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Abstract

If K is a closed convex cone and if L is a linear operator having L (K) C
K, then L is a positive operator on K and L preserves inequality with
respect to K. The set of all positive operators on K is denoted by 7 (K).
If K* is the dual of K, then its complementarity set is

C(K) = {(z,s) € K x K* | {z,s) = 0}.

Such a set arises as optimality conditions in convex optimization, and a
linear operator L is Lyapunov-like on K if (L (x),s) = 0 for all (z,s) €
C (K). Lyapunov-like operators help us find elements of C (K), and the
more linearly-independent operators we can find, the better. The set of
all Lyapunov-like operators on K forms a vector space and its dimension
is denoted by 3 (K).

The number 3 (K) is the Lyapunov rank of K, and it has been studied
for many important cones. The set 7 (K) is itself a cone, and it is natural
to ask if B (7 (K)) can be computed, possibly in terms of 8 (K) itself. The
problem appears difficult in general. We address the case where K is both
proper and polyhedral, and show that § (7 (K)) = 3 (K)? in that case.

1 Introduction

Lyapunov rank was introduced by Rudolf, Noyan, Papp, and Alizadeh [12] un-
der the name bilinearity rank. Their goal was to quantify the ease with which
optimality conditions can be decomposed into a system of equations. One mo-
tivating example for this decomposition is the standard linear program in R".

Example 1. A linear program consists of a linear objective function and a
system of linear constraints. In the primal problem, we are asked to

minimise (b, x) subject to L (z) > ¢ and z > 0.
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This problem has an associated dual, to
maximise (c,y) subject to L* (y) <band y > 0.

The dual optimal value exists and equals that of the primal under certain con-
ditions. If (z,¥) is a primal-dual pair of solutions, then (L (Z) — ¢,y) = 0. This
requirement is called complementary slackness. The slackness condition can be
decomposed by noting that (L (z) —¢,y) = 0 if and only if (L (z) —¢),y; =0
for : = 1,2,...,n. The resulting system of n equations is easier to solve than
the single equation (L () — ¢, y) = 0.

In our linear program, the condition x > 0 says that x belongs to the proper
cone R. The ease with which (L (Z) —¢,y) = 0 can be decomposed in that
case turns out to be a property of the cone R’'. Rudolf et al. consider whether
or not there are other cones possessing the same property. If K is a proper cone
with dual K* in some finite-dimensional real Hilbert space, then the set of pairs
satisfying complementary slackness in Example 1 has a generalization called the
complementarity set of K, defined as

C(K)={(z,s) e K x K" | (x,s) =0}.

Membership in C (K) is a condition for optimality in some convex op-
timization and complementarity problems [7]. We say that a linear opera-
tor L is Lyapunov-like on K if (L(x),s) = 0 for all (z,s) € C(K). The
Lyapunov-like operators provide a general method for decomposing the con-
dition (z,s) € C (K) into a system of equations, as we did with complementary
slackness. The dimension of the space of all Lyapunov-like operators is called
the Lyapunov rank of K. Lyapunov rank measures the number of independent
equations that we can obtain from the condition (z,s) € C (K).

Example 2. In Example 1, the minimisation or maximisation takes place over
the nonnegative orthant R’ . If {Eij}?,jzl is the standard basis in R™*", then
E;; is Lyapunov-like on R if and only if 7 = j. The span of said Ej; is the space
of diagonal matrices. Write the identity matrix as I = F11 + Fos + -+ + Ep,p
and substitute; the complementary slackness condition (I (L (Z) —c¢),y) = 0
produces a system of equations (L (Z) —c¢), % =0 fori=1,2,...,n.

Gowda and Tao [7] showed that the space of all Lyapunov-like operators on K
is the Lie algebra of the automorphism group of K. Another reason for studying
Lyapunov-like operators is thus as a means to understanding the automorphism
groups of cones. The Lyapunov rank has been computed for a growing number
of cones: the moment cone [12], symmetric cones [7], completely-positive and
copositive cones [6], special Bishop-Phelps cones [8], and extended second-order
cones [15]. An upper bound is known for all proper cones [10].

Our focus will be on the cone of positive operators. If L is linear with
L(K) C K, then L is a positive operator on K. Positive operators arose
from the study of integral operators and matrices with nonnegative entries [1];
they preserve inequality with respect to a cone. The famous Krein-Rutman



theorem extends Perron-Frobenius and connects positive operators to the theory
of dynamical systems [13], to game theory [5], and more.

