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Abstract
In a real Hilbert space V , the conic hull of G ⊆ V is the set cone (G)

consisting of all nonnegative linear combinations of elements of G. Many
optimization problems are sensitive to the changes in cone (G) that re-
sult from changes in G itself. Motivated by one such problem, we derive
necessary and sufficient conditions for the continuity of the conic hull.
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1 Introduction
Our goal today is to characterize the continuity of the conic hull. We set the
stage with a bit of jargon. Everything takes place in a finite-dimensional real
Hilbert (henceforth: Euclidean) space that we’ll call V and whose unit sphere
is denoted by S (V ).

A cone is a nonempty subset K of V such that αK ⊆ K for all α ≥ 0. A
closed convex cone is a cone that is closed and convex as a subset of V . The
conic hull of a subset G ⊆ V is a convex cone,

cone (G) :=
{

m∑
i=1

αigi

∣∣∣∣∣ gi ∈ G, αi ≥ 0, m ∈ N

}
.

On other days, the conic hull might also be called the positive span [2] or the
positive hull [7, 9, 12]. If cone (G) = K, then G is said to generate K and the
elements of G are generators of K. If G is finite, then K is closed [9]. The
lineality space of a convex cone K is linspace (K) := −K ∩K and K is pointed
if linspace (K) = {0}.

Question. When do small changes in G produce small changes in cone (G)?

1.1 Some motivation
Iusem and Seeger [6] define the maximal angle within a nontrivial closed convex
cone K to be

θmax (K) := max ({arccos 〈x, y〉 | x, y ∈ K ∩ S (V )}) .
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The underlying computation here is a conic version of a familiar optimization
problem, that of finding a pair of points within a compact set that are at maxi-
mal distance from one another. Said pairs are called antipodal, and the distance
between them is known as the diameter of the set. Gourion and Seeger found an
algorithm to compute the maximal angle [3], and their result was later enriched
by Seeger and Sossa with support for multiple cones [10]. The maximal angle
between two nontrivial closed convex cones P and Q is defined to be

Θ (P ,Q) := max ({arccos 〈x, y〉 | x ∈ P ∩ S (V ), y ∈ Q ∩ S (V )}) ,

and may be seen as a generalization of the principal angle between linear sub-
spaces [10]. Of course, θmax (K) = Θ (K,K).

From any set of generators, a minimal conically-independent subset can be
chosen [2] and scaled to unit norm without affecting the cone; the Seeger-Sossa
algorithm for computing Θ (P ,Q) = Θ (cone (G), cone (H)) depends explicitly
on two such sets G and H that generate P and Q, respectively. Seeger and
Sossa furthermore demonstrate that the map (P,Q) 7→ Θ (P ,Q) is continuous.
We are thereby compelled to ask whether or not the conic hull is continuous,
so that the whole expression might depend continuously on G and H. Simply
put, it’d be nice to know if the algorithms to compute maximal angles have any
hope of being stable.

But that’s not all: the Seeger-Sossa algorithm involves the solution of several
generalized eigenvalue problems, each with matrices formed from the generating
sets G and H. Orlitzky noticed that, should they arise, eigenspaces of dimen-
sion two or greater can subvert the algorithm [8]. In numerical experiments
this situation has been avoided, one supposes, because the eigenspaces tend to
dimension one in floating point. This prompts Orlitzky to ask if small pertur-
bations of G and H can be used to eliminate the unwelcome eigenspaces, and if
so, whether or not those perturbations will significantly change the answer.

1.2 Other approaches
Walkup and Wets were likely the first to investigate the continuity of the conic
hull [12]. They first exhibit continuity where the resulting cone is pointed, and
then use that fact to derive two conditions that together imply continuity more
generally1. Take heed that Walkup and Wets consider the domain of the conic
hull to be the space of realm-by-nmatrices endowed with the “long vector” norm
from Rmn. Their conic hull then consists of all nonnegative linear combinations
of the columns of its argument. This representation imposes a fixed order and
cardinality upon the columns-cum-generators.

Corollary 1 (Walkup-Wets). If cone (A) is pointed and if none of the columns
of A ∈ Rm×n is zero, then the conic hull is continuous in a neighborhood of A.

Theorem 1 (Walkup-Wets). Suppose that Z is a subset of Rm×n, that k is an
integer, and that for every matrix A in Z,

1The corollary to the theorem is in fact independent of the theorem and is used in its proof.
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1. dim (linspace (cone (A))) = k,

2. there exists a neighborhood N about A such that if any column Ai of A lies
in linspace (cone (A)), then the corresponding column Ãi of any matrix Ã
in N ∩ Z lies in linspace

(
cone

(
Ã
))

.

