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Abstract
In physics, one has the notion of a completely positive map from Cn×n

to Cm×m in the sense of Stinespring or Choi. The set of all such maps
happens to form a cone. In optimization, one also has a cone of real
“completely positive matrices,” studied by Berman and Shaked-Monderer
among others. We investigate how to the two concepts are related.

1 Introduction
Man-Duen Choi famously characterized the completely positive complex-linear
maps from Cn×n to Cm×m. According to Choi [3],

Definition 1 (Choi CP v1). A complex-linear map Φ : Cn×n → Cm×m is
completely positive iff for all p ∈ N and all Aij ∈ Cn×n, we have

A11 A12 · · · A1p

A21 A22 · · · A2p

...
Ap1 Ap2 · · · App

 < 0 =⇒


Φ (A11) Φ (A12) · · · Φ (A1p)
Φ (A21) Φ (A22) · · · Φ (A2p)

...
Φ (Ap1) Φ (Ap2) · · · Φ (App)

 < 0.

Choi’s theorem1 characterizes the set of all such maps,

CPn,m (C) =
{

A 7→
k∑

i=1
ViAV ∗

i

∣∣∣∣∣ Vi ∈ Cm×n, k ∈ N

}
.

Here, X < 0 means that X ∈ Cn×n is positive-semidefinite (PSD), and a com-
plex PSD matrix (acting on Cn) is necessarily Hermitian. Cn×n is an example
of a C∗ algebra, and in that regard, Choi’s theorem is a special case of an earlier
result known as Stinespring’s dilation theorem [9].

It is fairly easy to see that CPn,m (C) forms a cone. In fact, Barker, Hill,
and Haertel later showed [1] that it is isomorphic to the PSD cone Hmn

+ (C).
This isomorphism maps the ambient space of Hermitian-preserving maps to the
space Hmn (C) of Hermitian mn-by-mn matrices wherein Hmn

+ (C) is self-dual.
1https://en.wikipedia.org/wiki/Choi’s_theorem_on_completely_positive_maps
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From this we conclude that CPn,m (C) is self-dual (in fact, symmetric) in the
ambient space of Hermitian-preserving maps from Cn×n to Cm×m.

In optimization over the reals, there is a competing notion of complete pos-
itivity [8]. A matrix A ∈ Rn×n is said to be completely-positive if it can be
written as A = BBT where B ∈ Rn×n is entrywise nonnegative. If Rn

+ de-
notes the nonnegative orthant in Rn, then this is equivalent to saying that
A =

∑n
i=1 xix

T
i for xi ∈ Rn

+. The completely-positive matrices also form a
cone, and are important because they can be used in cone programs to solve
hard problems [2].

The completely positive matrices were generalized by Sturm and Zhang [10]
to the set of transformations that is completely-positive on a set K.

Definition 2. The completely positive cone of K ⊆ Rn is

cone
({

xxT
∣∣ x ∈ K

})
.

The cone of completely-positive matrices is then recovered by taking K :=
Rn

+. It is the dual of the set-semidefinite cone, or generalized copositive cone,
and both have been extensively studied [4, 5].

Question 1. Does Choi’s characterization extend to real-linear maps on real
matrices?

Question 2. If the answer to the first question is yes, then do the two definitions
of complete positivity coincide? Or at least, how are they related?

We’re not the first to wonder about this connection. A recent survey paper
on Choi representations remarks [6], “it should be noted that ‘completely posi-
tivity’ of linear operators can have another meaning: especially in the literature
of mathematical optimization. . . with implications to quadratic and combinato-
rial optimization. However, there is no connection known between this latter
notion of ‘complete positivity’ and the one discussed in the present tutorial.”
There is also a Reddit thread discussing bad math notation2 where the top-rated
comment complains that completely-positive maps and completely-positive ma-
trices are unrelated.

The first step towards answering these questions is to understand how the
Kronecker product is used in Definition 1. This will allow us to undo the “box of
numbers” representation and put everything in terms of linear operators. (We
technically don’t need to understand Choi’s original definition at all—only his
characterizaion—but the tools we develop in the process of the latter get us
most of the way to the former. So while we’re here. . . )

2 The setting
• V and W are finite-dimensional inner-product spaces over F ∈ {R,C}.
2https://www.reddit.com/r/math/comments/41r4sg/
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• e = {e1, e2, . . . , en} and f = {f1, f2, . . . , fm} are orthonormal bases for V
and W , respectively.