Example 3. If K is R} and if L € R™*" with L(K) C K, then one can
consider the action of L on the standard basis to show that L has nonnegative
entries. Such matrices are precisely the positive operators on R’}.

The set of all positive operators on K is denoted by 7 (K). If K is a closed
convex cone, then 7 (K) is itself a closed convex cone and one can consider
the Lyapunov rank of m (K). Positive operators are difficult to characterise
in general. Computing the Lyapunov rank of m (K) also appears to be prob-
lematic without additional assumptions, so we restrict our attention to proper
polyhedral K. This represents a generalization of what is known for R}.

2 Preliminaries

In what follows, V' and W will always be finite-dimensional real Hilbert spaces,
and K and H will always be closed convex cones in V or W.

Definition 1. A nonempty subset K of V is a cone if AK C K for all A > 0.
A closed convex cone is a cone that is closed and convex as a subset of V. The
conic hull of a nonempty subset X of V is

cone (X) := {i %

=1

z;, € X, a; >0, mGN}.

If K = cone (X) for some finite set X, then K is polyhedral.

Definition 2. The dimension of K C V is dim (K) = dim (span (K)). A
convex cone K is solid if span (K) = V, and pointed if — K N K = {0}. A
pointed, solid, and closed convex cone is proper.

We prove our main result by decomposing a reducible cone into a direct sum
of irreducible cones. Beware that the terms ‘decomposable’ and ‘indecompos-
able’ are used by various authors as synonyms for ‘reducible’ and ‘irreducible’.

Definition 3. A closed convex cone K is reducible if K = K; + Ko where K;
and K5 are nonzero closed convex cones such that span (K1) Nspan (K3) = {0}.
A cone is irreducible if it is not reducible. We will use the direct sum notation
K = K1 @& K> for reducible cones.

Our definition of reducibility is due to Gowda and Tao [7]. Barker and Loewy
define decomposability slightly differently [2], not requiring K; and K» to be
closed convex cones. However if K = K; @& K5 for nonzero nonempty K; and
K, then K = cone (K1) @ cone (K3). Thus the definitions are equivalent.

The set of all linear operators from V to W is B(V, W), and we abbreviate
B(V,V) by B(V). Given x € V and s € W, we define s @z € B(V,W)
as the map y — (z,y)s, and a dimension argument shows that B(V,W) =



span ({s@z | se W,z € V}). If F € B(W) and G € B(V), then we define F©®
G € B(B(V,W)) to be the map s®x — F (s)®G (x). We will use the shorthand
notation S ® X or S ® X on sets S and X to mean {s®xz | s€ S,z € X}
or {sOz|seS,ze X} Any L € B(V,W) has an adjoint L* € B(W,V)
such that (L (z),y) = (z,L*(y)) for all x € V and y € W. The adjoint of
s®@a is ¢ ® s for vectors z € V and s € W. We adopt the trace inner-
product (L, L) = trace (L L3) on B(V), and ‘trace’ can be taken to mean
‘sum of eigenvalues’. To simplify the notation, composition of linear operators is
indicated by juxtaposition. An invertible linear operator that preserves inner-
products is an isometry.

Definition 4. The operator L € B (V) is a positive operator on K if L (K) C K.
The set of all such operators is denoted by 7 (K). To generalise, we allow that
L e B(V,W), and that L (K) C H for subsets K CV and H C W. The set of
all such operators is 7 (K, H), and 7 (K) is the special case where H = K.

Definition 5. If K is a subset of V', then the dual cone K* of K is
K ={yeV|(z,y)>0foralzeK}.

The complementarity set of K is C(K) = {(z,s) € K x K* | (z,s) =0} and
L € B(V) is Lyapunov-like on K if (L (x),s) = 0 for all (z,s) € C (K). By
LL (K) we denote the set of all Lyapunov-like operators on K. The Lyapunov
rank of K is 8 (K) = dim (LL (K)).

Definition 6. A nonempty convex subset F' of a convex cone K is a face of K if
z,y € K and ax + (1 —a)y € F for 0 < a < 1 together imply that z,y € F. If
in addition dim (F') = 1, then F' is an extreme ray of K. The extreme directions
of K are representatives of its extreme rays defined by,

Ext (K) := {z | « belongs to an extreme ray of K and |z| = 1}.