Then the restriction of the conic hull to Z is continuous.

Our qualm with these conditions is that they aren’t practical to verify on
the fly. If you can find a set where nothing bad happens, and look only inside
that set, then ipso facto you should see only good things happen. But proving
that you have or can find such a set is often tantamount to the problem you
started with, and the computer is ill-equipped to assist.

Luc and Wets revisit the problem [7] armed with a few decades’ worth of
new technology, the standard reference for which is the opus of Rockafellar
and Wets [9]. For contrast, the matrices of Walkup and Wets are replaced by
arbitrary sets, and long-vector limits are superseded by Painlevé-Kuratowski
outer limits of sets [1, 9].

Theorem 2 (Luc-Wets). Given a collection {W ;W ν | ν ∈ N} of nonempty sub-
sets of Rn,

lim supν cone (W ν) ⊆ cone (W )

under the following hypotheses:

1. W includes the outer limit of the sets W ν ,

2. cone (W ) includes the horizon outer limit of the sets W ν ,

3. cone (W ) includes the core outer limit of the sets W ν ,

4. if t ∈ linspace (cone (W )) is nonzero and a cluster point of the sequence{
tν

‖tν‖

∣∣∣ ν ∈ N, tν ∈ cone (W ν) \ {0}
}

, then tν ∈ linspace (cone (W ν)) for
ν large enough, and linspace (cone (W )) ⊇ lim supν linspace (cone (W ν)).

On the one hand, the added generality has several nice consequences, the
most magnanimous being the absence of any real restrictions on the generating
sets. On the other, greater generality is no boon for usability. There are now
four hypotheses that together imply outer-semicontinuity but that remain chal-
lenging to verify mechanically. Conspicuously, neither theorem is apt to contend
with numerical noise.

1.3 Our approach
The subtext of Theorems 1 and 2 is that discontinuity is born of lineality spaces,
but neither ventures a necessary condition. Instead they allow the user to
promise that nothing goes awry in the lineality space, salvaging continuity if he
is able to do so. We challenge this with a simplification, refusing to focus only
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on a subset of the domain or on certain sequences2. After fixing its domain
(which we do in a moment), we ask for epsilon-delta continuity of the conic
hull in the usual metric sense at a point. This yields a necessary condition as
problematic perturbations cannot be hypothesized away.

Towards that end, we borrow the set-based convergence of Luc and Wets,
imposing additional restrictions until we have honest-to-goodness metric spaces
in both the domain and codomain of the conic hull.

Definition 1 (admissible cones and generating sets). The Pompeiu-Hausdorff
distance [1, 9] between two nonempty compact sets X,Y ⊆ V is,

haus (X,Y ) := max
({

max
y∈Y

dist (y,X),max
x∈X

dist (x, Y )
})

,

where dist (x, Y ) = min ({‖x− y‖ | y ∈ Y }) denotes the usual metric distance
from the point x to the set Y in V . For the domain of the conic hull, we take
the space of admissible generating sets in V ,

G (V ) := {G ⊆ V | G 6= ∅, G is finite, and 0 /∈ G} ,

equipped with the Pompeiu-Hausdorff distance as its metric. For the codomain
of the conic hull we choose the space of admissible cones in V ,

C (V ) := {K ⊆ V | K is a closed convex cone and K 6= {0}} ,

instilled with the spherical metric,

σ (P,Q) := haus (P ∩ S (V ), Q ∩ S (V )) .

Convergence in either space is metric [1], and in the case of C (V ) where
the sets are uniformly bounded, is equivalent to Painlevé-Kuratowski conver-
gence [9]. Appendix A chronicles the evolution of these definitions. Hereafter
we interpret the conic hull as a map from G (V ) to C (V ).

The sets in G (V ) are not typically convex and may therefore contain multiple
elements at minimal distance from a given x ∈ V .

Definition 2. The projection set of an element x ∈ V onto G ∈ G (V ) is

πG (x) := {g ∈ G | ‖g − x‖ = dist (x,G)} .

When we need a point in G at minimal distance from x, we will select an
arbitrary element from πG (x).

2This is both honest and untrue, since our domain itself excludes many pesky sets, though
in a way that does not compromise the integrity of our results.
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2 Towards necessity
We shall ultimately see that the conic hull is continuous at G ∈ G (V ) if and
only if either cone (G) is pointed or cone (G) = V . We attack each constituent
of this statement individually: the sufficiency of being pointed, the sufficiency
of being the entire space, and finally, the necessity of at least one of those.