• If L is linear on V and if x ∈ V , we write e (L), a matrix, and e (x), a
vector, for the basis representations of L and x. For any x ∈ V and linear
L : V → V , we have e (L (x)) = e (L) e (x) in Fn. Vectors are column.

• If x ∈ V and s ∈ W , we define |x〉〈s| : W → V to be the linear map
z 7→ 〈s, z〉x. (This is a ket-bra, based on Dirac’s bra-ket notation.3)
Typographically this notation becomes pretty horrific, but it’s standard.

• B (W, V ) is the set of all F-linear operators from V to W having orthonor-
mal basis

g =


|e1〉〈f1| , |e1〉〈f2| , . . . , |e1〉〈fm| ,
|e2〉〈f1| , |e2〉〈f2| , . . . , |e2〉〈fm| ,

...
|en〉〈f1| , |en〉〈f2| , . . . , |en〉〈fm|

 ,

ordered lexicographically (left to right then top to bottom), and the trace
inner product defined by setting 〈|x〉〈s|, |y〉〈z|〉 := 〈x, y〉V 〈s, z〉W and ex-
tending via bilinearity. We abbreviate B (V , V ) as B (V ).

• If A ∈ B (V ) and B ∈ B (W ), then the map A�B ∈ B (B (W, V )) is defined
as sending |ei〉〈fj | to |A (ei)〉〈B (fj)| and then extended using linearity.

• If A, B are n-by-n and m-by-m matrices, then

A�k B :=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
an1B an2B · · · annB


is the Kronecker product [7] of A and B.

• E
(p)
ij denotes the p × p matrix with a 1 in the i, jth position and ze-

ros elsewhere. To accomodate the corresponding linear operators, we de-
fine one last family of vector spaces Q(p) with orthonormal basis q(p) :={

q
(p)
1 , q

(p)
2 , . . . , q

(p)
p

}
so that dim

(
Q(p)) = p and

∣∣∣q(p)
i

〉〈
q

(p)
j

∣∣∣ ∈ B (Q(p)).
3 Understanding the Kronecker product
We begin by recalling Choi’s definition of complete positivity from Definition 1.
Consider the matrix E

(p)
22 which is zero except for a 1 in the second row/column.

3https://en.wikipedia.org/wiki/Bra-ket_notation
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If we take its Kronecker product with an arbitrary matrix A, then

E
(p)
22 �k A =


0A 0A · · · 0A
0A 1A · · · 0A

...
0A 0A · · · 0A

 .

In other words, it puts A in the (2, 2) position of a p-by-p block matrix. “Clearly”
the same thing happens for any (i, j) and not just (2, 2). Using this we can
rewrite Choi’s definition in terms of the Kronecker product.

Definition 3 (Choi CP v2). A complex-linear map Φ : Cn×n → Cm×m is
completely positive iff for all p ∈ N and all Aij ∈ Cn×n, we have p∑

i,j=1
E

(p)
ij �k Aij

 < 0 =⇒

 p∑
i,j=1

E
(p)
ij �k Φ (Aij)

 < 0.

To understand this in terms of linear operators, we apparently must under-
stand the Kronecker product of matrices. First we recall how linear transfor-
mations are represented in terms of a basis. For x ∈ V , we have,

e (x) =


〈e1, x〉
〈e2, x〉

...
〈en, x〉

 .

Therefore for L ∈ B (V ),

e (L) =
[
e (L (e1)) e (L (e2)) · · · e (L (en))

]
=


〈e1, L (e1)〉 〈e1, L (e2)〉 · · · 〈e1, L (en)〉
〈e2, L (e1)〉 〈e2, L (e2)〉 · · · 〈e2, L (en)〉

...
〈en, L (e1)〉 〈en, L (e2)〉 · · · 〈en, L (en)〉

 .

Proposition 1. If A, B are linear on V, W , then

g (A�B) = e (A)�k f (B).
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Proof. You just have to do it. Abbreviating |ei〉〈fj | by gij ,

g (A�B)
=

〈g11, A�B (g11)〉 · · · 〈g11, A�B (g1m)〉 · · · 〈g11, A�B (gnm)〉
〈g12, A�B (g11)〉 · · · 〈g12, A�B (g1m)〉 · · · 〈g12, A�B (gnm)〉

...
〈g1m, A�B (g11)〉 · · · 〈g1m, A�B (g1m)〉 · · · 〈g1m, A�B (gnm)〉
〈g21, A�B (g11)〉 · · · 〈g21, A�B (g1m)〉 · · · 〈g21, A�B (gnm)〉

