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Abstract

We introduce the relevant concepts and show that any proper cone
in an n-dimensional real Hilbert space is an n-dimensional topological
manifold whose topological boundary is itself a topological manifold of
dimension n − 1.

1 Reference
Throughout these notes, “Lee” refers to Introduction to Topological Manifolds [1]
by John M. Lee. Many of the subsequent proofs are only slight modifications
of Lee’s, to account for differing (but equivalent) definitions of manifolds and
their manifold-interior and manifold-boundary points.

2 Notation
• R+ is the set of nonnegative real numbers.

• The “upper” halfspace in Rn is denoted by Hn
+ :=

(
Rn−1 × R+

)
. This is

isometric to {x ∈ Rn | xn ≥ 0}, and isometries are homeomorphisms, so
for our purposes we won’t need to distinguish the two.

• The open and closed balls of radius r around x are denoted by Br (x) and
Br (x), respectively.

• The topological interior and boundary of X are denoted by int (X) and
bdy (X), respectively.

3 Manifolds
Definition of a Topological Manifold with Boundary. Let M be a topo-
logical space such that

1. the topology on M has a countable basis (M is second countable), and
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2. there exist disjoint open neighborhoods of any two distinct points of M
(M is Hausdorff).

We say that M is a topological manifold of dimension n if and only if every
x ∈ M has an open neighborhood U 3 x such that U is homeomorphic to an
open subset of int

(
Hn

+
)

considered as a topological subspace of Rn. We say that
M is a topological manifold of dimension n with boundary if and only if, in the
same context, the neighborhoods U are homeomorphic to open subsets of Hn

+.

It follows from the definition that every topological manifold of dimension
n is also a topological manifold of dimension n with boundary, because open
subsets of int

(
Hn

+
)

are also open subsets of Hn
+.

Manifolds are characterized by a local property. For example, the usual way
to show that the unit sphere bdy

(
B1 (0)

)
in R2 is a manifold is through the

global stereographic projection that sends the sphere to R. But that’s harder
than it has to be: if you zoom in close enough around any point on the unit
sphere, you’ll see something that looks very much like an open interval in R. In
three dimensions, this manifests as the well-known fact that the Earth is flat.

Example 1. The closed unit ball B1 (0) in R2 is a topological manifold of
dimension two with boundary. Let x be any point in the interior of B1 (0).
Then clearly, we can put an open ball U around x that is contained entirely in
B1 (0). Translating U up into int

(
H2

+
)

is now a homeomorphism between an
open neighborhood of x and an open subset of int

(
H2

+
)
.

To deal with the boundary of B1 (0), we first make an observation: for any
x, y ∈ bdy

(
B1 (0)

)
, there is an invertible linear rotation that sends x to y.

Therefore by pre-composing with a rotation, it suffices to check the Definition
of a Topological Manifold with Boundary at only a single point of bdy

(
B1 (0)

)
.

For simplicity, we consider the point (0, 1)T . Let U be an neighborhood of
(0, 1)T in B1 (0), which is without loss of generality the intersection of B1 (0)
and an open ball V around (0, 1)T .

B1 (0)

V ⊆ R2

U
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The idea is that every point in U has some point “above” it on bdy
(
B1 (0)

)
,

and we want to shift those points (continuously) down until they lie on R×{0}.
Let (x1, x2)T ∈ U . The point z = (z1, z2)T that lies above it on bdy

(
B1 (0)

)
has z1 = x1, and satisfies z2

1 + z2
2 = 1, since it’s on the unit sphere. Solving for

z2 we find z2 =
√

1− x2
1, which is how far down we want to shift everything in

U that has x1 = z1 as its first coordinate.

(x1, x2)T

(z1, z2)T

This leads to the map

ψ := (x1, x2)T 7→
(
x1, x2 −

√
1− x2

1

)T

,

which is a homeomorphism sending U to an open subset of −H2
+.

ψ (U)

To fix the second coordinate, we just flip it, and call the resulting map φ:

φ := (x1, x2)T 7→
(
x1,
√

1− x2
1 − x2

)T

.

φ (U)

φ (V )
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The map φ its own inverse and is clearly continuous given that x1 ≤ 1. If
the relatively-open U was obtained as V ∩ B1 (0), then φ maps U onto the
relatively-open subset φ (V ) ∩H2

+.