If K is a proper cone, then K = cone (Ext (K)) by a conic version of the
Krein-Milman theorem—Fenchel’s Theorem 14, for example [4]. It then follows
that K is polyhedral if and only if Ext (K) is finite. Moreover, we need only
consider the elements of Ext (K) and Ext (K*) to show that L € LL (K) [12].

3 Positive operators

The goal in this section is to compute the Lyapunov rank of 7 (K) when K is a
proper polyhedral cone. To motivate this, we will see what happens when K is
the nonnegative orthant R} .

Example 4. We showed in Example 2 that LL (Rﬁ) is the space of all diagonal
matrices in R™*™. As a result, 3 (]R’_f_) = n. We saw in Example 3 that 7 (Ri) is
the set of nonnegative matrices in R™*™. There is an obvious isometry between

™ (Ri) and Rf7 so it follows that /5 (7r (Ri)) =4 (Rf) =n?=4 (Rﬁ)%

4



We will relax two restrictions in the previous example. The cone R is self-
dual and simplicial—it has exactly dim (R™) extreme directions. By extending
the result to a proper polyhedral cone K in V| we allow for K # K*, and for
K to possess more than dim (V') extreme directions.

To compute 3 (7 (K)), we will ultimately need to find the more-general quan-
tity 8 (7 (K, H)). Some features of m (K, H) depend on those of K and H.

Proposition 1 (Schneider and Vidyasagar [14]). If K and H are proper (poly-
hedral) cones in finite-dimensional real Hilbert spaces V and W respectively,
then 7 (K, H) is a proper (polyhedral) cone in B (V,W).

It therefore makes sense to consider the Lyapunov rank of « (K, H). If
B (m (K, H)) can be expressed in terms of K and H, then g (7 (K)) is obtained
when H = K. However, the cone 7 (K, H) is unwieldy; its dual 7 (K, H)" is
more tractable and the extreme directions of that dual are known.

Proposition 2 (Berman and Gaiha [3]). If K and H are proper polyhedral
cones in finite-dimensional real Hilbert spaces, then

Ext (7 (K, H)") = Ext (H") ® Ext (K).

When we compute 7 (K, H), we would like to be able to assume that it is
irreducible at first. In Theorem 1, we will prove that = (K, H) is irreducible if
both K and H are irreducible. The converse of that statement is known, and
we are free to work with the dual of 7 (K, H) instead.

Proposition 3 (Haynsworth, Fiedler, and Ptak [9]). If K and H are proper
cones in finite-dimensional real Hilbert spaces and if either K or H is reducible,
then 7 (K, H) s reducible.

Proposition 4 (Barker and Loewy [2]). If K is a proper cone in some finite-
dimensional real Hilbert space, then K is reducible if and only if K* is reducible.

The proof of our first theorem is a straightforward adaptation of Barker and
Loewy’s Lemma 2.2 to the case where K # H.

Theorem 1. If K and H are proper cones in finite-dimensional real Hilbert
spaces, then w (K, H) is reducible if and only if either K or H is reducible.

Proof. One implication is given by Proposition 3. For the other, it suffices by
Proposition 4 to show that if 7 (K,H)" is reducible, then either K or H is
reducible. So, suppose that

7 (K, H)" = cone (Ext (7 (K,H)")) = A1 & Ay
where A; and As satisfy the conditions in Definition 3. As a result,

x € Ext(K) and s € Ext (H") = s®z € A, for a unique . (%)



The implication (x) follows from Proposition 2 which shows that for the given x
and s we have s ® z € Ext (7 (K, H)"). Definition 6 combined with the linear-
independence of A; and Ay shows that s ® r cannot be a nontrivial sum. It
follows that s ® x € A1 + Ay belongs to exactly one of the A;.

One consequence of (%) is that both A; and A must contain at least one
element of Ext (7r (K7H)*). If not, then, for example, 7 (K, H)" C A; and
Ay = {0} contradicting Definition 3. Define functions

Si(s) ={zxe€Ext(K)|s®xzecA;} forie{l,2}
and consider the two possible cases.

Case 1: there exists an § € Ext (H*) with both S; (5) and S3 (5) nonempty.

Apply (%) to any s ®@ x with x € Ext (K) to show that z € S; (s) U S, (5). Tt
follows that Sy (5) U Sz (5) = Ext (K). Define F; := cone (S; (5)). Then,

cone (S7 (8) US2(5)) Ccone (Fy + F») = F1 + F» C K.

