 31 (properties of the quadratic representation).
Item 1 follows immediately from the Jordan identity, which, as in Example 47,
says that x and x2 operator-commute. Item 2 is similarly trivial given that
the Jordan product is bilinear by definition, and the map x 7→ Lx is linear by
Proposition 25. Item 3 is simply Px (1V ) = 2L2

x (1V )−Lx2 (1V ) = 2x2−x2 = x2.
Item 4 is not much harder. Using the fact that x−1 lives in the associative
subalgebra alg ({x}) by Definition 66, Px

(
x−1) = 2L2

x

(
x−1) − Lx2

(
x−1) =

2x−
(
x2 ◦ x−1) = 2x− x ◦

(
x ◦ x−1) = 2x− x = x. For Item 5, we again need

to use the fact that x and x−1 operator-commute, which follows since x−1 lives
in the associative subalgebra alg ({x}). With that in mind, simply set z := x−1

in Equation (11.1) and rearrange.
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Chapter 13

The cone of squares

Way back in Section 6.1, we mentioned that Euclidean Jordan algebras are
popular in optimization because of something called a symmetric cone. It turns
out that every symmetric cone comes from some Euclidean Jordan algebra, so
if you want to study symmetric cones, you are essentially studying Euclidean
Jordan algebras. We have already encountered dual cones in Definition 48. A
self-dual cone is a cone K that is equal to its own dual (with K = K∗) and a
symmetric cone is a just a self-dual cone with one additional property.

Definition 74 (symmetric cone). A cone K in a finite-dimensional real Hilbert
space V is homogeneous if for all x and y in the interior of K, there exists an
invertible L ∈ B (V ) such that L (K) = K and L (x) = y. If K is both self-dual
and homogeneous, then it is symmetric.

We note that every self-dual cone is proper as in Definition 47, so all sym-
metric cones (being themselves self-dual) are proper cones too.

13.1 Examples
Recall our three examples of closed convex cones: the nonnegative orthant, the
Lorentz cone, and the PSD cone. These will turn out to be self-dual and ho-
mogeneous, which means that they must arise from a Euclidean Jordan algebra
in some way. The nonnegative orthant arises from the Hadamard EJA, the
Lorentz cone arises from the Jordan Spin EJA, and the PSD cone arises from
the Real Symmetric EJA. Without knowing any details, a few exercises should
still suffice to demonstrate how this happens.

Exercise 32 (nonnegative orthant bijection). In the Hadamard EJA,
show that x 7→ x ◦ x is a bijection when restricted to the nonnegative orthant.

Exercise 33 (PSD cone bijection). In the Real Symmetric EJA, show that
x 7→ x◦x is a bijection when restricted to the PSD cone. For this, you will want
to use the unique decomposition in the spectral theorem for linear algebra.
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13.2 Solutions to exercises

Solution to Exercise 32 (nonnegative orthant bijection). The operation
x 7→ x2 is easily seen to be surjective, because for all x ∈ Rn+, we have

x =


x1
x2
...
xn

 =


√
x1√
x2
...√
xn

 ◦

√
x1√
x2
...√
xn


where √xi is interpreted to mean the unique nonnegative square root of the
nonnegative number xi.

And it’s injective, because if x 6= y in Rn+, then xi 6= yi for some index i. But
then

(
x2)

i
= x2

i and
(
y2)

i
= y2

i are unequal as real numbers, because xi and yi
were nonnegative: the only way you can square two different real numbers and
get the same real number is if they’re negations of one another. Thus x2 6= y2,
and we conclude that squaring is injective.

Solution to Exercise 33 (PSD cone bijection). To see that x 7→ x2 is
surjective, suppose x ∈ Sn+ has the spectral decomposition

x =
I∑
i=1

λiPi, (13.1)

where the set of pairs {(λi, Pi)} is unique and so on by the spectral theorem for
linear algebra. Each λi here is nonnegative by Proposition 20, and so it has a
unique nonnegative square root

√
λi. Working in the other direction, that same

proposition and the spectral theorem now tell us that

x̂ :=
I∑
i=1

√
λiPi

belongs to Sn+ because it’s symmetric (it’s the sum of symmetric projectors)
and its eigenvalues are the nonnegative real numbers

√
λi. Using the fact that

Jordan-algebraic squaring is the same thing as matrix-multiplication squaring,
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that PiPi = Pi, and that PiPj = 0 when i 6= j, we conclude that

x̂2 =
[

I∑
i=1

√
λiPi

][
I∑
i=1

√
λiPi

]

=
I∑
i=1

I∑
j=1

√
λi
√
λjPiPj

=
I∑
i=1

√
λi
√
λiPiPi +

I∑
i=1

∑
j 6=i

√
λi
√
λjPiPj︸ ︷︷ ︸

=0

= x.

For injectivity, it will help to order the eigenvalues. Suppose that x has the
same decomposition, except now with its eigenvalues ordered λ1 ≥ λ2 ≥ · · · ≥
λI—this requires rearranging the projections, but that doesn’t invalidate the
uniqueness of the whole set of pairs. Now further suppose that

y =
J∑
j=1

σjQj , (13.2)

where (σj , Qj) are its (eigenvalue,projection) pairs and σ1 ≥ σ2 ≥ · · · ≥ σJ .
Clearly,

x = y ⇐⇒ {(λi, Pi)}Ii=1 = {(σj , Qj)}Jj=1 (13.3)

because those sets are uniquely associated with x and y respectively. By squar-
ing both Equations (13.1) and (13.2), we find that

x2 =
I∑
i=1

λ2
iPi and y2 =

J∑
j=1

σ2
jQj .

The order of the eigenvalues has not changed here; so, for example, λ2
1 ≥ λ2

2 ≥
· · · ≥ λ2

I . It follows that
(
λ2
k, Pk

)
6=
(
σ2
k, Qk

)
in the decompositions of x2 and y2,

which by Equation (13.3) again shows that x2 6= y2. Thus, squaring is injective.
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Chapter 14

The classification theorem

The goal of this chapter is to classify, up to isomorphism, every Euclidean Jordan
algebra. This incredible result appeared in the original 1934 paper by Jordan,
von Neumann, and Wigner. The first step towards proving such a result is to
state what we mean by isomorphism—a word that is always context-dependent.

Definition 75. If (V, ◦, 〈·, ·〉V ) and (W, •, 〈·, ·〉W ) are two Euclidean Jordan
algebras, then L ∈ B (V ,W ) is a Euclidean Jordan algebra isomorphism between
V and W if it is invertible and if L (x ◦ y) = L (x) • L (y) for all x, y ∈ V .
Two Euclidean Jordan algebras are said to be isomorphic if there exists an
isomorphism between them.

Warning 12: Isomorphisms aren’t isometries

Typically the word “isomorphism” is used to mean an invertible
transformation between two instances of an algebraic structure
that preserves the operations defining that structure. For exam-
ple, a group isomorphism is invertible and preserves group mul-
tiplication; a ring isomorphism is invertible and preserves both
addition and multiplication, and so on. The inner product is
crucial to our definition of a Euclidean Jordan algebra but EJA
isomorphisms need not preserve the inner products!

This incongruity stems from the fact that Definition 53 is not the
original definition of a Euclidean Jordan algebra. Historically,
formally-real Jordan algebras were studied first, and it only later
became apparent that they were equivalent to what we call a
Euclidean Jordan algebra. As a result, what we’re really talking

209



about are formally-real Jordan algebra isomorphisms, and in a
formally-real Jordan algebra there is no a priori inner product for
the transformation to preserve.

One easy consequence of this definition of “isomorphism” is that the in-
ner product doesn’t affect whether or not two Euclidean Jordan algebras are
isomorphic to one another.
Proposition 47. If (V, ◦ , 〈·, ·〉1) is a Euclidean Jordan algebra and if 〈·, ·〉2 is
any other inner product on V such that (V, ◦ , 〈·, ·〉2) is also a Euclidean Jordan
algebra, then (V, ◦ , 〈·, ·〉1) and (V, ◦ , 〈·, ·〉2) are isomorphic.

Proof. The identity map on V is linear, invertible, and clearly preserves the Jor-
dan multiplication. Thus it constitutes an isomorphism between (V, ◦ , 〈·, ·〉1)
and (V, ◦ , 〈·, ·〉2), emphasizing that the inner product does not factor into the
concept of Euclidean Jordan algebra isomorphism.

Every Euclidean Jordan algebra will turn out to be isomorphic to a (finite)
Cartesian product of “simple” algebras, and those, in turn, are known to come
in only five different flavors. Before we continue, let’s look at an additional
example of a Euclidean Jordan algebra. We’ve used the Jordan Spin EJA as an
example up until now for simplicity, but the general form of a rank-two “simple”
algebra involves a bit more freedom.