Definition of Manifold Interior and Boundary. If M is a topological man-
ifold (with or without boundary) of dimension n, then a point x ∈M is

1. a manifold-interior point of M if there exists an open U 3 x and a home-
omorphism φ such that φ (U) is open in int

(
Hn

+
)
;

2. a manifold-boundary point of M if there exists an open U 3 x and a
homeomorphism φ such that φ (U) is open in Hn

+ and φ (x) ∈ bdy
(
Hn

+
)
.

We write mint (M) for the set of all manifold-interior points of M , and
mbdy (M) for its manifold-boundary points.

Beware that many authors say simply “interior” and “boundary,” leaving
it to the reader to infer from the context whether the topological or manifold
interior and boundary are meant. Moreover, the Definition of Manifold Interior
and Boundary admits the possibility of points x ∈ M being simultaneously
manifold-interior and manifold-boundary points of M . Proving that there are
no such points is nontrivial, forcing us to punt.

Invariance of Boundary Theorem. Lee, Theorem
2.59 and Problem
13–4

If M is a topological manifold of dimen-
sion n, then M is the disjoint union of mint (M) and mbdy (M).

Using this result we can begin to deduce some important properties.

Proposition 1. Lee, Proposition
2.58

If M is a topological manifold of dimension n with boundary,
then mint (M) is an open subset of M and is itself a topological manifold of
dimension n without boundary.

Proof. The set mint (M) is open in M if and only if every x ∈ mint (M) has
an open neighborhood contained in mint (M). Suppose that x ∈ mint (M), so
that by definition x has a neighborhood U and corresponding homeomorphism
φ with φ (U) open in int

(
Hn

+
)
. If y ∈ U then φ is also a homeomorphism

that takes the neighborhood U of y to an open subset of int
(
Hn

+
)
. Thus,

U ⊆ mint (M), showing that mint (M) is an open set in M . And the definition
of mint (M) more or less says that it’s a topological manifold of dimension n
without boundary.

Corollary 1. Lee, Corollary
2.60

The set mbdy (M), being the complement of mint (M) by the
Invariance of Boundary Theorem, is a closed subset of M .

This next result is sometimes given as the definition of the manifold-interior
and manifold-boundary, but it’s instructive to prove the strong characterization
from the weak one, because we’ll use the technique again.

Proposition 2. If M is a topological manifold of dimension n with boundary,
and if U ⊆ M is open, then any homeomorphism φ : U → φ (U) ⊆ Hn

+ maps
mint (M) to int

(
Hn

+
)

and mbdy (M) to bdy
(
Hn

+
)
.
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Proof. Let U ⊆M be open, φ : U → φ (U) be a homeomorphism, and x ∈ U .
If x ∈ mint (M), then there exists some open neighborhood V 3 x and home-

omorphism ψ : V → ψ (V ) ⊆ int
(
Hn

+
)
. But then the Invariance of Boundary

Theorem says that φ must also send U to int
(
Hn

+
)
, because the two possibilities

in the Definition of Manifold Interior and Boundary are mutually exclusive.
Likewise, if x ∈ mbdy (M), then there exists some open V 3 x and a home-

omorphism ψ : V → ψ (V ) that sends x to bdy
(
Hn

+
)
. As before, this implies

that φ also sends one point of U to bdy
(
Hn

+
)
, because if not then it would send

U to int
(
Hn

+
)

and the Invariance of Boundary Theorem says that cannot be.
We claim that φ (x) ∈ bdy

(
Hn

+
)
. If not, then φ (x) ∈ int

(
Hn

+
)
, and we can

put an open neighborhood W 3 φ (x) around it that is disjoint from bdy
(
Hn

+
)
.

And in that case, φ−1 (W ) is an open subset of U (and thus of M); but, that
would imply that the open neighborhood φ−1 (W ) 3 x is homeomorphic to an
open subset W of int

(
Hn

+
)

under the restriction of φ to φ−1 (W ). That would
be a contradiction, as we would then conclude that x ∈ mint (M). As a result,
we must have had φ (x) ∈ bdy

(
Hn

+
)

all along.

Theorem 1. Lee, Problem 3–1If M is a topological manifold of dimension n with boundary, then
mbdy (M) is a topological manifold of dimension n− 1 without boundary.

