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Abstract Given a proper coneK in Rn with its dualK∗, the complementarity
set of K is C (K) := {(x, s) : x ∈ K, s ∈ K∗, 〈x, s〉 = 0}. A matrix A on Rn

is said to be Lyapunov-like on K if 〈Ax, s〉 = 0 for all (x, s) ∈ C (K). The
set of all such matrices forms a vector space whose dimension β (K) is called
the Lyapunov rank of K. This number is useful in conic optimization and
complementarity theory, as it relates to the number of linearly-independent
bilinear relations needed to express the complementarity set. This article is
a continuation of the study initiated in [6] and further pursued in [3]. By
answering several questions posed in [3], we show that β (K) is bounded above

by (n− 1)
2
, thereby improving the previously known bound of n2−n. We also

show that when β (K) ≥ n, the complementarity set C (K) can be expressed
in terms of n linearly-independent Lyapunov-like matrices.
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1 Introduction

Let K be a proper cone in Rn (that is, K is a closed convex pointed cone with
nonempty interior) whose dual K∗ [1] is given by
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K∗ := {y ∈ Rn : ∀x ∈ K, 〈x,y〉 ≥ 0} .

The complementarity set of K [6] is defined to be

C (K) := {(x, s) : x ∈ K, s ∈ K∗, 〈x, s〉 = 0} .

Such a set arises in complementarity and conic optimization problems in
the form of optimality conditions. In many of these problems, one solution
strategy involves replacing the single equation 〈x, s〉 = 0 by a square system
of “independent” equations. While this is not always possible, it is desirable to
identify cones where this can be done. In order to quantify this, Rudolf et al. [6]
introduce the concept of bilinearity rank of a cone. Gowda and Tao [3] showed
that this rank could also be described by means of the so-called Lyapunov-
like matrices on the cone, and renamed the rank as the Lyapunov rank. We
say that a matrix A ∈ Rn×n is Lyapunov-like [2] on K if 〈Ax, s〉 = 0 for
all (x, s) ∈ C (K). The set of all such matrices forms a vector space, denoted
by LL (K), whose dimension β (K) is called the Lyapunov rank of K. We
note that all of the above concepts could be defined for a proper cone in a
finite-dimensional real inner product space.

Recent papers [3], [4], and [6] contain numerous results on the Lyapunov
rank. In particular, it was shown in [3] that for any proper polyhedral cone
in Rn, the Lyapunov rank can be any number between 1 and n except n− 1.
The Lyapunov ranks of moment cones, symmetric cones, lp-cones, etc., have all
been described in the above papers. In the present paper, by answering several
questions posed in [3], we show that β (K) is bounded above by (n− 1)

2
,

thereby improving the previously known upper bound of n2−n. We also show
that when β (K) ≥ n, the complementarity set C (K) can be expressed in
terms of n linearly-independent Lyapunov-like matrices.

2 Preliminaries

In the Euclidean space Rn whose elements are regarded as column vectors, we
use the notation xTy or 〈x,y〉 to denote the usual inner product on Rn. For
a set S in Rn, span (S) and ∂ (S) respectively denote the vector (sub)space
generated by S and the boundary of S. Corresponding to a nonzero vector d
in Rn and a real number α, the set {x ∈ Rn : 〈x,d〉 = α} defines a hyperplane
in Rn. It is a supporting hyperplane for a set S if a boundary point of S lies
on the hyperplane and S lies on one side of the hyperplane.

The space Rn×n of all n × n real matrices carries the trace inner prod-
uct: 〈A,B〉 := trace

(
ABT

)
, where “trace” denotes the sum of all diagonal

elements. Recall that a matrix A ∈ Rn×n is Lyapunov-like on a proper cone
K if 〈Ax, s〉 = 0 for all (x, s) ∈ C (K), or equivalently,

〈
A, sxT

〉
= 0 for all

(x, s) ∈ C (K). Thus,

LL (K) =
{
A ∈ Rn×n : A is Lyapunov-like on K

}
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is nothing but the orthogonal complement of span
({

sxT : (x, s) ∈ C (K)
})
.

