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Abstract

IfK is a closed convex cone and if L is a linear operator having L (K) ⊆
K, then L is a positive operator on K and L preserves inequality with
respect to K. The set of all positive operators on K is denoted by π (K).
If K∗ is the dual of K, then its complementarity set is

C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0} .

Such a set arises as optimality conditions in convex optimization, and a
linear operator L is Lyapunov-like on K if 〈L (x), s〉 = 0 for all (x, s) ∈
C (K). Lyapunov-like operators help us find elements of C (K), and the
more linearly-independent operators we can find, the better. The set of
all Lyapunov-like operators on K forms a vector space and its dimension
is denoted by β (K).

The number β (K) is the Lyapunov rank of K, and it has been studied
for many important cones. The set π (K) is itself a cone, and it is natural
to ask if β (π (K)) can be computed, possibly in terms of β (K) itself. The
problem appears difficult in general. We address the case where K is both
proper and polyhedral, and show that β (π (K)) = β (K)2 in that case.

1 Introduction
Lyapunov rank was introduced by Rudolf, Noyan, Papp, and Alizadeh [12] un-
der the name bilinearity rank. Their goal was to quantify the ease with which
optimality conditions can be decomposed into a system of equations. One mo-
tivating example for this decomposition is the standard linear program in Rn.

Example 1. A linear program consists of a linear objective function and a
system of linear constraints. In the primal problem, we are asked to

minimise 〈b, x〉 subject to L (x) ≥ c and x ≥ 0.
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This problem has an associated dual, to

maximise 〈c, y〉 subject to L∗ (y) ≤ b and y ≥ 0.

The dual optimal value exists and equals that of the primal under certain con-
ditions. If (x̄, ȳ) is a primal-dual pair of solutions, then 〈L (x̄)− c, ȳ〉 = 0. This
requirement is called complementary slackness. The slackness condition can be
decomposed by noting that 〈L (x̄)− c, ȳ〉 = 0 if and only if (L (x̄)− c)i ȳi = 0
for i = 1, 2, . . . , n. The resulting system of n equations is easier to solve than
the single equation 〈L (x̄)− c, y〉 = 0.

In our linear program, the condition x ≥ 0 says that x belongs to the proper
cone Rn

+. The ease with which 〈L (x̄)− c, ȳ〉 = 0 can be decomposed in that
case turns out to be a property of the cone Rn

+. Rudolf et al. consider whether
or not there are other cones possessing the same property. If K is a proper cone
with dual K∗ in some finite-dimensional real Hilbert space, then the set of pairs
satisfying complementary slackness in Example 1 has a generalization called the
complementarity set of K, defined as

C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0} .

Membership in C (K) is a condition for optimality in some convex op-
timization and complementarity problems [7]. We say that a linear opera-
tor L is Lyapunov-like on K if 〈L (x), s〉 = 0 for all (x, s) ∈ C (K). The
Lyapunov-like operators provide a general method for decomposing the con-
dition (x, s) ∈ C (K) into a system of equations, as we did with complementary
slackness. The dimension of the space of all Lyapunov-like operators is called
the Lyapunov rank of K. Lyapunov rank measures the number of independent
equations that we can obtain from the condition (x, s) ∈ C (K).

Example 2. In Example 1, the minimisation or maximisation takes place over
the nonnegative orthant Rn

+. If {Eij}n
i,j=1 is the standard basis in Rn×n, then

Eij is Lyapunov-like on Rn
+ if and only if i = j. The span of said Eii is the space

of diagonal matrices. Write the identity matrix as I = E11 + E22 + · · · + Enn

and substitute; the complementary slackness condition 〈I (L (x̄)− c), ȳ〉 = 0
produces a system of equations (L (x̄)− c)i ȳi = 0 for i = 1, 2, . . . , n.

Gowda and Tao [7] showed that the space of all Lyapunov-like operators onK
is the Lie algebra of the automorphism group of K. Another reason for studying
Lyapunov-like operators is thus as a means to understanding the automorphism
groups of cones. The Lyapunov rank has been computed for a growing number
of cones: the moment cone [12], symmetric cones [7], completely-positive and
copositive cones [6], special Bishop-Phelps cones [8], and extended second-order
cones [15]. An upper bound is known for all proper cones [10].