14.1 Bilinear forms
Example 69 (Bilinear Form EJA). Let (W, 〈·, ·〉W ) be a finite-dimensional real
inner-product space, and define the Cartesian product space V := R×W . Recall
from the discussion preceding Example 46 that the natural inner product on V
is 〈[

x1
x̄

]
,

[
y1
ȳ

]〉
V

= x1y1 + 〈x̄, ȳ〉W .

If we let x := (x1, x̄)T and y := (y1, ȳ)T , then we can define a Jordan product
on V by

x ◦ y :=
[
x1
x̄

]
◦
[
y1
ȳ

]
=
[
x1y1 + 〈x̄, ȳ〉W
y1x̄+ x1ȳ

]
=
[
〈x, y〉V
y1x̄+ x1ȳ

]
.

With these definitions, (V, ◦ , 〈·, ·〉V ) forms a Euclidean Jordan algebra regard-
less of the inner product on W . The Jordan Spin EJA of dimension n is obtained
as a special case by choosing some orthonormal basis b for W and then taking
〈x̄, ȳ〉W := 〈b (x̄),b (ȳ)〉Rn−1 to be the standard inner product of the basis rep-
resentations of x̄ and ȳ in Rn−1. The added generality comes from the ability
to choose a different inner product on W , if we so choose.
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It’s fairly easy to characterize the possible inner products that we can put
on the space W in the Bilinear Form EJA, which in turn makes it easy to
characterize what those algebras look like. To explain the name, we recall the
definition of a bilinear form.

Definition 76. If V is a real vector space, then a bilinear form on V is a bilinear
function B : V ×V → R. A bilinear form B is said to be symmetric if B (x, y) =
B (y, x) for all x, y ∈ V , and is said to be positive-definite if B (x, x) > 0 for all
nonzero x ∈ V .

One can readily define bilinear forms on complex vector spaces; however,
the connection between inner products and bilinear forms evinced in the follow-
ing proposition means that we are usually more interested in the concept of a
sesquilinear form when our vector spaces are complex.

Proposition 48. If (V, 〈·, ·〉V ) is an n-dimensional real vector space and if
B : (V × V )→ R, then the following are equivalent:

1. B is an inner product on V .

2. B is a symmetric positive-definite bilinear form on V .

3. For any basis b of V , there exists a symmetric positive-definite matrix
B ∈ Rn×n such that B = (x, y) 7→ 〈Bb (x),b (y)〉Rn .

Proof. The equivalence between inner products and symmetric positive-definite
bilinear forms comes straight from Definition 13 and the note in Simplification 1.

To show that the second and third items are equivalent, suppose B is a
bilinear form on V and that b := {b1, b2, . . . , bn} is a basis for V . Then any
x, y ∈ V can be written as x =

∑n
i=1 xibi and y =

∑n
j=1 yjbj , and we have by

bilinearity,

B (x, y) =
n∑
i=1

n∑
j=1

xiyiB (bi, bj) .

After we’ve chosen the basis b, each B (bi, bj) above is some fixed real number;
call it bij , and let B =

[
Bij
]

be the matrix whose i, jth entry is Bij := bji. One
can now simply compute

〈Bb (x),b (y)〉Rn =
n∑
j=1

(Bb (x))j b (y)j =
n∑
j=1

n∑
i=1

Bjixiyj =
n∑
i=1

n∑
j=1

bijxiyj ,

which is nothing other than B (x, y). Thus the two functions (x, y) 7→ B (x, y)
and (x, y) 7→ 〈Bb (x),b (y)〉Rn are identical after fixing the basis b. The fact
that B is a symmetric matrix if and only if B is a symmetric function follows
from

∀b (x) ,b (y) ∈ Rn︸ ︷︷ ︸
∀x,y∈V

: 〈Bb (x),b (y)〉Rn︸ ︷︷ ︸
B(x,y)

= 〈b (x), Bb (y)〉Rn︸ ︷︷ ︸
B(y,x)

⇐⇒ B = BT ,
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By similar reasoning, the matrix B is positive-definite if and only if the bilinear
form B is positive-definite. Thus the second item implies the third.

Conversely, if we are handed a basis b and the symmetric positive-definite
matrix B such that B = (x, y) 7→ 〈Bb (x),b (y)〉Rn , then it’s fairly evident that
B defines a symmetric positive-definite bilinear form on V .

Corollary 24. For every Bilinear Form EJA A1 :=
(
R×W, ◦ , 〈·, ·〉R×W

)
there

exists an orthonormal basis b of W and symmetric positive-definite matrix B ∈
Rn−1×n−1 such that A1 is isomorphic to a Euclidean Jordan algebra A2 :=(
Rn, •, 〈·, ·〉A2

)
where[

u1
ū

]
•
[
v1
v̄

]
:=
[
u1v1 + 〈Bū, v̄〉Rn−1

v1ū+ u1v̄

]
and 〈[

u1
ū

]
,

[
v1
v̄

]〉
A2

:= u1v1 + 〈Bū, v̄〉Rn−1 .

Conversely, every algebra of that form is a Bilinear Form EJA.

Proof. Let A1 be given; then Proposition 48 says that there exists a basis b
and a symmetric positive-definite matrix B ∈ Rn−1×n−1 such that 〈x̄, ȳ〉W =
〈Bb (x̄),b (ȳ)〉Rn−1 . Thus for x, y ∈ A1,

x ◦ y :=
[
x1y1 + 〈x̄, ȳ〉W
y1x̄+ x1ȳ

]
=
[
x1y1 + 〈Bb (x̄),b (ȳ)〉Rn−1

y1x̄+ x1ȳ

]
=
[
x1

b (x̄)

]
•
[
y1

b (ȳ)

]
.

(14.1)

If we define the map

φ : (R×W )→ Rn

φ =
[
x1
x̄

]
7→
[
x1

b (x̄)

]
,

then it’s relatively clear that φ is invertible and linear, and is in fact an isometry
since b was chosen to be an orthonormal basis. Equation (14.1) then shows that
φ preserves the multiplication between the two algebras, and the inner product
on A2 satisfies Equation (6.1) since, using the fact that the inner product on
A1 does,

〈x • y, z〉A2
=
〈
φ−1 (x • y), φ−1 (z)

〉
R×W

=
〈
φ−1 (x) ◦ φ−1 (y), φ−1 (z)

〉
R×W

=
〈
φ−1 (y), φ−1 (x) ◦ φ−1 (z)

〉
R×W

=
〈
φ−1 (y), φ−1 (x ◦ z)

〉
R×W

= 〈y, x • z〉A2
.
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The converse follows rather easily by letting W := Rn−1, and by noting
that if we’re given any symmetric positive-definite matrix B ∈ Rn−1×n−1, then
(ū, v̄) 7→ 〈Bū, v̄〉Rn−1 defines an inner product 〈·, ·〉W on W by Proposition 48.
Thus (Rn, •, (u, v) 7→ u1v1 + 〈Bū, v̄〉Rn−1) satisfies the definition of a Bilinear
Form EJA.

14.2 Octonions
The Cayley-Dickson construction can be continued. Just as complex numbers
can be represented as a pair of real ones—and quaternions can be represented
as a pair of complex numbers—we can construct something called an octonion
as a pair of quaternions. Since quaternions have four real coordinates (two for
each complex coordinate), octonions wind up having eight real coordinates. Oct
is twice quat; it all makes sense.

Definition 77 (Octonions). If {e1, e2, . . . , e8} is the standard basis in R8, then
the octonions is the eight-dimensional non-associative and non-commutative
algebra O obtained by endowing R8 with the multiplication ? whose action on
the standard basis is,

? e1 e2 e3 e4 e5 e6 e7 e8

e1 e1 e2 e3 e4 e5 e6 e7 e8
e2 e2 −e1 e4 −e3 e6 −e5 −e8 e7
e3 e3 −e4 −e1 e2 e7 e8 −e5 −e6
e4 e4 e3 −e2 −e1 e8 −e7 e6 −e5
e5 e5 −e6 −e7 −e8 −e1 e2 e3 e4
e6 e6 e5 −e8 e7 −e2 −e1 −e4 e3
e7 e7 e8 e5 −e6 −e3 e4 −e1 −e2
e8 e8 −e7 e6 e5 −e4 −e3 e2 −e1

The real part of x = x1e1 + x2e2 + · · · + x8e8 ∈ O is < (x) := x1e1, and
its imaginary part is the rest of it, namely = (x) := x2e2 + x3e3 + · · · + x8e8.
Keeping in mind that x = < (x)+= (x), the conjugate of x is x := < (x)−= (x).
A norm on O is given by ‖x‖ :=

√
x ? x.

