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ABSTRACT
Several authors have studied the problem of making an asymmetric cone symmetric through a
change of inner product, and one set of positive results pertains to the class of elliptic cones.We
demonstrate that the class of elliptic cones is equal to the class of induced-norm cones that arise
through Jordan-isomorphismwith the second-order cone, thereby showing that this symmetry
result was essentially known.

KEYWORDS
Euclidean Jordan algebra, circular cone, elliptic cone, ellipsoidal cone, second-order cone,
Lorentz cone, symmetric cone

AMS CLASSIFICATION
17C20, 90C51, 47L07

1. Introduction

Symmetric cones are a famous class of cones for which e�cient interior-point optimization
algorithms are known. Optimizers have begun to ask if an asymmetric cone can be made sym-
metric through a change of inner product.�is is an attractive idea because when it works, the
protagonist feels as if he has cheated fate, transmuting a mundane cone into a desirable one at
no additional cost.

Fromone point of view, this is a solved problem, because every symmetric cone is the cone of
squares in a Euclidean Jordan algebra [1]. But an optimizer generally starts with a convenient
description of a cone that interests him, not with a Euclidean Jordan algebra. Essentially he
wants to know if there exists a Euclidean Jordan algebra having his cone as its cone of squares.
�at is a harder problem, of determining if two descriptions of a set are equivalent.

�is endeavor su�ered an inauspicious start when one author proposed a non-bilinear in-
ner product that would make the p-norm cones symmetric for p ≠ 2. �at result was swi�ly
and simultaneously debunked by both Miao, Lin, and Chen [2], and by Ito and Lourenço [3].
�e misstep proved fortuitous, however, because it encouraged Ito and Lourenço [4] to char-
acterize the automorphism group of the p-norm cones, proving that said cones are neither
homogeneous nor self-dual in non-trivial cases. �is is a deeper result, and in the process the
authors answered an open question posed by Gowda and Trott [5].
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In 2017, Alzalg [6] succeeded in showing that the circular cone

L
n
θ ∶= {(x1 , x̄)T ∈ R ×Rn−1

∣ x1 tan (θ) ≥ ∥x̄∥2}

corresponding to θ ∈ (0, π/2) is symmetric under the inner product ⟨x , y⟩Jθ
∶= xT Jθ y, where

Jθ ∶= diag (1, (cot θ)2 , . . . , (cot θ)2) ∈ Rn×n .

Alzalg derived some Jordan-algebraic properties of the resulting symmetric cone, and part-
nered with Pirhaji [7] to exploit them in a family of interior-point methods for ‘circular pro-
gramming’ problems. �e authors [8] then extended those ideas to the family of elliptic cones,

Kn
M ∶= {(x1 , x̄)T ∈ R ×Rn−1

∣ x1 ≥ ∥Mx̄∥2} , (1)

where now M ∈ R(n−1)×(n−1) is any nonsingular matrix and circular cones constitute the spe-
cial case M = cot (θ) I. Again the authors show that these cones can be made symmetric,
deduce some properties of the associated Jordan algebra, and devise a family of interior-point
methods for them.We show that the Jordan-algebraic properties of these cones were essentially
known; from the right viewpoint, elliptic cones reveal themselves to be Jordan-isomorphic to
the familiar second-order cone.

Lu andChen [9] independently and directly derived the relationship between ellipsoidal, el-
liptic, and second-order cones, showing that all three are symmetricwith respect to appropriate
inner products. In the concluding remarks of a later work with Miao [10], they contemplate
the possibility that a Jordan-like multiplication underlies that relationship. But for a detail or
two, the Jordan-algebra isomorphism between those cones seems to have been overlooked. In
practice however, being mathematically isomorphic is not the same thing as being the same
thing, so these direct analyses may still be of value to optimizers and engineers. By expound-
ing the Jordan structure of elliptic cones, we hope to explain the recently observed phenomena
and to provide inspiration for practitioners.

2. Jordan algebras

De�nition 1. A Jordan algebra (V , ○ ) is an algebra V whose bilinear ‘Jordan multiplication’
operation ○ is commutative and satis�es

∀x , y ∈ V ∶ x ○ ((x ○ x) ○ y) = (x ○ x) ○ (x ○ y). (2)

If the scalar �eld is real and if (x ○ x) + (y ○ y) = 0 implies that both x = 0 and y = 0, then the
Jordan algebra is formally-real.