Our focus will be on the cone of positive operators. If L is linear with
L (K) ⊆ K, then L is a positive operator on K. Positive operators arose
from the study of integral operators and matrices with nonnegative entries [1];
they preserve inequality with respect to a cone. The famous Krein-Rutman
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theorem extends Perron-Frobenius and connects positive operators to the theory
of dynamical systems [13], to game theory [5], and more.

Example 3. If K is Rn
+ and if L ∈ Rn×n with L (K) ⊆ K, then one can

consider the action of L on the standard basis to show that L has nonnegative
entries. Such matrices are precisely the positive operators on Rn

+.

The set of all positive operators on K is denoted by π (K). If K is a closed
convex cone, then π (K) is itself a closed convex cone and one can consider
the Lyapunov rank of π (K). Positive operators are difficult to characterise
in general. Computing the Lyapunov rank of π (K) also appears to be prob-
lematic without additional assumptions, so we restrict our attention to proper
polyhedral K. This represents a generalization of what is known for Rn

+.

2 Preliminaries
In what follows, V and W will always be finite-dimensional real Hilbert spaces,
and K and H will always be closed convex cones in V or W .

Definition 1. A nonempty subset K of V is a cone if λK ⊆ K for all λ ≥ 0.
A closed convex cone is a cone that is closed and convex as a subset of V . The
conic hull of a nonempty subset X of V is

cone (X) :=
{

m∑
i=1

αixi

∣∣∣∣∣ xi ∈ X, αi ≥ 0, m ∈ N

}
.

If K = cone (X) for some finite set X, then K is polyhedral.

Definition 2. The dimension of K ⊆ V is dim (K) := dim (span (K)). A
convex cone K is solid if span (K) = V , and pointed if −K ∩ K = {0}. A
pointed, solid, and closed convex cone is proper.

We prove our main result by decomposing a reducible cone into a direct sum
of irreducible cones. Beware that the terms ‘decomposable’ and ‘indecompos-
able’ are used by various authors as synonyms for ‘reducible’ and ‘irreducible’.

Definition 3. A closed convex cone K is reducible if K = K1 +K2 where K1
and K2 are nonzero closed convex cones such that span (K1)∩ span (K2) = {0}.
A cone is irreducible if it is not reducible. We will use the direct sum notation
K = K1 ⊕K2 for reducible cones.

Our definition of reducibility is due to Gowda and Tao [7]. Barker and Loewy
define decomposability slightly differently [2], not requiring K1 and K2 to be
closed convex cones. However if K = K1 ⊕K2 for nonzero nonempty K1 and
K2, then K = cone (K1)⊕ cone (K2). Thus the definitions are equivalent.

The set of all linear operators from V to W is B (V ,W ), and we abbreviate
B (V , V ) by B (V ). Given x ∈ V and s ∈ W , we define s ⊗ x ∈ B (V ,W )
as the map y 7→ 〈x, y〉 s, and a dimension argument shows that B (V ,W ) =
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span ({s⊗ x | s ∈W,x ∈ V }). If F ∈ B (W ) and G ∈ B (V ), then we define F �
G ∈ B (B (V ,W )) to be the map s⊗x 7→ F (s)⊗G (x). We will use the shorthand
notation S ⊗ X or S � X on sets S and X to mean {s⊗ x | s ∈ S, x ∈ X}
or {s� x | s ∈ S, x ∈ X}. Any L ∈ B (V ,W ) has an adjoint L∗ ∈ B (W,V )
such that 〈L (x), y〉 = 〈x, L∗ (y)〉 for all x ∈ V and y ∈ W . The adjoint of
s ⊗ x is x ⊗ s for vectors x ∈ V and s ∈ W . We adopt the trace inner-
product 〈L1, L2〉 := trace (L1L

∗
2) on B (V ), and ‘trace’ can be taken to mean

‘sum of eigenvalues’. To simplify the notation, composition of linear operators is
indicated by juxtaposition. An invertible linear operator that preserves inner-
products is an isometry.