We have Ext (K) = S (5) U Sz (5), so it follows that cone (S1 (5) U Sz (5)) = K
and thus that F} + F» = K.

Take any z € span (F;)Nspan (Fy). Each F; is a convex cone, so span (F;) =
F; — F;, and thus z = z; — 29 = w1 — wsy for some z1, 2o € F} and wy,wy € Fy.
Expand §®2z to 5®21 —5® 22 and write 21 € Fy = cone (51 (5)) as 21 = > a;0;
where a; > 0 and o; € S1(5). Expand §® 21 to ). «; (5®0;). Each §® o0
belongs to A; by the definition of S; (5), and since A; is a convex cone, the
sum 5 ® z7 is also in A;. A similar procedure shows that s ® zo € A;. Now,

S®2z2=5®21 —5® 20 € A1 — A1 =span (4Aq).

Repeat the procedure with z = w; — wy to show that s ® z € span (Ay).

The spans of Ay and A intersect trivially, so s ® z = 0. But s € Ext (H*)
is nonzero (it has unit norm), so we must have z = 0. Since z € span (F7) N
span (F») was arbitrary, those two spaces have trivial intersection, and the sum
K = F, @ F5 is in fact a direct sum showing that K is reducible.

Case 2: either S (s) or S (s) is empty for all s € Ext (H*).

In this case, we will show that H* is reducible. Define two new sets,
T, ={s€Ext(H") | S;(s) =0} forie {1,2}.

If Ty is empty, then S; (s) # 0 for all s € Ext (H*). But then by assumption we
have S (s) = () for all s € Ext (H*), and thus Ay = {0} which is not possible. Tt
must therefore be the case that T} and (by the same reasoning) T are nonempty.

Define G; := cone (T;). Every y € Ext (H*) belongs to at least one of the T;
by construction; thus Ext (H*) = T3 UTs. As in the first case,

cone (T1 U Tg) C cone (G1 + G2) =G, +Gy C H.



Along with the fact that Ext (H*) = T} U Ty, this shows that H* = G1 4+ Ga.

Fix an Z € Ext (K) and let w € span (G1) N span (G2) be arbitrary. Write
w = wy; —wy = 21 — 29 for wy,wy € Gy and z1,29 € G5. Expand w ® T to
w1 T —we @, and write wy € Gy = cone (T1) as wy = Y a;7; for a; > 0 and
7; € Th. Expand w1 ® T to ) o (7; ® Z), and notice that no 7; ® Z can belong
to Ay by definition of 77 and S; (7;). Consequently each 7; ® Z belongs to the
convex cone Ay by (x), and the sum w; ® % does too. The same reasoning shows
that wo ® Z € Ag, and thus that w = w1 ® T — we @ T € span (Ay).

Repeat the argument with w = 21 — 29 to find that w ® & € span (A;) as
well. Deduce that w = 0, that span (G1) N span (Gz) = {0}, and finally that
H* = G & Gs is reducible. Proposition 4 shows that H is reducible. O

The Lyapunov rank of an irreducible proper polyhedral cone is known, and
every proper cone is (in an obvious way) a direct sum of irreducible closed
convex cones. Combined with Theorem 1, these two observations form the base
case to which we will reduce a general proper polyhedral cone.

Proposition 5 (Gowda and Tao [7]). If K is a proper polyhedral cone in a finite-
dimensional real Hilbert space, then 8 (K) =1 if and only if K is irreducible.

Lemma 1. If K and H are two irreducible proper polyhedral cones in finite-
dimensional real Hilbert spaces, then B (w (K, H)) = (K) 5 (H).

Proof. Both K and H are irreducible, so Proposition 5 shows 8 (K) g (H) = 1.
But Proposition 1 and Theorem 1 imply that 7 (K, H) is also an irreducible
proper polyhedral cone, and thus 8 (7 (K, H)) = 1 by the same proposition. [

It remains to prove the full result for reducible cones. We will suppose that
K and H are reducible, respectively, into m and n components.

Theorem 2. If K and H are proper polyhedral cones in finite-dimensional real
Hilbert spaces, then 8 (m (K,H)) = (K) S (H).