As β (K) = dim (LL (K)) by definition, we have the co-dimension formula [6]:

β (K) = n2 − dim
(
span

({
sxT : (x, s) ∈ C (K)

}))
(1)

3 Perfect cones

We say that a proper cone K in Rn is perfect [3] if its complementarity set
C (K) can be expressed in terms of n linearly-independent Lyapunov-like ma-
trices; that is,

C (K) = {(x, s) : x ∈ K, s ∈ K∗, 〈Aix, s〉 = 0, i = 1, 2, . . . , n} , (2)

where A1,A2, . . . ,An are linearly-independent Lyapunov-like matrices on K.
Known examples include the nonnegative orthant Rn

+ (which can be seen by
taking Ai to be the diagonal matrix with 1 in its (i, i) slot and zeros elsewhere)
and all symmetric cones [3]. These cones are considered “good” from a linear
(conic) programming perspective as they admit polynomial algorithms. Thus,
one hopes to seek similar “good” cones among perfect cones. This leads to the
question of characterizing perfect cones (which was raised in [3]). To answer
this, we have the following result.

Theorem 1 For a proper cone K in Rn, the following are equivalent:

(i) β (K) ≥ n.
(ii) The identity matrix can be written as a linear combination of n linearly-

independent Lyapunov-like matrices.
(iii) K is perfect.

Proof (i) =⇒ (ii): Suppose m = β (K) ≥ n. As I (the identity matrix) is a
nonzero Lyapunov-like matrix, we can extend {I} to a basis {I,A2, . . . ,Am}
of LL (K). Then the equality I = I + 0A2 + · · ·+ 0An proves (ii).

(ii) =⇒ (iii): Let I be a linear combination of n linearly-independent
Lyapunov-like matrices A1,A2, . . . ,An and let

E (K) := {(x, s) : x ∈ K, s ∈ K∗, 〈Aix, s〉 = 0, i = 1, 2, . . . , n} ,

which is the right-hand side of (2). We show that K is perfect by proving
C (K) = E (K).

Suppose that (x, s) ∈ C (K). Then by definition, 〈Ax, s〉 = 0 for every
Lyapunov-like matrix A. Since each Ai is Lyapunov-like, we have 〈Aix, s〉 = 0
for i = 1, 2, . . . , n and thus (x, s) ∈ E (K). So, C (K) ⊆ E (K).

To see the reverse inclusion, let (x, s) ∈ E (K) so that 〈Aix, s〉 = 0 for
i = 1, 2, . . . , n. Since I can be written as a linear combination of the Ai, we
have 〈Ix, s〉 = 0. In other words, (x, s) ∈ C (K). So we have E (K) ⊆ C (K)
as well.



4 Michael Orlitzky M. Seetharama Gowda

It follows that C (K) = E (K) and that K is perfect.
The implication (iii) =⇒ (i) is obvious from the definition of a per-

fect cone, because there exist at least n linearly-independent Lyapunov-like
matrices on K.

ut

Remark 1 When β (K) = n, I is a linear combination of any n linearly-
independent Lyapunov-like matrices (as there are exactly n objects in any
basis of LL (K)). This need not happen when β (K) > n: while I can always be
expressed as a linear combination of some n linearly-independent Lyapunov-
like matrices, one could construct a basis of LL (K) such that I can never
be expressed as a linear combination of n linearly-independent Lyapunov-like
matrices from this basis. This can be seen as follows. With m = β (K) > n,
consider a basis of LL (K) of the form {I,A2, . . . ,Am}. Then

{I + A2 + · · ·+ Am,A2, . . . ,Am}

is also basis such that I is not a linear combination of n objects in this basis.
This raises an interesting problem: Given a basis of LL (K) whose rank is

more than n, find a necessary and sufficient condition for the identity matrix
to be a linear combination of n elements of the basis.

4 An improved upper bound for β (K)

As mentioned previously, it was shown in [3] that β (K) ≤ n2−n. The problem
of improving this bound (or potentially determining the best bound) was raised
in [3]. Towards this, we prove the following result.

Theorem 2 For every proper cone K in Rn with n ≥ 3,

1 ≤ β (K) ≤ (n− 1)
2
. (3)

The proof of this theorem relies on the following lemmas.