Proof. Suppose that x ∈ mbdy (M), let U 3 x be open in M , and let φ :
U → φ (U) ⊆ Hn

+ be the associated homeomorphism. Proposition 2 says that φ
maps all points of mbdy (M) to bdy

(
Hn

+
)
. The set U ∩mbdy (M) is an open

neighborhood of x ∈ mbdy (M) in the subspace topology, and if we restrict
φ to U ∩ mbdy (M), it remains a homeomorphism whose image (necessarily
open in Hn

+) happens to be contained in bdy
(
Hn

+
)
. As a result, its image is

relatively open in bdy
(
Hn

+
)
, and x has an open neighborhood in mbdy (M) that

is homeomorphic to a relatively open subset of bdy
(
Hn

+
)
. Now we simply note

that bdy
(
Hn

+
)

is homeomorphic to Rn−1 and thus to int
(
Hn−1

+
)
.

4 Proper cones
Definition 1. Let V be a finite-dimensional real Hilbert space. A nonempty
subset K of V is a cone if αK ⊆ K for all α ≥ 0. A cone is proper if it is
topologically closed and convex, has nonempty interior, and does not contain
any nontrivial subspaces.

Theorem 2. If K is a proper cone in a n-dimensional real Hilbert space, then
K is a topological manifold of dimension n whose topological boundary is a
topological manifold (without boundary) of dimension n− 1.

Proof. All n-dimensional real Hilbert spaces are isometric (and thus homeomor-
phic) to Rn, so without loss of generality, we pretend that K lives in Rn.

Any point x ∈ int (K) admits an open neighborhood U 3 x contained en-
tirely within K. One can take that neighborhood U and translate it until it
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lies in int
(
Hn

+
)
, and that’s your homeomorphism. As a result, the topological

interior of K is a topological manifold without boundary of dimension n.
If instead we have x ∈ bdy (K), then Corollary 11.7.1 in Rockafellar [2]

states that K is the intersection of the half-spaces that contain it,

K =
⋂
{H | H is a homogeneous closed half-space in Rn and H ⊇ K} . (1)

In particular our x ∈ bdy (K) must lie on the topological boundary of at least
one H in Equation (1), because if not, then it lies in the topological interior
of all of them and a contradiction ensues. Let Hx be any half-space in Equa-
tion (1) with x on its topological boundary, and let U 3 x be a relatively-open
neighborhood of x obtained by intersecting the open set V ⊆ Rn with K.

K

V ⊆ Rn

U

bdy (Hx)

x

Now let φ be the map that translates x to the origin, and then reorients Hx to
be the upper half-space Hn

+.
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φ (K)

φ (V ) ⊆ Rn

φ (U)

φ (bdy (Hx))φ (x)

As the composition of a translation and a change of coordinates, φ is a home-
omorphism. Now φ (x) ∈ bdy

(
Hn

+
)
, and φ (U) 3 φ (x) is a relatively-open

neighborhood of φ (x) in Hn
+ = φ (Hx).

φ (U) = φ (V ) ∩Hn
+

φ (bdy (Hx))φ (x)

If we restrict the domain of φ to U , then the resulting map remains a homeo-
morphism onto its image. Thus, x lies on the manifold boundary of K, and we
conclude that the topological boundary of K is its manifold boundary from the
Invariance of Boundary Theorem. The fact that the topological boundary of K
is a manifold of dimension n− 1 now follows from Theorem 1.

We used the fact that K has nonempty topological interior when we in-
tersected an open set with K and its dimension remained unchanged, but we
never relied upon K containing no nontrivial subspaces. Everything still works
if we omit that condition. For example if K = Rn is our (closed, convex, with
nonempty interior) cone in V = Rn, then bdy (K) = ∅, and the result is true
because mbdy (K) = bdy (K) = ∅ and the empty set vacuously satisfies the
Definition of a Topological Manifold with Boundary of any dimension.
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Indeed, Rockafellar’s Theorem 11.5 states that any closed convex set is the
intersection of the closed half-spaces that contain it [2]. Our result thus extends
to any closed convex set whose topological interior is nonempty.

Question 1. A smooth manifold is a topological manifold where the home-
omorphisms (and their inverses) are differentiable. Are proper cones smooth
manifolds with boundary as well?

Answer 1. Not in general. Any polyhedral proper cone will have “corners” on
its boundary. A neighborhood of a corner can be continuously deformed into
the flat boundary of Hn

+, but the deformation won’t be smooth.

Question 2. What additional conditions do we have to place on a proper cone
to make it into a smooth manifold with boundary?
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