Proof. It K = @2, K; and H = @]_, H; satisfy Definition 3 with K; and
Hj irreducible, then there exist invertible linear operators A and B such that
AK)=K; xKs---x Ky, and B(H) = Hy X Hy X ---x H,. Tt is easy to check
that 7 (A (K), B (H)) = Br (K, H) A~!. The Lyapunov rank is invariant under
invertible linear operators [12], so for our purposes, we can disregard A and B
everywhere and pretend that K = K; X Ky --- X K, and H = Hy X Hy X -+ - X
H,,. This will be beneficial, because Lyapunov rank is additive on a Cartesian
product of proper cones [12]. By expanding, we find that

B(K)B(H) = ZZB(KJB(HJ) = mn. (1)

The last equality follows from Lemma 1 and the fact that each K; and H; is an
irreducible proper polyhedral cone.



It is straightforward to show that any L € = (K, H) has the block form

L =[Lj;], where
Lj; : span (K;) — span (H;) (1)
sz' € W(Ki,Hj).

Moreover, any such L clearly satisfies L € 7 (K, H), so the two conditions are
equivalent. Yet every block-form operator is itself isometric to an element of a
Cartesian product space; if L = [Lj;], then L = (L1, L2, ..., Lo, ... ,an)T.
Thus the set of all operators having the block form (1), namely 7 (K, H), is
isometric to the product,

m n

X X (Ki, Hy) =7 (K, H).

i=1j=1

Apply Theorem 1 and Propositions 1 and 5 to conclude in agreement with (f)
that

B(W(K7H)>:5<>m< >n<7T(Ki,Hj)>=ZZIZmn. O

i=1j=1 i=1j=1

Corollary 1. If K is a proper polyhedral cone in a finite-dimensional real
Hilbert space, then f3 (7 (K)) = 8 (K)>.

Now that we know the dimension of LL (7 (K, H)), we would like to find a
basis for it. Knowing its dimension, it suffices to find a linearly-independent set
of B (m (K, H)) Lyapunov-like operators on 7 (K, H).

Theorem 3 (Gowda and Tao [7]). If K is a proper polyhedral cone in a finite-
dimensional real Hilbert space, then L € LL (K) if and only if every x € Ext (K)
is an eigenvector of L.

The extreme directions of 7 (K, H) are not generally known. The next
proposition relates the Lyapunov-like operators on a cone to those on its dual,
and shows that we can work with whichever one is easier.

Proposition 6 (Rudolf et al. [12]). If K is a closed convex cone, then L is
Lyapunov-like on K if and only if L* is Lyapunov-like on K*.

We aim to show that the Lyapunov-like operators on 7« (K, H) are linear
combinations of terms like M ® L where L and M are Lyapunov-like on K* and
H respectively. The next result is well-known [11].

Proposition 7. If V and W are finite-dimensional real Hilbert spaces and if L
and M are subsets of B(V) and B(W), then dim (L ® M) = dim (L) dim (M).

Lemma 2. If K and H are proper polyhedral cones in finite-dimensional real
Hilbert spaces V. and W, then span (LL (H*) ® LL (K)) = LL (7 (K, H)").



Proof. Take any L € LL (K), M € LL (H*), and s ® x € Ext (7 (K, H)"). Use
Proposition 2 and Theorem 3 to see that L (z) = Az and M (s) = us. Thus,

MoL)(sz)=(M(s)®(L(x) =pr(s®@x).

Another application of Theorem 3 shows that M © L € LL (ﬂ' (K,H )*) Com-
pare the dimensions of LL (H*) ® LL (K) and LL (7 (K, H)") using Theorem 2
and Proposition 7. Conclude that the two spaces are equal. O

Theorem 4. If K and H are proper polyhedral cones in finite-dimensional real
Hilbert spaces, then LL (w (K, H)) = span (LL (H) ® LL (K*)).

Proof. The adjoint of M ® L is M* ® L*. That fact, along with Proposition 6
and Lemma 2, shows that LL (7 (K, H)) = span (LL (H) ©® LL (K*)). O

Corollary 2. If K is a proper polyhedral cone in a finite-dimensional real
Hilbert space, then LL (7 (K)) = span (LL (K) ® LL (K*)).

Theorem 2 clearly follows from Theorem 4, but the difficulty in determining
LL (7 (K, H)) is to know when you are done—when all Lyapunov-like operators
have been found. For that it was convenient to use the dimension of the space.
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