Except at the origin, pointed cones are strictly contained within a single
half-space. This fact follows from a venerable separation theorem and appears
in many disguises; Exercise 6.22 of Rockafellar and Wets is conveniently clad [9].

Lemma 1. If K is a closed convex cone in a nontrivial Euclidean space V , then
K is pointed if and only if there exists some q ∈ S (V ) such that 〈x, q〉 > 0 for
all nonzero x in K.

For convenience we have scaled the vector q in this result to have unit norm,
but doing so required that V be made nontrivial. In the space V = {0}, our
own results hold vacuously because G (V ) is empty. We will therefore sneakily
apply Lemma 1 while assuming implicitly that V is nontrivial. (One does not
need any new theorems to understand completely the behavior of the conic hull
on the trivial space.)

Iusem and Seeger showed that the set of pointed cones is open within the
space of admissible cones [5], and we begin by showing that this result can be
pulled back to the generating sets.

Proposition 1. If V is a Euclidean space, if G ∈ G (V ), and if cone (G)
is pointed, then there exists a δ > 0 such that cone

(
G̃
)

is pointed whenever
haus

(
G, G̃

)
< δ.

Proof. If cone (G) is pointed, then there exists by Lemma 1 some q ∈ S (V ) such
that 〈g, q〉 > 0 for all g ∈ G. Define δ := min ({〈g, q〉 | g ∈ G}) /2, and suppose
haus

(
G, G̃

)
< δ. Then for each g̃ ∈ G̃ there is a g ∈ πG (g̃) with

|〈g, q〉 − 〈g̃, q〉| ≤ ‖g − g̃‖ < δ.

But δ, by definition, is no more than half the distance from zero to any 〈g, q〉,
and each 〈g, q〉 is positive. Thus each 〈g̃, q〉 is positive as well. Apply Lemma 1
again to conclude that cone

(
G̃
)

is pointed.

Corollary 2. If V is a Euclidean space, then {G ∈ G (V ) | cone (G) is pointed}
is an open subset of G (V ).

Proof. A trivial verification in V = {0}, and Proposition 1 elsewhere.

We next show that the conic hull is continuous at G when cone (G) is pointed.
This result bears overt similarity to Corollary 1, but is not a consequence of it,
owing to the incompatible domains.

Proposition 2. If V is a Euclidean space, if G ∈ G (V ), and if cone (G) is
pointed, then for all ε > 0 there exists a δ > 0 such that haus

(
G, G̃

)
< δ

implies σ
(
cone (G), cone

(
G̃
))
< ε.
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Proof. Let x =
∑m
i=1 αigi be an arbitrary unit-norm element of cone (G). As

cone (G) is pointed, there exists by Lemma 1 some q ∈ S (V ) such that 〈g, q〉 > 0
for all g ∈ G. Define γ := min ({〈g, q〉 | g ∈ G}), and note that

γ

m∑
i=1

αi ≤
m∑
i=1

αi 〈gi, q〉 = 〈x, q〉 ≤ ‖x‖ ‖q‖ = 1.

Thus we have a bound
∑m
i=1 αi ≤ γ−1 that is independent of x.

Set δ := εγ/4, and suppose that haus
(
G, G̃

)
< δ. For each g ∈ G, we may

choose one g̃ ∈ πG̃ (g) to define x̃ :=
∑m
i=1 αig̃i ∈ cone

(
G̃
)
. Then,

‖x− x̃‖ =

∥∥∥∥∥
m∑
i=1

αi (gi − g̃i)

∥∥∥∥∥ < δ

m∑
i=1

αi ≤ ε/4.

While x has unit norm, there is no such guarantee for x̃. But the reverse triangle
inequality gives

|1− ‖x̃‖| = |‖x‖ − ‖x̃‖| ≤ ‖x− x̃‖ ≤ ε/4

and this leads to∥∥∥∥x− x̃

‖x̃‖

∥∥∥∥ ≤ ‖x− x̃‖+
∥∥∥∥x̃− x̃

‖x̃‖

∥∥∥∥ ≤ ε/4 + |‖x̃‖ − 1| ≤ ε/2.

Thus having haus
(
G, G̃

)
< δ implies that dist

(
x, cone

(
G̃
)
∩ S (V )

)
< ε for all

x ∈ cone (G) ∩ S (V ), and it follows that

max
({

dist
(
x, cone

(
G̃
)
∩ S (V )

) ∣∣ x ∈ cone (G) ∩ S (V )
})

< ε

whenever haus
(
G, G̃

)
< δ. This is one half of the result.