It follows from this definition that 1O = e1 is a multiplicative unit element
for the octonions, and that every non-zero x ∈ O has an inverse x−1 = x/ ‖x‖2.
These concepts are essentially the same as the ones for the complex numbers
and quaternions, except with the number 8 replacing 2 or 4 respectively. While
octonion multiplication is not associative, it is power-associative, so O is one of
the Power-associative algebras.
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Convention 14: Octonion notation

From here on out, we denote octonion (and quaternion, and com-
plex, and real) multiplication by simple juxtaposition, omitting
the explicit ? operation.

If On×n is the set of square matrices with octonion entries, then with com-
ponentwise scaling by real numbers, On×n forms a non-commutative and non-
associative algebra over R. The fact that matrix multiplication is not commu-
tative is not a surprise, but it is usually associative when the entries come from
a nicer structure. In this algebra we can define the conjugate transpose of a
matrix exactly how we did for complex matrices. If A ∈ On×n has entries aij ,
then the conjugate-transpose of A is written A∗ and has entries aji. We can
then say that A is Hermitian if A∗ = A. The set of Hermitian matrices with
octonion entries give rise to a family of Euclidean Jordan algebras just like they
did with real, complex, and quaternion entries.

Example 70 (Octonion Hermitian EJA). Let Hn (O) ⊆ On×n denote the space
of n-by-n Hermitian matrices with octonion entries. If n ∈ {0, 1, 2, 3}, then the
operation

X ◦ Y := XY + Y X

2
defines a Jordan product on Hn (O), and the function

(X,Y ) 7→ < (trace (XY ))

defines an inner-product on Hn (O) that is compatible with the Jordan product
and makes the entire structure into a Euclidean Jordan algebra. We call this
the Octonion Hermitian EJA.

A few things here deserve comment. We take the real part of the trace in the
inner-product because Definition 13 says that the values of the inner-product
must lie in the scalar field, and the scalar field here is R. The real part of any
octonion will actually be of the form x1e1 for x1 ∈ R; we are therefore using the
canonical embedding α 7→ αe1 of R into O to treat < (x) = x1e1 as if it were
the real number x1 ∈ R.

Perhaps more glaring is the fact that we have restricted n to a few specific
values, unlike in the past. This is for the non-obvious but straightforward reason
that those are the only values of n that work. And three out of the four cases are
actually redundant. When n = 0, you get the Trivial EJA. When n = 1, you get
the one-dimensional Hadamard EJA or the Jordan Spin EJA on R (they’re the
same thing). And finally, when n = 2, you get the Jordan spin algebra on R10.
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This is not immediately clear. Define the following basis b = {b1, b2, . . . , b10}
for H2 (O):

b1 :=
[
e1 0
0 e1

]
, b10 :=

[
e1 0
0 −e1

]
, and bi :=

[
0 ei
ei 0

]
for i ∈ {2, 3, . . . , 9} .

Notice that H2 (O) is ten-dimensional over R, and not three-dimensional like
you would expect if the entries came from the same place as the scalars. At any
rate, now simply compute the multiplication table bi ◦ bj :

◦ b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

b1 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
b2 b2 b1 0 0 0 0 0 0 0 0
b3 b3 0 b1 0 0 0 0 0 0 0
b4 b4 0 0 b1 0 0 0 0 0 0
b5 b5 0 0 0 b1 0 0 0 0 0
b6 b6 0 0 0 0 b1 0 0 0 0
b7 b7 0 0 0 0 0 b1 0 0 0
b8 b8 0 0 0 0 0 0 b1 0 0
b9 b9 0 0 0 0 0 0 0 b1 0
b10 b10 0 0 0 0 0 0 0 0 b1

This is exactly the same multiplication table that you get for the Jordan
spin algebra on R10 using the standard basis. You don’t actually have to check
that; just extrapolate the pattern you saw in Example 58. This shows that the
two are isomorphic as (Euclidean) Jordan algebras, leaving only H3 (O) as a
possibly new and interesting example.

Definition 78 (Albert EJA). H3 (O) is called the Albert algebra. It’s not
isomorphic to any of our other examples.

14.3 Simple algebras
The meaning of a simple algebra has something to do with ideals, again.

Definition 79. If M is a commutative algebra over R, then an algebra ideal in
M is a subset I ⊆ M such that (after restricting the domain and codomain of
the algebra operations appropriately),

• I is closed under the addition, multiplication, and scaling operations in-
herited from M .

• ∀x ∈ I, ∀y ∈M : x ◦ y ∈ I.

This is similar to Definition 6 of a ring ideal, except that we require the
substructure to be closed under scalar multiplication as well. As with ring
ideals, we have been careful not to say that I should be a subalgebra, because
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if M has a unit element 1M , we don’t want to require that 1M ∈ I for I to be
an algebra ideal. I believe (but have not personally checked) that this situation
is analogous to ring ideals, in that the definition is precisely what we need for
the quotient M/I to form an algebra itself.

Definition 80. A Euclidean Jordan algebra is simple if its only algebra ideals
are the entire space and {0}.

Jordan, von Neumann, and Wigner refer instead to “irreducible” algebras,
where irreducibility means that an algebra cannot be decomposed into a direct
sum of two or more proper nontrivial subalgebras. These terms will turn out
to mean the same thing in a Euclidean Jordan algebra, but we choose to work
with simple algebras at first because doing so requires less justification, and is
possibly more familiar from other contexts like Lie algebras where irreducibility
and simplicity are quite different.

Theorem 37. Every Euclidean Jordan algebra is isomorphic to a Cartesian
Product EJA whose factors are simple.

Theorem 38. Every simple Euclidean Jordan algebra is isomorphic to one of
the following:

1. a Bilinear Form EJA,

2. a Real Symmetric EJA,

3. a complex Hermitian EJA,

4. a quaternion Hermitian EJA, or

5. an Octonion Hermitian EJA.

More precisely, the only rank-one Euclidean Jordan algebra is the Bilin-
ear Form EJA on R—basically the real numbers with the usual multiplication
as its Jordan product and a scalar-multiple of the usual multiplication as its
inner-product. Any rank-two algebra is isomorphic to a Bilinear Form EJA of
higher dimension, including all of the two-by-two symmetric/Hermitian matrix
algebras.

Exercise 34 (complex skew-symmetric EJA). Faraut and
Korányi, Exercise
III.1.b

Fix an integer m ∈ N, and
let n = 2m. Define the matrix

J :=
[

0 I
−I 0

]
∈ C2m×2m = Cn×n

(with m-by-m blocks) and consider the real vector space,

V :=
{
X ∈ Cn×n

∣∣ XT = −X and XJ = JX
}
.

Here, X denotes the entrywise complex conjugate. The condition XT = −X
states that these matrices are skew-symmetric but not skew-Hermitian, as would
be more common with matrices whose entries are complex.
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Show that this vector space forms a Euclidean Jordan algebra under the
Jordan and inner products,

X ◦ Y := (XJY + Y JX) /2,
〈X,Y 〉 := trace (X∗Y ) .

Compute its dimension, and hazard a guess as to which simple algebra it is
Jordan-isomorphic.

Lemma 12. Suppose that (V, ◦ , 〈·, ·〉V ) and (W, •, 〈·, ·〉W ) are two Euclidean
Jordan algebras. If {c1, c2, . . . , cr} is a Jordan frame for V and if {d1, d2, . . . , ds}
is a Jordan frame for W , then

F := {(c1, 0) , (c2, 0) , . . . , (cr, 0)} ∪ {(0, d1) , (0, d2) , . . . , (0, ds)}

is a Jordan frame for the Cartesian product algebra V ×W .

Proof. It’s fairly easy to check that F is a complete system of orthogonal idem-
potents using Definition 58. It remains only to show that each element of F
is primitive. Without loss of generality, we show that (c1, 0) is primitive; the
proof for any other element is essentially the same.

Suppose that (c1, 0) = (a1, b1)+(a2, b2) for two idempotents (a1, b1) ∈ V ×W
and (a2, b2) ∈ V × W . Right away we see that 0 = b1 + b2, implying that
b1 = −b2. But from the pair’s idempotence, we also have

(a1, b1) = (a1, b1)2 :=
(
a2

1, b
2
1
)
,

implying that a1 and b1 are themselves idempotent. By the same reasoning,
both a2 and b2 are idempotent. Squaring both sides of b1 = −b2 now gives
b1 = b2. Combinining that with the original equation b1 = −b2 then gives
2b1 = 0, or b1 = 0. It follows that b2 = −b1 = 0 as well.