Jordan algebras need not be associative, but they are power-associative, so expressions of
the form x3 ∶= x ○ (x ○ x) = (x ○ x) ○ x are unambiguous. �ere is a rich general theory
of Jordan algebras, but optimizers tend to work in Euclidean Jordan algebras where an inner
product is available. For the sake of brevity, we de�ne a Euclidean Jordan algebra to be both
�nite-dimensional and unital, in accord with our main reference [11].
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De�nition 2. A Euclidean Jordan algebra (V , ○ , ⟨⋅, ⋅⟩) is a �nite-dimensional real Jordan al-
gebra with a multiplicative unit element 1V ∈ V and an inner product that satis�es

∀x , y, z ∈ V ∶ ⟨x ○ y, z⟩ = ⟨y, x ○ z⟩ . (3)

�e degree of an element x ∈ V is the dimension of the subalgebra it generates, and the rank of
a Euclidean Jordan algebra is the maximal degree of its elements.

Example 1 (Jordan spin algebra). In V = Rn with the usual inner product, let x ∶= (x1 , x̄)T ∈

R ×Rn−1 be written in block form and likewise for y. �en

x ○ y ∶= [
x1
x̄ ] ○ [

y1
ȳ ] = [

x1y1 + ⟨x̄ , ȳ⟩Rn−1

y1 x̄ + x1 ȳ
]

is a commutative bilinear operation with unit element 1V ∶= (1, 0̄)T satisfying Equations (2)
and (3). As a result, (Rn , ○ , ⟨⋅, ⋅⟩Rn) forms a Euclidean Jordan algebra known as the Jordan
spin algebra. It has rank two [11] when n ≥ 2.

Example 2. Let H and O represent the �elds of quaternions and octonions, respectively. If
Hn (F) denotes the real vector space of n-by-n Hermitian matrices whose entries come from
F, thenHn (R),Hn (C),Hn (H), andH3 (O) form Euclidean Jordan algebras whose Jordan
multiplication and inner product are

X ○ Y ∶=
XY + YX

2
and ⟨X ,Y⟩Hn(F) ∶=R (trace (XY)) .

One of themost fundamental results is that every Euclidean Jordan algebra decomposes into
an orthogonal direct sum of simple subalgebras.�e only surprise here should be that the sum-
mands are orthogonal (Faraut and Korányi [11], Proposition III.4.4). And up to isomorphism,
there are only �ve families of simple Euclidean Jordan algebras.

�eorem 1 (Classi�cation theorem, naı̈ve version). Every simple Euclidean Jordan algebra is
either a Jordan spin algebra from Example 1, or one of the matrix algebras in Example 2.

�is result is o�en stated more or less as above [12], which can be misleading.�e classi�ca-
tion is only up to isomorphism (Faraut and Korányi [11], Chapter V), and even then, the term
‘isomorphism’ is subversive. As it turns out, De�nition 2 is an ex post facto characterization.

�eorem 2 (Faraut and Korányi [11], Section III.1 and Proposition VIII.4.2). A �nite-
dimensional real unital Jordan algebra is formally-real if and only if there exists some inner prod-
uct on it that satis�es Equation (3).

Historically, formally-real Jordan algebras were the objects of interest. In �nite dimensions,
they’re equivalent to Euclidean Jordan algebras, but the latter is an easier de�nition to start
with. However, one consequence of that retroactive de�nition is that ‘isomorphism’ refers only
to an invertible linear Jordan-algebra homomorphism, and not necessarily to an isometry. It
could mean nothing else, because in a formally-real Jordan algebra, there may not be an inner
product to preserve. In what follows, we investigate what this means for the family of Jordan
spin algebras. To avoid perpetuating the confusion, we use the term Jordan isomorphism to
indicate an invertible linear Jordan-algebra homomorphism.

3



3. Induced norm cones

�e classi�cation theorem leads us to wonder what Jordan algebras are Jordan-isomorphic to
our Example 1. Fortunately, this is known.

Proposition 1 (Faraut and Korányi [11], Corollary IV.1.5). Any simple Euclidean Jordan algebra
of rank two is Jordan-isomorphic to an algebra associated with a positive-de�nite bilinear form.

To understand what this means, one must refer to example (2) at the beginning of Faraut
and Korányi’s Chapter III. IfB is a positive-de�nite bilinear form (whichmust be symmetric to
ensure the commutativity of the algebra multiplication), then the associated Euclidean Jordan
algebra multiplication is

[
x1
x̄ ] ○ [

y1
ȳ ] = [

x1y1 + B (x̄ , ȳ)
y1 x̄ + x1 ȳ

] .

Recalling that every symmetric positive-de�nite bilinear form B on Rn × Rn is of the form
B = (x , y) ↦ ⟨Bx , y⟩ for some symmetric positive-de�nite matrix B ∈ Rn×n , we summarize
what is known.