...
〈gnm, A�B (g11)〉 · · · 〈gnm, A�B (g1m)〉 · · · 〈gnm, A�B (gnm)〉


In general, 〈gij , A�B (gk`)〉 = 〈ei, A (ek)〉 〈fj , B (f`)〉. So, consider the top-

left m×m block:

g (A�B)1:m,1:m =


〈e1, A (e1)〉 〈f1, B (f1)〉 · · · 〈e1, A (e1)〉 〈f1, B (fm)〉
〈e1, A (e1)〉 〈f2, B (f1)〉 · · · 〈e1, A (e1)〉 〈f2, B (fm)〉

...
〈e1, A (e1)〉 〈fm, B (f1)〉 · · · 〈e1, A (e1)〉 〈fm, B (fm)〉



= e (A)11


〈f1, B (f1)〉 〈f1, B (f2)〉 · · · 〈f1, B (fm)〉
〈f2, B (f1)〉 〈f2, B (f2)〉 · · · 〈f2, B (fm)〉

...
〈fm, B (f1)〉 〈fm, B (f2)〉 · · · 〈fm, B (fm)〉


= e (A)11 f (B) .

Similarly, the i, jth m×m block will be e (A)ij f (B). In other words, the entire
thing is e (A)�k f (B).

Proposition 2. If x ∈ V and s ∈W , then g (|x〉〈s|) = e (x)�k f (s) ∈ Fnm.

Proof. By definition, we know the g-coordinates of |x〉〈s| are,

g (|x〉〈s|) =



〈|e1〉〈f1|, |x〉〈s|〉
〈|e1〉〈f2|, |x〉〈s|〉

...
〈|e1〉〈fm|, |x〉〈s|〉
〈|e2〉〈f1|, |x〉〈s|〉
〈|e2〉〈f2|, |x〉〈s|〉

...
〈|en〉〈fm|, |x〉〈s|〉


=



〈e1, x〉 〈f1, s〉
〈e1, x〉 〈f2, s〉

...
〈e1, x〉 〈fm, s〉
〈e2, x〉 〈f1, s〉
〈e2, x〉 〈f2, s〉

...
〈en, x〉 〈fm, s〉


= e (x)�k f (s).

Corollary 1. g (|A (x)〉〈B (s)|) = [e (A)�k f (B)] [e (x)�k f (s)].
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Remark 1. The same result holds if B (W, V ) is replaced by V ⊗W , the abstract
tensor product [7] of V and W . So in essence, the Kronecker product gives us
a basis representation on a tensor product space in terms of the bases for its
constituent spaces. (We’ll encounter the tensor product again later, but a precise
definition isn’t important right now.)

Now’s a good time to recall what we are trying to accomplish. In Definition 3,
we have an expression in terms of,

1. Complex n-by-n matrices Aij ,

2. Complex m-by-m matrices Φ (Aij),

3. Complex n-by-n matrices E
(p)
ij ,

4. The Kronecker product.

The goal, more or less, is to get rid of the matrices and replace them with
linear operators. The matrices Aij ∈ Cn×n are in one-to-one correspondence
with the linear transformations Aij ∈ B (V ) under any basis representation
map, and in particular under e. Similarly, the matrices E

(p)
ij ∈ Cp×p represent

an element of B
(
Q(p)

)
while the Φ (Aij) represent elements of B (W ).

Lemma 1. If x, s ∈ V , then e (|x〉〈s|) = e (x) e (s)∗. In particular,

e (|ei〉〈ej |) = e (ei) e (ej)∗ = E
(n)
ij .

Proof. Keeping in mind that the inner product is sesquilinear,

e (|x〉〈s|) =
[
e (|x〉〈s| (e1)) e (|x〉〈s| (e2)) · · · e (|x〉〈s| (en))

]
=
[
〈s, e1〉 e (x) 〈s, e2〉 e (x) · · · 〈s, en〉 e (x)

]
=
[
e (s)1e (x) e (s)2e (x) · · · e (s)ne (x)

]
= e (x) e (s)∗

.

We now have pretty much everything we need to understand (Choi) complete
positivity in terms of linear operators.