So, as soon as we wrote (c1, 0) = (a1, b1) + (a2, b2), we forced b1 = b2 = 0.
What about a1 and a2? Recall that c1 = a1 + a2 was not only idempotent, but
primitive, since it belongs to a Jordan frame for V . Thus from the idempotence
of a1 and a2 we conclude that one of either a1 or a2 must be zero. Putting
everything together, either (a1, b1) or (a2, b2) must be zero, showing that (c1, 0)
is primitive.

Theorem 39. If V :=×m

i=1Vi is a Cartesian Product EJA, then rank (V ) =∑m
i=1 rank (Vi). In other words, the rank is additive on a Cartesian product of

Euclidean Jordan algebras.

Proof. We showed in Proposition 43 that every Jordan frame in V has rank (V )
elements. Apply Lemma 12 repeatedly to obtain a Jordan frame for V consisting
of
∑m
i=1 rank (Vi) elements and you’re done.

Corollary 25. If V ×W is a Cartesian Product EJA and if (x, y) ∈ V ×W ,
then

det ((x, y)) = det (x) det (y) .
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Proof. If x =
∑r
i=1 λici is the full spectral decomposition of x ∈ V and if

y =
∑s
j=1 µjdj is the full spectral decomposition of y ∈W , then Lemma 12 and

Theorem 39 show that

(x, y) =
r∑
i=1

λi (ci, 0) +
s∑
j=1

µj (0, dj)

is the full spectral decomposition of (x, y). Recalling from Corollary 19 that the
determinant of an element is simply the product of its eigenvalues, the spectral
decompositions of x, y, and (x, y) make the result obvious.

14.4 Solutions to exercises

Solution to Exercise 34 (complex skew-symmetric EJA). First, note
that V is actually a vector space. It’s not quite obvious, but it follows from the
fact that both XT = −X and XJ = JX are linear conditions, so V must be a
subspace of the real vector space Cn×n.

The given Jordan product is “obviously” commutative, so first we check that
V is closed under it. Notice that J itself is skew-symmetric; thus we can pull
out (−1)3 in

(X ◦ Y )T =
(
Y TJTXT +XTJTY T

)
/2 = − (X ◦ Y ) .

Moreover, using XJ = JX and likewise for Y ,

(X ◦ Y ) J = (XJY J + Y JXJ) /2 =
(
JXJY + JY JX

)
/2 = J(X ◦ Y ).

Next we check the Jordan identity, using for convenience the identity

X2 ◦ Z =
(
X2JZ + ZJX2) /2 = (XJXJZ + ZJXJX) /2.

Now,

X ◦X2 ◦ Y = XJXJXJY +XJY JXJX +XJXJY JX + Y JXJXJX

4

and

X2 ◦ (X ◦ Y ) = XJXJXJY +XJXJY JX +XJY JXJX + Y JXJXJX

4

whose terms are equal. The given inner product satisfies the definition of an
inner product on any real or complex matrix space (note that the conjugate-
transpose is used here), so all that remains is to check that it is associative,

218



Equation (6.1). Using skew-symmetry and JX = XJ ⇐⇒ JX = XJ ,

〈X ◦ Y , Z〉 =
trace

(
(XJY )∗ Z

)
+ trace

(
(Y JX)∗ Z

)
2

= −
trace

(
Y JXZ

)
+ trace

(
XJY Z

)
2 ,

〈Y,X ◦ Z〉 = trace (Y ∗XJZ) + trace (Y ∗ZJX)
2

= −
trace

(
Y XJZ

)
+ trace

(
Y ZJX

)
2

= −
trace

(
Y JXZ

)
+ trace

(
Y ZXJ

)
2 .

Recalling again that trace (AB) = trace (BA) for two matrices A and B, these
expressions are seen to be equal term-wise.

Finally, we observe that −J serves as the multiplicative unit element in this
algebra. It’s easy to see that both −J ∈ V and that −JJ = I, so

∀X ∈ V : −J ◦X = [(−JJ)X +X (−JJ)] /2 = X.

To ascertain the dimension of V , a little algebra will show that any X ∈ V has
the block form,

X =
[
x1 x2
−x2 x1

]
,

where x1 is skew-symmetric and x2 is Hermitian. (This representation follows
from only skew-symmetry and the condition XJ = JX.) Since x1 and x2 are m-
by-m, the dimension of V is the sum of the dimensions of the spaces of complex
m-by-m skew-symmetric and Hermitian matrices, considered independently as
real vector spaces.

For the skew-symmetric block, we have zeros on the diagonal, and thus
1
2

[
(m− 1)2 + (m− 1)

]
free coordinates, into each of which we can insert either

a 1 or an i (the set {1, i} forms a basis for C over R). Thus this block contributes

2(m− 1)2 + (m− 1)
2 = m2 −m

degrees of freedom.
For the Hermitian matrices, there are also 1

2

[
(m− 1)2 + (m− 1)

]
com-

pletely free coordinates, but there’s an additional m degrees of freedom on the
diagonal where the entries must real. Thus this block contributes m2 to the
total.

Adding these up, we get dim (V ) = 2m2 −m. This is the same dimension
as the Quaternion Hermitian EJA of order m, so it is a reasonable guess that
the two are Jordan isomorphic.
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Chapter 15

Spectral sets and functions

Forthcoming.
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Appendix A

Convex optimization

A.1 Convex functions
Definition 81. If V is a real vector space and if X ⊆ V is a convex set, then
the function f : X → R is a convex function (on X) if

∀x, y ∈ X,∀α ∈ [0, 1] : f (αx+ (1− α) y) ≤ αf (x) + (1− α) f (y) .

Note that we need the domain X to be a convex set before we can even state
the property above—otherwise how do we know that αx + (1− α) y is in the
domain of f?

The importance of Definition 81 is not clear at first, but this next result
should clear things up.

Theorem 40. Boyd, 3.1.3Suppose that V is a real vector space and that f : X → R is
differentiable. Then f is convex if and only if

∀x, z ∈ X : f (x+ z) ≥ f (x) + 〈∇f (x), z〉 .

In particular this theorem says that if x ∈ X is a local minimum (that is, if
we have ∇f (x) = 0), then x is in fact the global minimum of f on X.

Example 71. If V is a real vector space and if f : V → V is linear, then f is
convex on V .

This is fairly trivial: if x, y ∈ V and if α ∈ [0, 1], then of course we have

f (αx+ (1− α) y) ≤ αf (x) + (1− α) f (y)

in Definition 81, because the Definition 32 of a linear operator says that

f (αx+ (1− α) y) = αf (x) + (1− α) f (y) .

Nevertheless, linear functions are probably the most important examples of
convex functions.
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Exercise 6. Prove that affine functions are convex, too.

Proposition 49. Boyd, 3.1.6If V is a real vector space and if f : V → R is convex on a
convex subset X of V , then the set

f−1 ([−∞, α]) = {x ∈ X | f (x) ≤ α}

is convex for any α ∈ R.

Definition 82. Boyd, 1.3 and
4.1.1

If V is a real vector space, if X ⊆ V is a convex set, and if
f : X → R and g1, g2, . . . , gm : V → R are convex functions, then

minimize f (x)
subject to g1 (x) ≤ 0

g2 (x) ≤ 0
...
gm (x) ≤ 0

(COPT)

is a (constrained) convex optimization problem.

You will also see Definition 82 written with equality constraints; however,
any equality constraint g (x) = 0 can be written as −g1 (x) ≤ 0, g2 (x) ≤ 0 where
both g1 = g2 = g. As a result, the equality constraints are technically redundant
in the definition. To see that this is really minimizing a convex function over a
convex set, we need only note that the set of feasible points is

X ∩ g−1
1 ([−∞, 0]) ∩ g−1

2 ([−∞, 0]) ∩ · · · ∩ g−1
m ([−∞, 0]),

which by Propositions 24 and 49 is convex.

A.2 Linear programming
Definition 83. If f, g1, g2, . . . , gm are affine on V = Rn and if we take X = Rn+,
then the convex optimization problem in Definition 82 is called a linear program.
Since any linear function from Rn to R can be expressed as an inner product,
we commonly let

f = x 7→ 〈c, x〉+ d

g1 = x 7→ 〈−a1, x〉+ b1

g2 = x 7→ 〈−a2, x〉+ b2

...
gm = x 7→ 〈−am, x〉+ bm

where c, a1, a2, . . . , am ∈ Rn and d, b1, b2, . . . , bm ∈ R are whatever vectors/num-
bers make things work (and the negative sign is just for convenience in the def-
inition of A that follows). Now if we let A ∈ Rn×n be the matrix whose ith row
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is ai and b = (b1, b2, . . . , bm)T , then Problem (COPT) can be rewritten in the
more familiar form,

minimize 〈c, x〉
subject to Ax ≥ b

x ≥ 0
m

minimize 〈c, x〉
subject to Ax− b ∈ Rn+

x ∈ Rn+.