Definition 4. The operator L ∈ B (V ) is a positive operator on K if L (K) ⊆ K.
The set of all such operators is denoted by π (K). To generalise, we allow that
L ∈ B (V ,W ), and that L (K) ⊆ H for subsets K ⊆ V and H ⊆W . The set of
all such operators is π (K,H), and π (K) is the special case where H = K.

Definition 5. If K is a subset of V , then the dual cone K∗ of K is

K∗ := {y ∈ V | 〈x, y〉 ≥ 0 for all x ∈ K} .

The complementarity set of K is C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0} and
L ∈ B (V ) is Lyapunov-like on K if 〈L (x), s〉 = 0 for all (x, s) ∈ C (K). By
LL (K) we denote the set of all Lyapunov-like operators on K. The Lyapunov
rank of K is β (K) := dim (LL (K)).

Definition 6. A nonempty convex subset F of a convex cone K is a face of K if
x, y ∈ K and αx+ (1− α) y ∈ F for 0 < α < 1 together imply that x, y ∈ F . If
in addition dim (F ) = 1, then F is an extreme ray of K. The extreme directions
of K are representatives of its extreme rays defined by,

Ext (K) := {x | x belongs to an extreme ray of K and ‖x‖ = 1} .

If K is a proper cone, then K = cone (Ext (K)) by a conic version of the
Krein-Milman theorem—Fenchel’s Theorem 14, for example [4]. It then follows
that K is polyhedral if and only if Ext (K) is finite. Moreover, we need only
consider the elements of Ext (K) and Ext (K∗) to show that L ∈ LL (K) [12].

3 Positive operators
The goal in this section is to compute the Lyapunov rank of π (K) when K is a
proper polyhedral cone. To motivate this, we will see what happens when K is
the nonnegative orthant Rn

+.

Example 4. We showed in Example 2 that LL
(
Rn

+
)

is the space of all diagonal
matrices in Rn×n. As a result, β

(
Rn

+
)

= n. We saw in Example 3 that π
(
Rn

+
)

is
the set of nonnegative matrices in Rn×n. There is an obvious isometry between
π
(
Rn

+
)

and Rn2

+ , so it follows that β
(
π
(
Rn

+
))

= β
(
Rn2

+

)
= n2 = β

(
Rn

+
)2.
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We will relax two restrictions in the previous example. The cone Rn
+ is self-

dual and simplicial—it has exactly dim (Rn) extreme directions. By extending
the result to a proper polyhedral cone K in V , we allow for K 6= K∗, and for
K to possess more than dim (V ) extreme directions.

To compute β (π (K)), we will ultimately need to find the more-general quan-
tity β (π (K,H)). Some features of π (K,H) depend on those of K and H.

Proposition 1 (Schneider and Vidyasagar [14]). If K and H are proper (poly-
hedral) cones in finite-dimensional real Hilbert spaces V and W respectively,
then π (K,H) is a proper (polyhedral) cone in B (V ,W ).

It therefore makes sense to consider the Lyapunov rank of π (K,H). If
β (π (K,H)) can be expressed in terms of K and H, then β (π (K)) is obtained
when H = K. However, the cone π (K,H) is unwieldy; its dual π (K,H)∗ is
more tractable and the extreme directions of that dual are known.

Proposition 2 (Berman and Gaiha [3]). If K and H are proper polyhedral
cones in finite-dimensional real Hilbert spaces, then

Ext
(
π (K,H)∗) = Ext (H∗)⊗ Ext (K).

When we compute π (K,H), we would like to be able to assume that it is
irreducible at first. In Theorem 1, we will prove that π (K,H) is irreducible if
both K and H are irreducible. The converse of that statement is known, and
we are free to work with the dual of π (K,H) instead.