If necessary, use Proposition 1 to shrink δ until cone
(
G̃
)

becomes pointed.
Then repeat the above argument with G and G̃ switched. After possibly shrink-
ing δ again, you should conclude that haus

(
G, G̃

)
< δ implies

max
({

dist (x̃, cone (G) ∩ S (V ))
∣∣ x̃ ∈ cone

(
G̃
)
∩ S (V )

})
< ε,

which is the other half of σ
(
cone (G), cone

(
G̃
))
< ε.

Attempting to prove the converse, we hit a roadblock: if cone (G) is the
entire space, the situation appears stable. This turns out to be an exceptional
case that we can prove with assistance from Chandler Davis [2].

Lemma 2 (Davis). If V is a Euclidean space and if G ∈ G (V ), then cone (G) =
V if and only if for all nonzero x ∈ V there exists a g ∈ G such that 〈g, x〉 > 0.

Proposition 3. If V is a Euclidean space, if G ∈ G (V ), and if cone (G) = V ,
then there exists a δ > 0 such that haus

(
G, G̃

)
< δ implies cone

(
G̃
)

= V .
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Proof. Suppose cone (G) = V , and use Lemma 2 to define the function,

γ : V → (0,∞)
γ = x 7→ max ({〈g, x〉 | g ∈ G}) .

For an arbitrary x ∈ V , let Gx denote any element of G satisfying 〈Gx, x〉 =
γ (x). To see that the function γ is continuous, observe the two inequalities

γ (x+ ∆x) ≤ max ({〈g, x〉 | g ∈ G}) + max ({〈g,∆x〉 | g ∈ G})
≤ γ (x) + max

g∈G
‖g‖ ‖∆x‖ ,

and

γ (x+ ∆x) = max ({〈g, x〉+ 〈g,∆x〉 | g ∈ G})
≥ 〈Gx, x〉+ 〈Gx,∆x〉
≥ γ (x)−max

g∈G
‖g‖ ‖∆x‖ .

Thus γ achieves its minimum on S (V ). Define γmin to be that minimum, and let
δ be smaller than γmin. If haus

(
G, G̃

)
< δ, then, in particular, when x ∈ S (V ),

there exists a G̃x ∈ πG̃ (Gx) with
∥∥∥Gx − G̃x∥∥∥ < δ, and∣∣∣〈Gx, x〉 − 〈G̃x, x〉∣∣∣ ≤ ∥∥∥Gx − G̃x∥∥∥ ‖x‖ < δ < γmin.

But 〈Gx, x〉 ≥ γmin by the definition of γmin, so
〈
G̃x, x

〉
> 0 for all x ∈ S (V ).

Scale Lemma 2 to S (V ) and apply it once more to see that cone
(
G̃
)

= V .

Corollary 3. If V is a Euclidean space, then {G ∈ G (V ) | cone (G) = V } is
an open subset of G (V ).

Proof. A trivial verification in V = {0}, and Proposition 3 elsewhere.

With that exception out of the way, the necessary condition is within reach.
To prove it, we’ll decompose our closed convex cone into a vector subspace and a
pointed cone. This lucrative result appears, for example, as Stoer and Witzgall’s
Theorem 2.10.5 [11].

Lemma 3. Every convex cone K in a Euclidean space has an orthogonal direct
sum decomposition,

K = linspace (K)⊕K ∩ linspace (K)⊥,

wherein K ∩ linspace (K)⊥ is a pointed convex cone.

When G generates K, the subset of G that lies in the lineality space of K
is called its lineal part. Wets and Witzgall [13] showed that the lineal part of
G corresponds exactly to linspace (K) in the direct sum decomposition of K.
It follows that if linspace (K) 6= {0}, then the origin is a nontrivial (not all
coefficients zero) conic combination of the elements of G itself.
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Lemma 4 (Wets-Witzgall). If V is a Euclidean space, if G ∈ G (V ), and if
cone (G) = K, then cone (G ∩ linspace (K)) = linspace (K).

Corollary 4. If V is a Euclidean space, if G ∈ G (V ), and if cone (G) is not
pointed, then the origin is a nontrivial conic combination of the elements of G.