�eorem 3. If B ∈ R(n−1)×(n−1) is symmetric and positive-de�nite for n ≥ 2, then the operation

[
x1
x̄ ] ○ [

y1
ȳ ] ∶= [

x1y1 + ⟨Bx̄ , ȳ⟩Rn−1

y1 x̄ + x1 ȳ
]

on Rn de�nes a family of simple rank-two Euclidean Jordan algebras whose inner products are
positive scalar multiples of

(x , y) ↦ x1y1 + ⟨Bx̄ , ȳ⟩Rn−1 = ⟨[
1 0
0 B] [

x1
x̄ ], [y1ȳ ]⟩

Rn

and whose symmetric cone of squares is

K ∶= {(x1 , x̄)T ∈ R ×Rn−1
∣ x1 ≥ ∥x̄∥B} , where ∥x̄∥B ∶= ⟨Bx̄ , x̄⟩1/2Rn−1 .

Conversely, every simple Euclidean Jordan algebra of dimension n and rank two arises via Jordan-
isomorphism from an algebra of this form.

Proof. �at these are simple rank-two Euclidean Jordan algebras and that all simple rank-two
Euclidean Jordan algebras are of this form follows fromProposition 1 and the example to which
it refers. Every inner product on a simple Euclidean Jordan algebra is a positive scalar multiple
of (x , y) ↦ trace (x ○ y) per Proposition III.4.1 in Faraut and Korányi, and

trace (x ○ y) = trace([x1y1 + ⟨Bx̄ , ȳ⟩Rn−1

y1 x̄ + x1 ȳ
]) = 2 (x1y1 + ⟨Bx̄ , ȳ⟩Rn−1)

is known—again from example (2) following Proposition II.2.4 in Faraut andKorányi.�is jus-
ti�es our description of the possible inner products. Finally, the interior of the cone of squares
in these Euclidean Jordan algebras is described in example (2) following Proposition III.2.2 in
Faraut and Korányi, and its closure is obviously what we have claimed.
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Wesee now that the cones of squares in the simple rank-two algebras are precisely the elliptic
cones from Equation (1), since for a nonsingular M ∈ R(n−1)×(n−1),

∥Mx∥22 = ⟨Mx ,Mx⟩Rn−1 = ⟨MTMx , x⟩Rn−1 = ∥x∥2MTM

where B ∶= MTM is symmetric and positive-de�nite. Conversely, any symmetric positive-
de�nite B can be written as B = MTM for an invertible M. Indeed, this could have been de-
duced directly. Jordan, vonNeumann, andWigner characterize the rank-two simple Euclidean
Jordan algebras as follows.

�eorem 4 (Fundamental �eorem 2, abridged [13]). Every simple rank-two Euclidean Jordan
algebra V of dimension n consists of a basis {1V , s1 , . . . , sn−1} and Jordanmultiplication satisfying

1V ○ 1V = 1V , 1V ○ s i = s i , and s i ○ s j = δ i j1V .

Without loss of generality, we assume that V is Rn . In the Euclidean Jordan algebra cor-
responding to an elliptic cone, Alzalg and Pirhaji [8] conclude that 1V = (1, 0̄)T is the multi-
plicative unit element. It therefore automatically satis�es the �rst two equalities in�eorem4. If
{e1 , . . . , en−1} is the standard basis inRn−1, thenwe can extend {1V} to a basis {1V , s1 , . . . , sn−1}
of Rn using (s i)1 ∶= 0 and s̄ i ∶= M−1e i where M is nonsingular and satis�es B = MTM in our
�eorem 3. A�erwards, we can easily check that for all i , j we have

s i ○ s j = [
⟨Bs̄ i , s̄ j⟩Rn−1

0 ] = [
⟨MTMM−1e i ,M−1e j⟩Rn−1

0 ] = δ i j1V .

�us we have recovered the family of simple rank-two algebras characterized in 1934, albeit
from a di�erent perspective. �eorem 3 also emphasizes that the elliptic cones are the only
family of cones Jordan-isomorphic to the second-order cones, so further generalizations be-
yond elliptic cones should prove di�cult. To conclude, we recall a few elementary results:

(1) If ∥x∥B denotes the norm induced by the inner product (x , y) ↦ ⟨Bx , y⟩, then its dual
norm is ∥x∥B∗ = ∥x∥B−1 .

(2) If K = {(x1 , x̄)T ∣ x1 ≥ ∥x̄∥} is any norm cone, then its dual cone is the norm cone cor-

responding to the dual norm, K∗ = {(x1 , x̄)T ∣ x1 ≥ ∥x̄∥∗}.

From these and the fact that we are dealing with the ‘only’ simple rank-two Euclidean Jordan
algebra, most of the algebraic results for elliptic [8] and circular [7] cones follow: the form of
Kn

M and its dual, the inner product thatmakesKn
M symmetric, the self-duality andhomogeneity

of Kn
M under that inner product, its associativity, the quadratic representation in the algebra,

the existence of a self-concordant barrier function, and the spectral decomposition.
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