Proposition 3 (Haynsworth, Fiedler, and Pták [9]). If K and H are proper
cones in finite-dimensional real Hilbert spaces and if either K or H is reducible,
then π (K,H) is reducible.

Proposition 4 (Barker and Loewy [2]). If K is a proper cone in some finite-
dimensional real Hilbert space, then K is reducible if and only if K∗ is reducible.

The proof of our first theorem is a straightforward adaptation of Barker and
Loewy’s Lemma 2.2 to the case where K 6= H.

Theorem 1. If K and H are proper cones in finite-dimensional real Hilbert
spaces, then π (K,H) is reducible if and only if either K or H is reducible.

Proof. One implication is given by Proposition 3. For the other, it suffices by
Proposition 4 to show that if π (K,H)∗ is reducible, then either K or H is
reducible. So, suppose that

π (K,H)∗ = cone
(
Ext

(
π (K,H)∗)) = ∆1 ⊕∆2

where ∆1 and ∆2 satisfy the conditions in Definition 3. As a result,

x ∈ Ext (K) and s ∈ Ext (H∗) =⇒ s⊗ x ∈ ∆i for a unique i. (?)
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The implication (?) follows from Proposition 2 which shows that for the given x
and s we have s⊗ x ∈ Ext

(
π (K,H)∗). Definition 6 combined with the linear-

independence of ∆1 and ∆2 shows that s ⊗ x cannot be a nontrivial sum. It
follows that s⊗ x ∈ ∆1 + ∆2 belongs to exactly one of the ∆i.

One consequence of (?) is that both ∆1 and ∆2 must contain at least one
element of Ext

(
π (K,H)∗). If not, then, for example, π (K,H)∗ ⊆ ∆1 and

∆2 = {0} contradicting Definition 3. Define functions

Si (s) := {x ∈ Ext (K) | s⊗ x ∈ ∆i} for i ∈ {1, 2}

and consider the two possible cases.

Case 1: there exists an s̄ ∈ Ext (H∗) with both S1 (s̄) and S2 (s̄) nonempty.

Apply (?) to any s̄⊗ x with x ∈ Ext (K) to show that x ∈ S1 (s̄)∪S2 (s̄). It
follows that S1 (s̄) ∪ S2 (s̄) = Ext (K). Define Fi := cone (Si (s̄)). Then,

cone (S1 (s̄) ∪ S2 (s̄)) ⊆ cone (F1 + F2) = F1 + F2 ⊆ K.

We have Ext (K) = S1 (s̄) ∪ S2 (s̄), so it follows that cone (S1 (s̄) ∪ S2 (s̄)) = K
and thus that F1 + F2 = K.

Take any z ∈ span (F1)∩ span (F2). Each Fi is a convex cone, so span (Fi) =
Fi − Fi, and thus z = z1 − z2 = w1 − w2 for some z1, z2 ∈ F1 and w1, w2 ∈ F2.
Expand s̄⊗z to s̄⊗z1− s̄⊗z2 and write z1 ∈ F1 := cone (S1 (s̄)) as z1 =

∑
αjσj

where αj ≥ 0 and σj ∈ S1 (s̄). Expand s̄ ⊗ z1 to
∑
αj (s̄⊗ σj). Each s̄ ⊗ σj

belongs to ∆1 by the definition of S1 (s̄), and since ∆1 is a convex cone, the
sum s̄⊗ z1 is also in ∆1. A similar procedure shows that s̄⊗ z2 ∈ ∆1. Now,

s̄⊗ z = s̄⊗ z1 − s̄⊗ z2 ∈ ∆1 −∆1 = span (∆1) .

Repeat the procedure with z = w1 − w2 to show that s̄⊗ z ∈ span (∆2).
The spans of ∆1 and ∆2 intersect trivially, so s̄⊗ z = 0. But s̄ ∈ Ext (H∗)

is nonzero (it has unit norm), so we must have z = 0. Since z ∈ span (F1) ∩
span (F2) was arbitrary, those two spaces have trivial intersection, and the sum
K = F1 ⊕ F2 is in fact a direct sum showing that K is reducible.