We’re now ready to prove that the conic hull is not continuous at G when
cone (G) is neither pointed nor the entire space. The direct sum decomposition
allows us to choose a direction that points away from both the lineality space
of cone (G) and from its pointed component. Perturbing the elements of G in
that direction will result, after taking the conic hull, in a unit-norm vector that
is bounded away from any unit-norm element of cone (G) itself.

Proposition 4. If V is a Euclidean space, if G ∈ G (V ), and if cone (G)
is neither V nor pointed, then for all δ > 0 there exists a G̃ ∈ G (V ) with
haus

(
G, G̃

)
< δ and σ

(
cone (G), cone

(
G̃
))
≥ 1.

Proof. Let K := cone (G). If K 6= V , then linspace (K)⊥ is nontrivial; and as
regards Lemma 3, K∩linspace (K)⊥ is pointed not only in V but also as a subset
of linspace (K)⊥. Lemma 1 therefore produces a unit-norm q ∈ linspace (K)⊥

such that 〈y, q〉 > 0 for all nonzero y ∈ K ∩ linspace (K)⊥.
Define G̃ := {g − δq/2 | g ∈ G} assuming without loss of generality that δ

is small enough to ensure 0 /∈ G̃. Next use Corollary 4 to write the origin as a
nontrivial conic combination, 0 =

∑m
i=1 αigi, of the elements of G. Then

−q =
(

2
δ
∑m
i=1 αi

) m∑
i=1

αi (gi − δq/2) ∈ cone
(
G̃
)
,

so we have both haus
(
G, G̃

)
< δ and −q ∈ cone

(
G̃
)
∩ S (V ).

Take any z ∈ K ∩ S (V ) and use Lemma 3 to write z = x + y with x ∈
linspace (K) and y ∈ K ∩ linspace (K)⊥. Then,

‖−q − (x+ y)‖2 = ‖q‖2 + 2 〈q, x+ y〉+ ‖x+ y‖2 = 2 + 2 〈q, y〉 ≥ 2.

Finally, take square roots to see that the distance between −q and z is at least
unity; thus σ

(
cone (G), cone

(
G̃
))
≥ 1.

3 Wrapping up
The quantity dim (linspace (K)) is the lineality of K, and there are well-known
algorithms to find it. To produce our main result, we combine Propositions 2,
3, and 4, and rephrase them in terms of lineality.

Theorem 3. If V is a Euclidean space and if G ∈ G (V ), then the conic hull,
as a map from G (V ) to C (V ), is continuous at G if and only if the lineality of
cone (G) is either zero or dim (V ).
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Back in the land of maximal angles, this success can be parlayed into a
sufficient condition for the two-cone problem. Some gymnastics are required to
circumvent a technical obstacle: in Seeger and Sossa’s proof that the maximal
angle map (P,Q) 7→ Θ (P ,Q) is continuous [10], the arguments P and Q are
prohibited from being the ambient space V . The restriction isn’t essential to
their line of reasoning, but it’s easier to check the additional case where P = V
or Q = V than it is to verify that statement.

Corollary 5. Suppose V is a Euclidean space and that G,H ∈ G (V ). If both
cone (G) and cone (H) are pointed, or if either equals V , then the map (X,Y ) 7→
Θ (cone (X), cone (Y )) from G (V )2 to [0, π] is continuous at (G,H).

Proof. If P := cone (G) and Q := cone (H) are both pointed, then Proposition 1
shows that we are in no danger of generating V near G or H. And in that case,
we simply cite the continuity of the composition.

In the other, we may assume without apology [2] that P = V . Then
Θ (P ,Q) = π, since there exists at least one nonzero x ∈ Q, and −x ∈ P
makes an angle of π with it. If G̃ is close enough to G, then cone

(
G̃
)

will still
be V by Proposition 3, leaving the maximal angle unchanged.

The necessary condition does not propagate as easily, however, because you
can have continuity around a pair of sets that both generate non-pointed cones.

Example 1. Let {e1, e2} denote the standard basis in V = R2, and define
G := {±e1} and H := {e1,±e2} so that cone (G) and cone (H) are obviously
not pointed and form a maximal angle—achieved by the generators themselves—
of π. Perturbing the elements of G and H cannot change that maximal angle
much, since the perturbed cousins of −e1 ∈ G and e1 ∈ H will remain almost
diametrically opposed.

In contrast, it’s easy to see that the maximal angle within a single cone is
π if and only if the cone is not pointed, making the (dis)continuity of the conic
hull in that case moot.

Corollary 6. Suppose V is a Euclidean space and that G ∈ G (V ). Then either
cone (G) is not pointed and θmax (K) = π, or the map X 7→ θmax (cone (X))
from G (V ) to [0, π) is continuous at G.