4 Complete positivity for complex-linear maps
Theorem 1. The complex-linear map Φ : B (V )→ B (W ) is completely positive
iff for all p ∈ N and all Aij ∈ B (V ), we have p∑

i,j=1

(∣∣∣q(p)
i

〉〈
q

(p)
j

∣∣∣)�Aij

 < 0 =⇒

 p∑
i,j=1

(∣∣∣q(p)
i

〉〈
q

(p)
j

∣∣∣)� Φ (Aij)

 < 0.
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Proof. There’s not much left to prove here. Start with Definition 3, and replace
the matrices with e, f , and q(p) representations:

∀p ∈ N, Aij ∈ Cn×n p∑
i,j=1

E
(p)
ij �k Aij

 < 0 =⇒

 p∑
i,j=1

E
(p)
ij �k Φ (Aij)

 < 0

m
∀p ∈ N, Aij ∈ B (V ) p∑

i,j=1
q(p)

(∣∣∣q(p)
i

〉〈
q

(p)
j

∣∣∣)�k e (Aij)

 < 0

=⇒ p∑
i,j=1

q(p)
(∣∣∣q(p)

i

〉〈
q

(p)
j

∣∣∣)�k f (Φ (Aij))

 < 0.

Finally, undo the basis representations using the results of the previous section.

Theorem 2. Choi’s characterization also extends to complex-linear operators,

CPV,W (C) = cone ({U � U | U ∈ B (V , W )}) .

Proof. Suppose Φ = A 7→ UAU∗ on Cn×n for some U ∈ Cm×n. If the matrix
A has rank r, then it can be expressed as the sum of r rank-one matrices
A =

∑r
i=1 xiy

∗
i by using the singular value decomposition and by absorbing the

singular values into the vectors. As a result,

Φ (A) =
r∑

i=1
Uxi (Uyi)∗

We may now suppose that all of the matrices and vectors involved are basis
representations,

f (Φ (A)) =
r∑

i=1
f (U (xi)) f (U (yi))∗ =

r∑
i=1

f (|U (xi)〉〈U (yi)|)

and undo that basis representation,

Φ (A) =
r∑

i=1
|U (xi)〉〈U (yi)| = U � U

(
r∑

i=1
|xi〉〈yi|

)
= U � U (A) .

In other words, Φ = U � U . Taking sums of such things gives the desired
result.
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5 Complete positivity for real-linear maps
Choi’s characterization works for real symmetric matrices over R, too.
Theorem 3. If we replace C by R in the definition, then the set of completely-
positive real-linear maps from B (V ) to B (W ) is,

CPV,W (R) = cone ({U � U | U ∈ B (V , W )}) . (1)

Proof. There’s nothing in Choi’s proof that works for C but not R.

That answers Question 1. But can we use the name “completely positive”
for such a transformation? Remember, we already have a Definition 2 for the
completely-positive cone (of matrices) in Rn. If we write that definition in terms
of real-linear operators using the results from Section 3, we get. . .
Definition 4. The completely positive cone of K ⊆ X is

cone ({|x〉〈x| | x ∈ K}) .

There is an obvious similarity between Theorem 3 and Definition 4. Choosing
K = X = B (V , W ) in Definition 4 gives,

cone ({|U〉〈U| | U ∈ B (V , W )}) , (2)

but the two transformations |U〉〈U| and U � U are not the same. The two
completely positive cones in Equations (1) and (2) are, however, isomorphic.
This will answer Question 2.
Theorem 4. The Choi and Sturm-Zhang completely positive cones are isomor-
phic in B (V , W ) if we take K = X = B (V , W ) in Definition 4:

cone ({U � U | U ∈ B (V , W )}) ∼= cone ({|U〉〈U| | U ∈ B (V , W )}) .

Proof. “The” tensor product of X with itself another vector space denoted by
X⊗X. It is unique only up to isomorphism, and is characterized by the existence
of an elementary tensor map (x1, x2) 7→ x1 ⊗ x2 that is “bilinear and nothing
more.” If {x1, x2, . . . , xK} is a basis for X, then one way to define the tensor
product of X with itself is as

X ⊗X := span ({xi ⊗ xj | 1 ≤ i, j ≤ K}) ,

where the xi⊗xj are simply meaningless symbols. (For other definitions, consult
Roman [7]). Now, it is known that both

T1 := span ({U � U | U ∈ B (V , W )})

and
T2 := span ({|U〉〈U| | U ∈ B (V , W )})

are tensor products of X := B (V , W ) with itself corresponding to the elementary
tensor maps ⊗ = � and ⊗ = |·〉〈·| respectively. As a result,

T1 ∼= (X ⊗X) ∼= T2.

It follows that there is a single linear isomorphism sending U �U to |U〉〈U|.
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