Case 2: either S1 (s) or S2 (s) is empty for all s ∈ Ext (H∗).

In this case, we will show that H∗ is reducible. Define two new sets,

Ti := {s ∈ Ext (H∗) | Si (s) = ∅} for i ∈ {1, 2} .

If T1 is empty, then S1 (s) 6= ∅ for all s ∈ Ext (H∗). But then by assumption we
have S2 (s) = ∅ for all s ∈ Ext (H∗), and thus ∆2 = {0} which is not possible. It
must therefore be the case that T1 and (by the same reasoning) T2 are nonempty.

Define Gi := cone (Ti). Every y ∈ Ext (H∗) belongs to at least one of the Ti

by construction; thus Ext (H∗) = T1 ∪ T2. As in the first case,

cone (T1 ∪ T2) ⊆ cone (G1 +G2) = G1 +G2 ⊆ H∗.
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Along with the fact that Ext (H∗) = T1 ∪ T2, this shows that H∗ = G1 +G2.
Fix an x̄ ∈ Ext (K) and let w ∈ span (G1) ∩ span (G2) be arbitrary. Write

w = w1 − w2 = z1 − z2 for w1, w2 ∈ G1 and z1, z2 ∈ G2. Expand w ⊗ x̄ to
w1⊗ x̄−w2⊗ x̄, and write w1 ∈ G1 := cone (T1) as w1 =

∑
αjτj for αj ≥ 0 and

τj ∈ T1. Expand w1 ⊗ x̄ to
∑
αj (τj ⊗ x̄), and notice that no τj ⊗ x̄ can belong

to ∆1 by definition of T1 and S1 (τj). Consequently each τj ⊗ x̄ belongs to the
convex cone ∆2 by (?), and the sum w1⊗ x̄ does too. The same reasoning shows
that w2 ⊗ x̄ ∈ ∆2, and thus that w = w1 ⊗ x̄− w2 ⊗ x̄ ∈ span (∆2).

Repeat the argument with w = z1 − z2 to find that w ⊗ x̄ ∈ span (∆1) as
well. Deduce that w = 0, that span (G1) ∩ span (G2) = {0}, and finally that
H∗ = G1 ⊕G2 is reducible. Proposition 4 shows that H is reducible.

The Lyapunov rank of an irreducible proper polyhedral cone is known, and
every proper cone is (in an obvious way) a direct sum of irreducible closed
convex cones. Combined with Theorem 1, these two observations form the base
case to which we will reduce a general proper polyhedral cone.

Proposition 5 (Gowda and Tao [7]). If K is a proper polyhedral cone in a finite-
dimensional real Hilbert space, then β (K) = 1 if and only if K is irreducible.

Lemma 1. If K and H are two irreducible proper polyhedral cones in finite-
dimensional real Hilbert spaces, then β (π (K,H)) = β (K)β (H).

Proof. Both K and H are irreducible, so Proposition 5 shows β (K)β (H) = 1.
But Proposition 1 and Theorem 1 imply that π (K,H) is also an irreducible
proper polyhedral cone, and thus β (π (K,H)) = 1 by the same proposition.

It remains to prove the full result for reducible cones. We will suppose that
K and H are reducible, respectively, into m and n components.

Theorem 2. If K and H are proper polyhedral cones in finite-dimensional real
Hilbert spaces, then β (π (K,H)) = β (K)β (H).

Proof. If K =
⊕m

i=1Ki and H =
⊕n

j=1Hj satisfy Definition 3 with Ki and
Hj irreducible, then there exist invertible linear operators A and B such that
A (K) = K1×K2 · · ·×Km and B (H) = H1×H2×· · ·×Hn. It is easy to check
that π (A (K), B (H)) = Bπ (K,H)A−1. The Lyapunov rank is invariant under
invertible linear operators [12], so for our purposes, we can disregard A and B
everywhere and pretend that K = K1 ×K2 · · · ×Km and H = H1 ×H2 × · · · ×
Hn. This will be beneficial, because Lyapunov rank is additive on a Cartesian
product of proper cones [12]. By expanding, we find that

β (K)β (H) =
m∑

i=1

n∑
j=1

β (Ki)β (Hj) = mn. (†)

The last equality follows from Lemma 1 and the fact that each Ki and Hj is an
irreducible proper polyhedral cone.
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It is straightforward to show that any L ∈ π (K,H) has the block form

L = [Lji] , where
Lji : span (Ki)→ span (Hj)
Lji ∈ π (Ki, Hj) .