(LP)

Here we have dropped the constant d because it does not change the optimal
point, if there is one. We also have to specify that x ∈ Rn+ now, because
otherwise that restriction is not clear from the domain of the function x 7→ 〈c, x〉.

This is essentially the same form as Boyd’s (4.29), since the sign doesn’t
matter and even the constraint x ≥ 0 ⇐⇒ x ∈ Rn+ can be embedded in the
matrix if you’re willing to add some extra dimensions to the problem.

We won’t go into the details of linear programming here. It’s probably the
most important optimization problem of the 20th century. Section 4.3 in Boyd
describes several important applications. For us, what we want to focus on
is that Problem (LP) expresses this important problem in terms of a self-dual
proper cone.

SageMath can solve linear programs, of course; but beware, there are a lot
of options to play around with. For example, the default linear program in
SageMath is a maximization problem, and it supports integer variables.
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sage: # http://people.brunel.ac.uk/˜mastjjb/jeb/or/morelp.html
sage: LP = MixedIntegerLinearProgram()
sage: x = LP.new_variable(real=True, nonnegative=True)
sage: LP.add_constraint(50*x[0] + 24*x[1] <= 40*60)
sage: LP.add_constraint(30*x[0] + 33*x[1] <= 35*60)
sage: LP.add_constraint(x[0] >= 45)
sage: LP.add_constraint(x[1] >= 5)
sage: LP.set_objective(x[0] + x[1] - 50)
sage: LP.show()
Maximization:

x_0 + x_1 - 50.0
Constraints:

50.0 x_0 + 24.0 x_1 <= 2400.0
30.0 x_0 + 33.0 x_1 <= 2100.0
- x_0 <= -45.0
- x_1 <= -5.0

Variables:
x_0 is a continuous variable (min=0.0, max=+oo)
x_1 is a continuous variable (min=0.0, max=+oo)

sage: LP.solve()
1.25

Every linear programming problem has a dual problem, that tries to compute
the same optimal value through different means. If you’re familiar with the
Lagrange multiplier theorem, you may recall the Lagrangian function associated
with Definition 82,

L : (X,Rm)→ R

L := (x, λ) 7→ f (x) +
m∑
i=1

λigi (x) .
(A.1)

The m variables λ1, λ2, . . . , λm are called dual variables, and they play an im-
portant part in solving Problem (COPT). For our purposes, though, we’ll be
interested in the Lagrangian dual function, which eliminates the variable x from
the Function (A.1) by taking an infimum over the domain of x:

d : Rm → R ∪ {−∞}
d := λ 7→ inf ({L ((x, λ)) | x ∈ X}) .

(A.2)

When λ ≥ 0, it’s not hard to see that d (λ) is less than or equal to the optimal
value of Problem (COPT).

Proposition 50. Boyd, 5.1.3If d is the Lagrangian dual function associated with the convex
optimization problem in Definition 82 and if λ ≥ 0, then d (λ) ≤ f (x) for all
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x ∈ X, and in particular d (λ) is a lower bound on the optimal objective function
value in Problem (COPT).

Proof. By definition we have

d (λ) = inf


f (x) +

m∑
i=1

λigi (x)︸ ︷︷ ︸
≤0

∣∣∣∣∣∣∣∣∣∣
x ∈ X



 ,

where each term λigi (x) is nonpositive because λi ≥ 0 by assumption and gi (x)
from the problem constraints.

This leads to an interesting question: if we try to maximize d over the set
{λ ∈ Rm | λ ≥ 0}, will we reach the optimal value of Problem (COPT)? This is
a deep question, whose answer is “maybe.” But in the case of a linear program,
things are pretty nice.

Definition 84. Boyd, Section 5.2The dual linear program (with slack variables) associated to
Problem (LP) in Definition 83 is

maximize 〈b, y〉
subject to AT y + s = c

y ≥ 0
s ≥ 0.

(dLPs)

In this problem we are maximizing over (y, s)T ∈ R2n. The dual problem
is obtained in a straightforward manner by trying to maximize the Lagrangian
dual Function (A.2) of the original linear programming problem. If we eliminate
the slack variables, we obtain another, equivalent, form of the same problem.

maximize 〈b, y〉
subject to AT y ≤ c

y ≥ 0
(dLP)

This latter form exhibits a nice symmetry with Problem (LP).

Exercise 7. Derive Problem (dLP) yourself by expressing Problem (LP) in the
same form as Boyd’s (5.21). The dual problem to (5.21) is then given in (5.22),
which you can show is equivalent to Problem (dLP).

I promised you that things were nice for linear programs, and they are:

Theorem 41 (strong duality for linear programming). If either the primal
Problem (LP) or the dual Problem (dLP) are feasible, then their optimal values
are equal.
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Boyd gives this theorem as an example in section 5.2.4, but that’s a bit
disingenuous: it’s not at all easy to prove. Nevertheless, the strong duality
theorem tells us why we care about the dual linear program: we can use it to
solve the original (primal) problem! Here’s an example in SageMath, computing
the optimal value of the dual to the example that we did earlier. We see that its
optimal value is essentially the same—the tiny difference is due to floating-point
roundoff errors.

sage: LP_dual = MixedIntegerLinearProgram(maximization=False)
sage: y = LP_dual.new_variable(real=True, nonnegative=True)
sage: LP_dual.add_constraint(50*y[0] + 30*y[1] - y[2] >= 1)
sage: LP_dual.add_constraint(24*y[0] + 33*y[1] - y[3] >= 1)
sage: LP_dual.set_objective( 40*60*y[0] + 35*60*y[1]
....: - 45*y[2] - 5*y[3] - 50 )
sage: LP_dual.solve()
1.250000000000007

A.3 Cone programming
While linear programming held center stage throughout most of the 20th cen-
tury, symmetric cone programming took over in the 1990s. A “cone program”
(or “conic program”) is like the linear program in Problem (LP), but with the
constraints Ax − b ∈ Rn+ and x ∈ Rn+ replaced by Ax − b ∈ K and x ∈ K
respectively, for some proper cone K. For the moment, we won’t worry about
whether or not this even makes sense.

Definition 85. Boyd, 4.6.1If K is a proper cone in a finite-dimensional real inner-product
space V and if b, c ∈ V and A ∈ B (V ), then

minimize 〈c, x〉
subject to A (x) <K b

x <K 0
(CP)

is the standard form of a (primal) cone programming problem.

The similarity between Problem (LP) and Problem (A.3) should be obvious:
aside from leaving A written as an operator (as opposed to a matrix), all we’ve
done is replace Rn+ with K. The objective function is still linear (so it is convex),
and its domain can be restricted to the feasible set K which is also convex. Thus
we almost have a convex optimization problem a la Definition 82, if we can figure
out what to do with the constraints A (x) <K b.

Let’s be sneaky. This strategy is discussed in section 4.1.3 of Boyd. De-
fine J := {x ∈ V | A (x) <K b}. I claim that this set is convex. Suppose that
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x1, x2 ∈ J and that α ∈ [0, 1], and note that b = αb+ (1− α) b. Then,

A (αx1 + (1− α)x2)− b
= αA (x1) + (1− α)A (x2)− b
= αA (x1)− αb+ (1− α)A (x2)− (1− α) b
= α (A (x1)− b) + (1− α) (A (x2)− b) ,

which is a convex combination of the elements A (x1)−b ∈ K and A (x2)−b ∈ K.
Since K is convex, the combination of the two is back in K. Thus, J is convex.
Now without loss of generality, we can reword the problem. Let L represent the
function x 7→ 〈c, x〉 but with its domain restricted to K ∩ J , which is a convex
set by Proposition 24. Then Problem (A.3) is not the same as, but is completely
equivalent to

minimize L (x) ,
which satisfies Definition 82 since there are no constraints and the domain of
L is a convex set. Thus we conclude that—at least in spirit—the primal cone
program is a convex optimization problem.

Finding the dual cone program is a tiny bit more involved than it was in the
linear case; but basically, the reason we work with convex cones and why cone
programming is a thing is because this process all comes together rather nicely.

Definition 86. Boyd, Example
5.12

The dual cone program (with slack variables) associated to
Problem (A.3) in Definition 85 is

maximize 〈b, y〉
subject to A∗ (y) + s = c

y <K∗ 0
s <K∗ 0.