Lemma 1 Let K be a proper cone in Rn. Then, for any nonzero x ∈ ∂ (K),
there exists a nonzero s ∈ ∂ (K∗) such that (x, s) ∈ C (K). Similarly, for any
s ∈ ∂ (K∗), there exists a nonzero x ∈ ∂ (K) such that (x, s) ∈ C (K).

This is a known result: see [7], Lemma 3.

While the following result may be known, for lack of precise reference, we
offer a proof.

Lemma 2 Suppose K is a proper cone in Rn, with n ≥ 2, whose boundary is
contained in a finite union of proper subspaces. Then, K is polyhedral.
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Proof Without loss of generality, we assume that the proper subspaces are of
dimension n − 1. Among these (n− 1)-dimensional subspaces, some may be
non-supporting hyperplanes. We prove the result by induction on the number
such hyperplanes. Let ∂ (K) ⊆ ∪N1 Hi, where

Hi := {x ∈ Rn : 〈x, zi〉 = 0}

with zi 6= 0 for all i. Denote the left and right half-planes of Hi by Li =
{x ∈ Rn : 〈x, zi〉 ≤ 0} and Ri = {x ∈ Rn : 〈x, zi〉 ≥ 0} respectively.

We first consider the base case when there are no non-supporting hyper-
planes among these Hi. This means that every Hi is a supporting hyperplane.
Without loss of generality, let K ⊆ Li for all i. Now consider the polyhedral
cone C := ∩N1 Li which contains K. We claim that K = C. Assume the con-
trary that K 6= C. As n ≥ 2, every interior point of a proper cone is the
convex combination of two boundary points. We may therefore assume that
there is a p ∈ ∂ (C) such that p /∈ K. Let q ∈ int (K) ⊆ int (C). From convex
analysis [5] we know that the line segment (p,q] ⊂ int (C) and there exists
r ∈ (p,q] which lies on the boundary of K.

By our assumption on the boundary points of K, r belongs to, say, H1.
As K ⊆ Li for all i, we see that r ∈ ∂ (C). This clearly contradicts the fact
that (p,q] ∈ int (C). Thus, K = C, proving the polyhedrality of K in the base
case.

Now suppose that among Hi, i = 1, 2, . . . , N , there is a non-supporting
hyperplane, say, HN . This means that the sets K ∩ int (LN ) and K ∩ int (RN )
are both nonempty. Let K1 := K ∩ LN and K2 := K ∩ RN . Clearly, both
K1 and K2 are proper cones in Rn and K = K1 ∪ K2. Now, as ∂ (K1) ⊆
∂ (K) ∪ ∂ (LN ), we see that the boundary of K1 is contained in the union of
a finite number of n − 1 dimensional subspaces, but now with a fewer non-
supporting hyperplanes (HN has become a supporting hyperplane for K1). By
our induction hypothesis, K1 is polyhedral. Similarly, K2 is polyhedral. Let
K1 = convcone ({x1,x2, . . . ,xl}) be the convex conic hull of {x1,x2, . . . ,xl},
and let K2 = convcone ({y1,y2, . . . ,yk}). As K = K1 ∪K2 is convex, we have

K = convcone ({x1,x2, . . . ,xl,y1,y2, . . . ,yk}) .

Hence, K is polyhedral.
ut

Proof of Theorem 2 Let K be a proper cone in Rn with n ≥ 3.
When K is polyhedral, Gowda and Tao [3] have shown that β (K) ≤ n.

As n ≤ (n− 1)
2

for n ≥ 3, we have (3) in this case. Hence from now on, we
assume that K is non-polyhedral and that n ≥ 3. Our proof consists of showing
that there are at least 2n − 1 linearly-independent matrices of the form sxT

with (x, s) ∈ C (K); then, the codimension formula (1) yields (3).
Now, since K is proper, its interior is non-empty. Thus, span (∂ (K)) =

span (K) = Rn. Hence, there exist n linearly-independent vectors on the
boundary of K. There also exists an isomorphism of Rn mapping these n
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vectors to the standard basis e1, e2, . . . , en. Since the Lyapunov rank is invari-
ant under an isomorphism, without loss of generality we can suppose that the
vectors e1, e2, . . . , en lie on the boundary of K.