(‡)

Moreover, any such L clearly satisfies L ∈ π (K,H), so the two conditions are
equivalent. Yet every block-form operator is itself isometric to an element of a
Cartesian product space; if L = [Lji], then L ∼= (L11, L12, . . . , L21, . . . , Lnm)T .
Thus the set of all operators having the block form (‡), namely π (K,H), is
isometric to the product,

m×
i=1

n×
j=1

π (Ki, Hj) ∼= π (K,H) .

Apply Theorem 1 and Propositions 1 and 5 to conclude in agreement with (†)
that

β (π (K,H)) = β

(
m×

i=1

n×
j=1

π (Ki, Hj)
)

=
m∑

i=1

n∑
j=1

1 = mn.

Corollary 1. If K is a proper polyhedral cone in a finite-dimensional real
Hilbert space, then β (π (K)) = β (K)2.

Now that we know the dimension of LL (π (K,H)), we would like to find a
basis for it. Knowing its dimension, it suffices to find a linearly-independent set
of β (π (K,H)) Lyapunov-like operators on π (K,H).

Theorem 3 (Gowda and Tao [7]). If K is a proper polyhedral cone in a finite-
dimensional real Hilbert space, then L ∈ LL (K) if and only if every x ∈ Ext (K)
is an eigenvector of L.

The extreme directions of π (K,H) are not generally known. The next
proposition relates the Lyapunov-like operators on a cone to those on its dual,
and shows that we can work with whichever one is easier.

Proposition 6 (Rudolf et al. [12]). If K is a closed convex cone, then L is
Lyapunov-like on K if and only if L∗ is Lyapunov-like on K∗.

We aim to show that the Lyapunov-like operators on π (K,H) are linear
combinations of terms like M �L where L and M are Lyapunov-like on K∗ and
H respectively. The next result is well-known [11].

Proposition 7. If V and W are finite-dimensional real Hilbert spaces and if L
and M are subsets of B (V ) and B (W ), then dim (L�M) = dim (L) dim (M).

Lemma 2. If K and H are proper polyhedral cones in finite-dimensional real
Hilbert spaces V and W , then span (LL (H∗)� LL (K)) = LL

(
π (K,H)∗).
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Proof. Take any L ∈ LL (K), M ∈ LL (H∗), and s⊗ x ∈ Ext
(
π (K,H)∗). Use

Proposition 2 and Theorem 3 to see that L (x) = λx and M (s) = µs. Thus,

(M � L) (s⊗ x) = (M (s))⊗ (L (x)) = µλ (s⊗ x) .

Another application of Theorem 3 shows that M � L ∈ LL
(
π (K,H)∗). Com-

pare the dimensions of LL (H∗)�LL (K) and LL
(
π (K,H)∗) using Theorem 2

and Proposition 7. Conclude that the two spaces are equal.

Theorem 4. If K and H are proper polyhedral cones in finite-dimensional real
Hilbert spaces, then LL (π (K,H)) = span (LL (H)� LL (K∗)).

Proof. The adjoint of M � L is M∗ � L∗. That fact, along with Proposition 6
and Lemma 2, shows that LL (π (K,H)) = span (LL (H)� LL (K∗)).

Corollary 2. If K is a proper polyhedral cone in a finite-dimensional real
Hilbert space, then LL (π (K)) = span (LL (K)� LL (K∗)).

Theorem 2 clearly follows from Theorem 4, but the difficulty in determining
LL (π (K,H)) is to know when you are done—when all Lyapunov-like operators
have been found. For that it was convenient to use the dimension of the space.
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