(dCPs)

And in exactly the same way we did in the linear case, the slack variables can
be eliminated to obtain an equivalent problem that exhibits a nice symmetry
with Problem (A.3).

maximize 〈b, y〉
subject to A∗ (y) 4K∗ c

y <K∗ 0.
(dCP)

The only thing that really needs an explanation here is the switch from K
to its dual, K∗. The first thing we need to do is figure out what we mean by the
“Lagrangian” Function (A.1) when generalized cone inequalities are involved.
Since we no longer have a system of m real-number inequalities, we have to do
something else. Notice that if we define g (x) = (g1 (x) , g2 (x) , . . . , gm (x))T ,
then the constraints in Problem (COPT) can be written as simply g (x) ≤ 0,
and we then have

m∑
i=1

λigi (x) = 〈g (x), λ〉
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in the Function (A.1). This situation can now be generalized to the case of
conic inequalities like g (x) <K 0, at least when g is linear. In that case, we are
essentially dealing with Problem (A.3); so, we define the Lagrangian function
associated to problem to be

L : (X,V )→ R
L := (x, λ) 7→ 〈c, x〉 − 〈A (x)− b, λ〉 ,

(A.3)

where A (x) − b now plays the role of g (x) in our analogy. Ultimately, the
analogy is not all that important—we can prove things about the function in
Function (A.3), and that’s all that matters.

Proposition 51. If d is the Lagrangian dual function associated with Prob-
lem (A.3) and Function (A.3) and if λ ∈ K∗, then d (λ) ≤ 〈c, x〉 for all x ∈ X,
and in particular d (λ) is a lower bound on the optimal objective function value
in Problem (A.3).

Proof. By definition we have

d (λ) = inf


〈c, x〉 − 〈A (x)− b, λ〉︸ ︷︷ ︸

≥0

∣∣∣∣∣∣∣ x ∈ K

 ,

where 〈A (x)− b, λ〉 is nonnegative from A (x)−b ∈ K, and the definition of the
dual cone.

(That’s why we defined the dual cone the way that we did.)
So, weak duality holds for cone programs, as do a lot of other results. There is

also a strong duality, but it requires us to impose some additional conditions on
the constraint functions called “constraint qualifications.” These are discussed
briefly in Section 5.9 of Boyd. One common constraint qualification is Slater’s
condition, which insists that there be some point in the relative interior of the
feasible set. There’s a list of them on the Wikipedia page for the Karush-Kuhn-
Tucker conditions.

The theory of cone programming (being a generalization of linear program-
ming) is very similar to that of linear programming. We won’t go into depth,
but we will mention one other important result that extends to the conic setting.

Theorem 42 (complementary slackness). Boyd, 5.5.2 and
5.9.2

Let x∗ and y∗ be optimal solutions
for the primal and dual cone programming problems Problem (A.3) and Prob-
lem (dCP), respectively. If 〈c, x∗〉 = 〈b, y∗〉 (that is, if strong duality holds),
then 〈x∗, y∗〉 = 0.

While most of the linear programming theory still works in the conic setting,
the proofs are much harder and the theorems are more intricate. The tradeoff
is that much harder optimization problems can be solved.

229

https://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions
https://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions


Example 72. Baes, Example
1.4.1; Boyd, 4.4.2

If K = Ln+, the cone from Example 35, then Problem (A.3) is
called a second-order cone program, or SOCP.

Second-order cone programs can be used to solve linear programs where the
objective function is quadratic (these are called quadratic programs). They can
also be used to solve problems where the objective function is still affine, but
the constraints are elliptical instead of linear. A few examples:

• Constrained least-squares approximation.

• Minimum distance between two polyhedra.

• Robust linear programming, where there’s a ball (or ellipse) of uncertainty
around the cost vector and/or constraint vectors.

Example 73. Baes, Example
1.4.2; Boyd, 4.6.2

If K = Sn+, the cone from Example 36, then Problem (A.3)
is called a semidefinite program, or SDP. Technically, all second-order cone
programs (SOCPs) can be expressed as semidefinite programs (SDPs). However,
from a practical perspective, it’s usually better to exploit the structure of an
SOCP than it is to think of it as an SDP.

Semidefinite programs are surprisingly powerful. In many cases, NP-hard
problems have “SDP relaxations,” which are semidefinite programs that give you
an approximate answer to a problem that would otherwise be combinatorially
hard. For example,

• Linear programs with a binary variable (in F2×F2×· · ·×F2), as in section
7.3 of Alizadeh’s lecture notes.

• The “max cut” problem for a graph (section 1.2 in Alizadeh’s lecture
notes).

• The traveling salesman problem (TSP); see e.g. On semidefinite program-
ming relaxations of the traveling salesman problem by Etienne de Klerk,
Dmitrii V. Pasechnik, and Renata Sotirov (free on arXiv).

Second-order and semidefinite programming are popular because they model
interesting problems, of course. But we have yet to mention an important detail:
we can actually solve them in practice! Most cone programs cannot be solved
yet. Linear, second-order, and semidefinite programs are the ones that we’ve
had the most success with, and this is due to interior point methods.

At a high level, an interior point method solves a convex optimization prob-
lem by solving a series of sub-problems that move you through the interior of
the feasible set, towards the optimal solution. Often this is accomplished with a
barrier function that has nice analytic properties. For example, if we’re trying
to minimize f over some set K ⊆ V , then we might try to minimize f+b over all
of V , where b is a function that “blows up,” or goes to infinity, on outside of K.
This lets us turn our constrained optimization problem into an unconstrained
one with a different objective function.

Naturally, the barrier function plays an important part in these methods,
and is why symmetric cones and Euclidean Jordan algebras are so useful.
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Definition 87. If K is a proper cone in a finite-dimensional real inner-product
space V , then a barrier function for K is a function β : int (K) → R that is
convex, nonnegative, differentiable at least twice, and which tends to infinity as
its argument approaches bdy (K).

Definition 88 (log-homogeneous barrier function [6]). A barrier function b for
a proper cone K in a finite-dimensional real inner-product space V is said to be
logarithmically-homogenous (or log-homogeneous, for short) with parameter ν if

∃ν > 0 : ∀x ∈ V : b (αx) = b (x)− ν ln (α) .

If you start at a point x inside of the cone K and if you start to move “up”
into the cone by a scaling factor of α ≥ 0, then, intuitively, the point αx is
further away from the boundary of the cone than x was. The definition of log-
homogeneity is meant to impose this intuition on the barrier function, which
otherwise could remain constant or even increase as you move “into” the cone.
Likewise, in the other direction (towards zero), the choice of the log function
means that for α < 1, the value of the barrier function goes to infinity.

Without going into the details of interior point methods, let’s just see what
happens if we modify our primal cone program by adding some positive multiple
µ > 0 of a log-homogeneous barrier function β to the objective value. To simplify
our use of the gradient, let’s assume that the ambient inner-product space is Rn
(this is true anyways up to isometry).

minimize 〈c, x〉+ µβ (x)
subject to A (x) <K b.

(A.4)

(The domain of the barrier function now forces x ∈ int (K).) If we compute the
Lagrangian function for this problem as in Function (A.3), we obtain

L := (x, λ) 7→ 〈c, x〉+ µβ (x)− 〈A (x)− b, λ〉 ,

and (if we have strong duality) the necessary condition for optimality here fol-
lows from the KKT conditions. We use isomorphism to pretend that the inner-
product space V

∇L (x, λ) =
[
c+ µ∇β (x)−A∗ (λ)

b−A (x)

]
=
[
0
0

]
. (A.5)

A solution (x, λ) to this system is called µ-optimal.

Proposition 52. If (x, y) is a solution to Equation (A.5) and if we define
sµ := −µ∇β (x), then sµ ∈ − int (K∗). As a result, the pair (y, sµ) is feasible
for a barrier formulation of Problem (dCPs) defined on int (K∗).

Proof. Recall that we artificially restricted the domain of y to be K∗ so that
d (y) would be a lower bound on the primal objective function; otherwise it
doesn’t make much sense to try to maximize d (y). (This is the setting in which
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weak/strong duality hold, and we assumed strong duality.) Moreover we have
A∗ (y) + sµ = c by the definition of sµ and the first equation in Equation (A.5).
It remains only to show that sµ ∈ int (K∗).