Since each ei lies on the boundary of K, by Lemma 1, there exists a non-
zero si such that (ei, si) ∈ C (K).

Our goal now is to find (vi,wi) ∈ C (K), i = 1, 2, . . . , n− 1 so that the set{
sie

T
i : i = 1, 2, . . . , n

}
∪
{
wiv

T
i : i = 1, 2, . . . , n− 1

}
(4)

is linearly-independent in Rn×n, thus giving us the desired 2n − 1 linearly-
independent matrices of the form sxT with (x, s) ∈ C (K).

Note that
{
sie

T
i : i = 1, 2, . . . , n

}
is a linearly-independent set in Rn×n, as

the ith column of sie
T
i is si (6= 0) and the other columns are zero.

To construct (vi,wi) ∈ C (K), we proceed as follows.K is a non-polyhedral
proper cone, so K∗ is also a non-polyhedral proper cone. By Lemma 2, the
boundary of K∗ is not contained in ∪ni=1span ({si}). We can therefore find a
nonzero w1 on the boundary of K∗ with

w1 /∈
n
∪
i=1

span ({si}) .

By an application of Lemma 1, we can then find a nonzero v1 ∈ ∂ (K) such
that (v1,w1) ∈ C (K). We claim that the set{

sie
T
i : i = 1, 2, . . . , n

}
∪
{
w1v

T
1

}
is linearly-independent in Rn×n. If this were not true, as the first set above
is linearly-independent, w1v

T
1 must be a linear combination of sie

T
i , i =

1, 2, . . . , n. Since any linear combination of sie
T
i , i = 1, 2, . . . , n, is a matrix

whose columns are multiples of si, this would mean that w1 is a multiple of
some si, contradicting our choice of w1. We thus have our claim.

To proceed with the induction, assume the existence of (vi,wi) ∈ C (K),
i = 1, 2, . . . ,m for 1 ≤ m < n− 1 such that the set{

sie
T
i : i = 1, 2, . . . , n

}
∪
{
wiv

T
i : i = 1, 2, . . . ,m

}
is linearly-independent in Rn×n. We will construct a new pair (vm+1,wm+1)
with the same property. Let Hi := span ({si,w1,w2, . . . ,wm}). As K∗ is a
non-polyhedral proper cone, its boundary cannot be contained in the union
∪ni=1Hi by Lemma 2. Thus, there exists a vector wm+1 ∈ ∂ (K∗) such that

wm+1 /∈
n
∪
i=1
Hi.

(Note that this argument works only when m < n − 1. When m = n − 1,
each Hi is equal to Rn, and clearly no such wm+1 can be found: the subspaces
Hi are not proper, and the lemma does not apply.)

Now by an application of Lemma 1, we obtain a vm+1 corresponding to
wm+1 such that (vm+1,wm+1) ∈ C (K) .

We next claim that
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{
sie

T
i : i = 1, 2, . . . , n

}
∪
{
wiv

T
i : i = 1, 2, . . . ,m+ 1

}
is linearly-independent in Rn×n. By our assumption on the m elements {wi},
we need only show that wm+1v

T
m+1 is not a linear combination of matrices

in
{
sie

T
i : i = 1, 2, . . . , n

}
∪
{
wiv

T
i : i = 1, 2, . . . ,m

}
. Assuming the contrary,

by considering the columns of these matrices, we see that wm+1 is a linear
combination of vectors in {sj ,w1,w2, . . . ,wm} for some j, which contradicts
the choice of wm+1. We thus have our claim.

Now, by successively taking m = 1, 2, . . . , n − 2, we generate the linearly-
independent set (4). As this set contains 2n− 1 elements, by the codimension

formula (1), we see that β (K) ≤ (n− 1)
2
.

ut

Remark 2 The bound β (K) ≤ (n− 1)
2

is sharp for n = 3. For example, if

K is the second-order cone Ln
+ in Rn, then β (K) = n2−n+2

2 . Thus, for this

cone, when n = 3, β (K) = 4 = (n− 1)
2
. It is not clear if the bound (n− 1)

2

continues to be sharp for n > 3.
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