4 Conclusions
This is a fairly happy ending. We saw only finite sets of generators, but share
that myopia with any algorithm whose input comprises the generators of a
cone. That makes Theorem 3 a satisfying computational result quite generally.
Our characterization of continuity in the single-cone maximal angle problem is
complete. In the two-cone problem we obtained only sufficiency, but that is
a two-cone-problem problem: improvements to Corollary 5 will likely require
further insights into the behavior of the maximal angle map.
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Still, something nags. Luc and Wets were able to establish results for es-
sentially arbitrary sets in Theorem 2, and we would feel better if Theorem 3
was valid for infinite sets. Suppose we ask that our generating sets be merely
compact as opposed to finite. Our own results are resilient to such a change, as
are Lemmas 2 and 4 of Davis, Wets, and Witzgall. The problem one encounters
is that compact sets can generate cones that aren’t closed. At the expense of its
metric nature, the Pompeiu-Hausdorff distance can be defined with supremums
instead of maximums to accommodate them. Will we find salvation if, instead
of epsilon-delta, we are willing to settle for a topological notion of continuity?
We leave these speculations as such, and the general problem open.

A What’s in a domain?
Oliver Heaviside says [4] that definitions “make themselves, when the nature of
the subject has developed itself,” and ours are no exception. The candidates
discarded would not smell as sweet.

Starting from maximal angles [8], we first tried to adopt the space of all
closed convex cones K ⊆ V such that K /∈ {{0} , V } as the codomain of the
conic hull. With it came the spherical metric that reinforces the need for K to
be nontrivial: the set K = {0} doesn’t intersect the unit sphere, and while it’s
possible to define a Pompeiu-Hausdorff distance that works on the empty set,
the resulting notion of distance is not metric. So we kept the condition that
K 6= {0} in furtherance of our stated goal, metric epsilon-delta continuity. The
condition that K 6= V was more problematic, and we return to it later.

The decision to restrict the codomain of the conic hull to closed convex cones
K 6= {0} had immediate repercussions for its domain. Convexity of cone (G) is
given, but the most straightforward way to ensure that cone (G) is closed was to
make G finite. Moreover the empty set could not belong to the domain because
cone (∅) = {0} is not admissible. With the sets in our domain nonempty and
finite, Pompeiu-Hausdorff was then an obvious choice for a distance because it
constitutes a metric on the space of nonempty closed and bounded subsets of
the ambient space [1].

We were first inspired to exclude the origin from our generating sets after
noticing that cone (G ∪ {0}) = cone (G) regardless of G; the origin is always
redundant. But this turned out to be crucial because the origin can be perturbed
to generate an arbitrary ray. It therefore impedes continuity wherever it arises.
Retroactively, we observe that the origin belongs to the lineality space of every
cone, and the moral of Proposition 4 is that discontinuity comes from having
generators in your lineality space. If 0 ∈ G, then the argument for Proposition 4
proceeds without Corollary 4, even if cone (G) is pointed. In other words, the
presence of the origin in G will lead to discontinuity in all but corner cases. This
one unassuming detail is likely to blame for much of our success.

Which brings us back to the case of K = V in the codomain. Remember
that we are concerned with open-ball continuity around a given generating set
G. The larger problem we were up against was therefore to ensure that all
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reasonable notions of a perturbation were captured by open balls in the domain.
After some meditation, we were convinced that excluding the origin from the
generating sets did not violate that principle, nor did excluding empty or infinite
sets as generating sets. The same could not be said about sets that generate
V , however. The half-space-generating G := {e1,±e2} ⊆ R2, for example, is
easily perturbed to obtain a G̃ that generates all of R2. Disallowing K = V
in the codomain would invalidate that perturbation by removing G̃ from the
neighborhoods about G. As we were compelled to account for those sorts of
perturbations, we were forced to allow K = V in the codomain.

It’s only fair at this point to mention a flaw in our own approach. If G =
{g1} ∈ G (V ), then for example g2 := 2g1 constitutes a superfluous generator
that is distinct from g1. Thus upon defining G̃ := {g1, g2} we have cone (G) =
cone

(
G̃
)

despite haus
(
G, G̃

)
6= 0. For maximum efficacy, it would be preferable

if G and G̃ were coincident, but it’s not immediately clear how to achieve that.
Apropos of nothing else, either g1 or g2 can be considered redundant in G̃, and
the distinction begins to matter when you want to delete one.
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