Recall Rockafellar’s definition of the Legendre conjugate [12] prior to Theo-
rem 26.4. If we set f = β and C = int (int (K)) = int (K), then the Legendre
conjugate of (C, f) is the pair (D, g) where g = β∗ and D = ∇β (int (K)).
Theorem 26.4 then tells us that

−sµ ∈ D = ∇β (int (K)) ⊆ dom (β∗) ,

where dom (β∗) is the “effective domain” of the convex conjugate of β,

β∗ := y 7→ sup ({〈y, x〉 − β (x) | x ∈ Rn})
= y 7→ sup ({〈y, x〉 − β (x) | x ∈ int (K)})

The effective domain of a function is the set of points where, if we interpret it
as an extended-real function, its value is not equal to +∞. Thus this problem
comes down to showing that the effective domain of β∗ is contained in− int (K∗).
Suppose that y ∈ dom (β∗) so that

sup ({〈y, x〉 − β (x) | x ∈ int (K)}) 6=∞.

Scaling by positive real numbers doesn’t change the interior of the cone, so

sup ({〈y, αx〉 − β (αx) | x ∈ int (K) , α > 0})
= sup ({α 〈y, x〉 − β (x) + ν ln (α) | x ∈ int (K) , α > 0})
6=∞.

as well. Now we notice that if 〈y, x0〉 ≥ 0 for any x0 ∈ int (K), then we get a
contradiction: this supremum would be∞, since we could let α→∞. Therefore
it must be the case that, for all x ∈ int (K), we have 〈y, x〉 < 0. In other words,

y ∈ − int
(
(int (K))∗

)
= − int (K∗) .

Remark 6. Alizadeh [3] states that the preceding proposition is “easy to de-
duce” without log-homogeneity. I have imposed the additional log-homogeneity
condition because I see no way to prove the result without it.

Our barrier functions should have not only nice theoretical properties, but
also practical ones. Can we solve Problem (A.4) numerically in a reasonable
amount of time? To address that issue, Nesterov and Nemirovskii [10] in-
troduced what is called a self-concordant barrier function. These are barrier
functions defined in just such a way that makes Problem (A.4) succeptible to
Newton’s method. The authors also show that a “universal” self-concordant
barrier function exists for any open convex set, and for a proper cone K it is
log-homogeneous. The problem is, we don’t really know the universal barrier
function (it’s an integral we don’t know how to compute).
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Güler showed that the universal barrier function of Nesterov and Nemirovskii
is related to the characteristic function of the cone [6]. He then used the theory
of homogenous cones in a Jordan algebra to show that the universal barrier
function can actually be calculated for homogeneous cones, and points out that
the self-dual homogeneous cones (called symmetric cones) correspond exactly
to the cones of squares in Euclidean Jordan algebras.

Around the same time, Nesterov and Todd [11] showed that particularly
efficient algorithms exist for self-scaled cones, which turn out to be nothing other
than self-dual homogeneous cones. Thus, the most efficient interior-point barrier
methods apply to symmetric cones, which are cones of squares in Euclidean
Jordan algebras.
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Appendix B

Rational function functions

In what follows, our goal will be to show that a few types of rational functions
(that don’t induce division by zero) can be made into actual functions. We’ll
show that in each case, the map from the algebraic object to the function is
additive, multiplicative, and injective in a limited sense. We avoid the word
“homomorphism” because we don’t know that these things form a ring. To keep
the notation simple, we let R := R [X1, X2, . . . , Xn] throughout this appendix.
The map f 7→ f�Rn on R is an injective ring homomorphism and serves as a
sort of “base case” for what’s coming.

If f = a/b ∈ Frac (R) and D ⊆ Rn is the subset where b�Rn is non-zero, then
D is dense by Theorem 29 and

f�D : D → R

f�D = x 7→ a�Rn (x)
b�Rn (x)

defines a valid function on D. However, there is a problem with this definition.
Keeping in mind that our goal is to study the correspondence f 7→ f�D, recall
that the elements of Frac (R) are equivalence classes. If f 7→ f�D is going to
itself define a valid function, then we should have f�D = g�D whenever f = g.
This doesn’t work using the definition above! For example, if c ∈ R is any other
polynomial with c�Rn (x) = 0 for some x ∈ D, then a

b = ac
bc in Frac (R), but the

latter fraction will cause division by zero when applied to x if we try to turn it
into a function.

Fixing this problem takes some work.

Theorem 43. If a/b ∈ Frac (R), then there exists a unique representative
(c, d) ∈ a/b with d monic, gcd (c, d) = 1, and a = ce and b = de for a com-
mon nonzero divisor e ∈ R. The representative (c, d) is the unique reduced
lowest-terms representative of a/b, henceforth abbreviated “lowest-terms.”

Proof. First we note that the notion of a greatest common divisor (GCD) exists
in R [X]. This is usually demonstrated before Euclid’s division algorithm in
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kindergarten. Citing Theorem 4 and Theorem 1 of Anderson and Hasse [2], it
follows that R itself is a GCD domain, a unique lowest-terms domain, and a
reduced lowest-terms domain. The “unique” here is only “essentially unique,”
which means up to multiplication by a unit. The units of R are non-zero real
numbers, so we can make the “lowest-terms” truly unique by insisting that the
lowest-terms representative (c, d) have d monic. The fact that R is a reduced
lowest-terms domain means that we can actually find the e to factor out.

Suppose c/d is a/b written in lowest-terms. Then b = ed for some e ∈ R, and
it follows that b�Rn has at least as many roots as d�Rn because it’s got the roots
from d�Rn and also the roots from e�Rn . This leads to the following obvervation:
if we can make a function out of the representative a/b, then we can also make
a function out of its unique lowest-terms representative.

Proposition 53. Suppose f = a/b ∈ Frac (R) and that D is an open dense set
on which b�Rn is nonzero and that (a′, b′) is the unique lowest-terms represen-
tative of a/b. Then the correspondence f 7→ f�D where

f�D : D → R

f�D = x 7→ a′�Rn (x)
b′�Rn (x)

is a well-defined function on Frac (R).

Proof. Suppose that a/b = c/d for some other representative (c, d). Then since
our lowest-terms are truly unique, the lowest-terms representative of c/d is also
(a′, b′); it follows that

∀x ∈ D :
(a
b

)
�D (x) = a′�D (x)

b′�Dx
=
( c
d

)
�D (x) ,

showing that (a/b)�D = (c/d)�D.

The user must beware however that the set D should be determined before
applying the preceding proposition. If D is fixed, then the mapping f 7→ f�D
is well-defined, but D itself cannot be determined uniquely from f because it
depends on the denominator. This means that you will need to know at least one
representative of the class f ∈ Frac (R) before you can turn it into a function.

Another crucial property is that reducing to lowest-terms doesn’t invalidate
any equations that a representative satisfies on an open dense set.

Proposition 54. If a/b ∈ Frac (R) and if D is an open dense set on which
b�Rn is non-zero, then

∀x ∈ D : a�Rn (x)
b�Rn (x) =

(a
b

)
�D (x) .
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Proof. Suppose that (a′, b′) is the lowest-terms representative for a/b. Then
there exists some e ∈ R such that a = ea′ and b = eb′. Thus,

∀x ∈ D : a�D (x)
b�D (x) = (ea′)�D (x)

(eb′)�D (x) = e�D (x) a′�D (x)
e�D (x) b′�D (x) =

(a
b

)
�D (x) .

We can cancel e�D (x) above because it is nonzero, and it must be nonzero
because the entire denominator is nonzero.

This is important because—among other things—it means that when we
solve equations that are valid on an open dense set through polynomial divi-
sion, reducing to lowest terms “on the fly” won’t invalidate the fact that the
corresponding functions solve the original problem (on the same open dense
set). In particular, this is crucial to our ability to claim that a Cramer’s-rule
solution must be valid if we stick an x into the result on both sides.

We also want to show that this map has an “injective-like” property, but we
can’t say that it’s injective on all of Frac (R), because the safe domain D that
we specified depends on the element of Frac (R) that we’re working with. So
instead we’ll have to say something weaker. Leave f = a/b alone, but now let
D1 be an open dense set where b�Rn is nonzero. Define g := c/d, and let D2 be
an open dense set where d�Rn is nonzero. Then D := D1 ∩D2 is also open and
dense, and both b�Rn and d�Rn are non-zero on all of D. We will suppose again
that (a′, b′) is the lowest-terms representative of a/b, and now that (c′, d′) is the
lowest-terms representative of c/d.
Remark 7. We insist thatD1 andD2 be open and dense so that their intersection
will again be dense. The intersection of two dense sets is not dense in general:
the rationals and irrationals are both dense in R. Even a countable intersection
of open dense sets will again be dense; although it will perhaps not be open.

In this scenario, we claim that f 6= g =⇒ f�D 6= g�D. If a/b 6= c/d, then
of course a′/b′ 6= c′/d′, since otherwise a/b = a′/b′ and c/d = c′/d′ would be a
contradiction. Thus by definition a′d′ 6= c′d′ and we must have

∃x ∈ D : a′�D (x) d′�D (x) 6= b′�D (x) c′�D (x) .

Otherwise, from the density of D and the continuity of all functions involved,
we would conclude that a′d′ = b′c′. From the above it follows that

a′�D (x)
b′�D (x) 6=

c′�D (x)
d′�D (x)

for that same x ∈ D, meaning that the two functions f�D and g�D are different.
We have to show that f 7→ f�D is additive and multiplicative in the same

limited sense. For additivity, note the following two equalities,

∀x ∈ D :
(a
b

)
�D (x) +

( c
d

)
�D (x) :=

(
a′

b′

)
�D (x) +

(
c′

d′

)
�D (x) , (B.1)
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and

∀x ∈ D :
(a
b

+ c

d

)
�D (x) =

(
a′

b′
+ c′

d′

)
�D (x) =

(
a′d′ + b′c′

b′d′

)
�D (x) .

The first equality above comes from the well-definedness of the map and the
fact that both a/b = a′/b′ and c/d = c′/d′. Beware that in the last expression,
a′d′+b′c′
b′d′ may not be in lowest terms! So we can’t just apply the numerator and

denominator to x blindly. But we can refer to Proposition 54 to conclude that

∀x ∈ D :
(
a′d′ + b′c′

b′d′

)
�D (x) = a′d′ + b′c′�D (x)

b′d′�D (x)

Now p 7→ p�D is a homomorphism on R, so this expands into the same expres-
sion that we derived in Equation (B.1). Thus we conclude (again, under some
awkward conditions) that (f + g)�D = f�D + g�D.

The proof of multiplicativity is identical. Step one is to note that

∀x ∈ D :
(a
b

)
�D (x)

( c
d

)
�D (x) = a′�D (x) b′�D (x)

c′�D (x) d′�D (x) .

Step two uses Proposition 54 and the multiplicativity of p 7→ p�D for p ∈ R to
deduce that

∀x ∈ D :
(a
b

c

d

)
�D (x) =

(
a′

b′
c′

d′

)
�D (x) = a′�D (x) b′�D (x)

c′�D (x) d′�D (x) .

Combining the steps shows that (fg)�D = f�Dg�D.
Having achieved our goal in Frac (R), we now look onwards to Frac (R) [Λ].

Fortunately, most of the hard work is behind is—things in Frac (R) [Λ] will
reduce easily to Frac (R) where we’ve already proved everything. Suppose from
now on that f, g ∈ Frac (R) [Λ] with

f :=
I∑
i=0

(
ai
bi

)
Λi, g :=

J∑
j=0

(
cj
dj

)
Λj .

Here each coefficient ai/bi or cj/dj lives in Frac (R), where we already know that
the map ai/bi 7→ (ai/bi)�D is well-defined, injective, additive, and multiplicative
in the precise limited sense discussed earlier.

Now, suppose that D is an open dense set on which all bi�Rn are non-zero.
Then, abusing the same notation,

f�D := x 7→
I∑
i=0

(
ai
bi

)
�D (x) Λi

defines a valid function from D to R [Λ], and the mapping f 7→ f�D is well-
defined. (Again, the set D must be fixed before we do anything else, so you
have to know at least one representative for each coefficient of f .) To see
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that this mapping is well-defined, suppose f = g, and simply note that by
definition that means that I = J and that ai/bi = ci/di for each i ∈ {0, 1, . . . , I}.
The result then follows immediately from the well-definedness of the mapping
ai/bi 7→ (ai/bi)�D.

In general, we will let Df be an open dense set on which all bi�Rn are non-
zero, and Dg be an open sense set on which all di�Rn are non-zero. Then
D := Df ∩ Dg is open and dense, and both f�D and g�D are defined. In this
setting, suppose that f 6= g. By definition, that means that for some i we have
ai/bi 6= ci/di. From the pseudo-injectivity of ai/bi 7→ (ai/bi)�D in Frac (R),
we deduce that the ith coefficients of f and g differ on some x ∈ D. Thus,
f�D 6= g�D, and we have the same sort of pseudo-injectivity in Frac (R) [Λ].

Additional is similarly easy. By definition,

f + g =
max(I,J)∑
i=0

(
ai
bi

+ ci
di

)
Λi,

so in (f + g)�D one simply needs to expand (ai/bi + ci/di)�D using the additiv-
ity that we showed exists in Frac (R).

Finally, for multiplicativity, we will refer back to the formula for polynomial
multiplication in Equation (3.2):

∀x ∈ D : (fg)�D (x) =

max(I,J)∑
`=0

[∑̀
i=0

ai
bi

c`−i
d`−i

]
Λ`
�D (x)

:=
max(I,J)∑
`=0

[∑̀
i=0

ai
bi

c`−i
d`−i

]
�D (x) Λ`

Using the additivity and multiplicativity in Frac (R), we deduce from this that

∀x ∈ D : (fg)�D (x) =
max(I,J)∑
`=0

[∑̀
i=0

(
ai
bi

)
�D (x)

(
c`−i
d`−i

)
�D (x)

]
Λ`,

and this is precisely f�D (x) g�D (x).
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Albert algebra, 215
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associative, 30, 138
commutative, 30
power-associative, 61
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algebra ideal, 215

barrier function, 231
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bounded set, 28
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condition number, 85
cone, 102

dual, 106
Lorentz, 104
pointed, 103
polyhedral, 107

proper, 103
solid, 103

cone program
dual, 228

cone, self-dual, 106
conic hull, 103
conjugate, 213
continuous, 27
convex optimization problem, 223
convex combination, 101
convex cone, 103
convex function, 222
convex hull, 102, 103
convex set, 101
cross product, 33

degree, 38, 145
determinant, 77
determinant, in an EJA, 172
diagonal Peirce subalgebras, 195
dual cone, 106
dual cone program, 228
dual linear program, 226

eigenvalue, 77
eigenvalues, in an EJA, 180
eigenvector, 77
Euclidean Jordan algebra

trivial, 120
Euclidean Jordan algebra, 114

trivial, 147

field, 16
finite-dimensional, 73
formally-real, 113, 116
fraction field, 59
free module, 19
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group, 14
abelian, 14

Hadamard product, 116
Hilbert space, 26
homogeneous, 206
homogeneous function, 48
homogeneous polynomial, 48

ice cream cone, 104
ideal, 43
idempotent, 138
imaginary part, 213
inner product, 23
inner-product space, 23
integral domain, 16
inverse, 171
invertible, 171
isometry, 81
isomorphic, 209
isomorphism, 209

Jordan algebra, 113
Jordan frame, 181
Jordan identity, 113
Jordan product, 113
Jordan spin algebra, 118

Lagrangian dual function, 225
linear operator, 73
linear program, 223

dual, 226
log-homogeneous, 231
logarithmically-homogenous, 231
Lorentz cone, 104

magma, 12
matrix congruence, 201
metric space, 27
minimal element, 110
minimal polynomial, 147
minimum element, 110
module, 17
monic, 38
monoid, 12

nonnegative orthant, 103

norm, 22
normal subgroup, 16
normed vector space, 22

octonion, 213
Octonion Hermitian EJA, 214
octonions, 213
off-diagonal Peirce subspaces, 195
operator norm, 84
operator-commute, 124

partially-ordered set, 108
partially-ordered vector space, 108
pointed, 103
polynomial

function, 38
monic, 38
notation, 40
ring, 36

polynomials
univariate algebra of, 36

poset, 108
positive-semidefinite, 87
power-associative, 61, 213
power-associativity, 39
powerset, 108
preimage, 27, 104
primitive idempotent, 181
principal ideal, 16
principal ideal domain, 16
projection, 83
proper, 103

quadratic representation, 202

rank, 155
real part, 213
regular element, 155
representative, 59
ring, 14

commutative, 15
ring ideal, 16, 215
rng, 15
root, 42

scalars, 21
SDP, 230
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second-order cone, 104
second-order cone program, 230
self-adjoint, 81
self-dual, 106, 206
self-scaled cones, 233
semidefinite program, 230
semigroup, 12
sequential compactness, 29
sesquilinear form, 211
simple, 216
Slater’s condition, 229
solid, 103
spectral norm, 84
spectrum, 119, 154
subalgabra, generated by an element,

61
subgroup

normal, 16
subring, 15
symmetric cone, 116, 206

topological space, 27
topology, 160
trace, in an EJA, 173
trivial Euclidean Jordan algebra, 147
trivial Euclidean Jordan algebra, 120

unique lowest-terms domain, 235
unique reduced lowest-terms represen-

tative, 234
unit element, 13, 30
unital, 32
unital algebra, 30, 32

Vandermonde matrix, 155
vector space, 21
vectors, 21

Zariski topology, 159
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