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Abstract

Euclidean Jordan algebras are the abstract foundation for symmetric
cone optimization. Every element in a Euclidean Jordan algebra has a
complete spectral decomposition analogous to and subsuming that of a
real symmetric matrix into rank-one projections. This general spectral
decomposition stems from the element’s likewise-analogous characteristic
polynomial whose degree (they all have the same degree) is called the
rank of the algebra. As a prerequisite for the spectral decomposition, we
derive an algorithm that computes the rank of a Euclidean Jordan algebra
and allows us to construct the characteristic polynomials of its elements.
The ultimate goal of this work is to support a generic computational
framework for solving symmetric cone optimization problems in Jordan-
algebraic terms.
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1 Introduction

Jordan algebras began as a formalism for quantum mechanics that was intended
to replace the Copenhagen interpretation [10]. Formally-real Jordan algebras,
specifically, were modeled after the properties enjoyed by Hermitian matrices,
but were soon found to be lacking when Jordan, von Neumann, and Wigner [8]
classified the finite-dimensional specimens up to isomorphism. This classifica-
tion was “deeply disappointing to physicists,” since it showed that no finite-
dimensional algebra was a suitable home for quantum mechanics [10]. Only
many years later would it prove to be a boon for optimizers.

A FEuclidean Jordan algebra is a finite-dimensional formally-real Jordan al-
gebra additionally endowed with an “associative” inner product [3].

Definition 1. A Euclidean Jordan algebra (V, o,(-,-)) consists of a finite-
dimensional real Hilbert space (V,(:,-)) and a commutative bilinear Jordan
product o such that

Ve,yeVizo((xox)oy) = (rox)o(zoy),



Va,y,z €V : {xoy,z) = (y,x02z),

and having a multiplicative unit element 1y, € V such that
VeeV:lyox=ux.

Euclidean Jordan algebras arise in optimization because many of the cones
used in conic optimization are the cone of squares in some Euclidean Jordan
algebra. After publication in 1984 [9], Karmarkar’s interior point methods were
quickly extended to second-order and semidefinite cone programs—special cases
that can be solved efficiently. Nesterov and Nemirovskii [11] showed in 1994 that
a general cone program can be solved efficiently if one knows a self-concordant
barrier function for the cone, and this coincided fortuitously with the publication
of Faraut and Kordnyi’s Analysis on Symmetric Cones, likely the most compre-
hensive and oft-cited reference on Euclidean Jordan algebras [3]. Shortly there-
after, Giiler [7] pointed out that self-concordant barrier functions are known for
the self-dual homogeneous (now called symmetric) cones that are nothing other
than the cones of squares in Euclidean Jordan algebras.

Since Jordan algebras were modeled upon the Hermitian matrices, it is no
surprise that the operation X oY = (XY + Y X) /2 and the trace inner-product
turn the spaces of n-by-n real-symmetric or complex-Hermitian matrices into
Euclidean Jordan algebras whose unit element is the identity matrix and whose
cone of squares is the positive-semidefinite cone. Particularly for us, these will
serve as canonical examples of Euclidean Jordan algebras. Here is another.

Example 1 (Jordan spin algebra). In V' = R™ with the usual inner product,
let z := (z1,%)" € R x R""! be written in block form and likewise for y. Then

sov=[3] o [5] = L83l

is a commutative bilinear operation with unit element 1y = (1, (_))T satisfying
Definition 1. As a result, (R™, o, {(-,-)) forms a Euclidean Jordan algebra known
as the Jordan spin algebra. Its cone of squares is the second-order cone.

Motivated by the connection between symmetric cones and Euclidean Jordan
algebras, Faybusovich embarked on a quest to show that certain interior-point
methods can be described directly in Jordan-algebraic terms [4, 5, 6]. As a
result, we can now solve a broad class of optimization problems by performing
computations in Euclidean Jordan algebras. Many of these computations are
tractable because the algebra is finite-dimensional and the Jordan product is
bilinear. The spectral decomposition, in contrast, remains slippery.

Theorem 1 (Faraut and Korédnyi [3], Theorems I11.1.1-2). If (V, o, (-,-)) is a
Euclidean Jordan algebra of rank r and if x € V, then there exists a Jordan
frame {c1,ca,...,c.} in'V and real numbers Ay > Ay > -+ > A\, such that

T =MAc1+ Aaco+ -+ Ncp.



In this spectral decomposition of x, the \; are called the eigenvalues of x and
they are independent of the Jordan frame used for the decomposition. (The
meaning of “Jordan frame” will not be important.) The reader will notice the
similarity of this result to the usual spectral decomposition of a Hermitian ma-
trix into rank-one spectral projectors. Our decomposition is unique in the same
precise technical sense—after grouping eigenvalues, ignoring rearrangements,
and so on.

The rank r of the algebra that appears in Theorem 1 deserves an explana-
tion. In any Euclidean Jordan algebra, we can take powers of a single element
x to obtain 22 := x oz and so forth. We define z° to be the unit element of the
algebra for consistency. After a certain point, the set of these powers must be-
come linearly-dependent, because the ambient vector space is finite-dimensional.
Thus, eventually, for some d € N, we can write 2% as a linear combination of
{a:o, AT ,xd_l}. The minimal polynomial of x is the unique monic polyno-
mial of minimal degree that evaluates to zero on x. In other words, the minimal
polynomial of z shows how you would write 2% as a linear combination of lower
powers, where d is the smallest natural number making it possible to do so.
In the algebras of real or complex Hermitian matrices, this definition coincides
with the usual linear-algebraic definition of minimal polynomial.

Definition 2. If (V, o, (-,-)) is a Euclidean Jordan algebra and if € V, then
the degree of x is the degree of the minimal polynomial of z, and is written
deg (x). The rank of the algebra V is the maximal degree of its elements,

rank (V) .= max ({deg (z) | z € V}).
If deg () = rank (V'), we say that x is a regular element of the algebra.

The rank is well-defined because it’s a natural number bounded above by the
dimension of the ambient vector space. But this definition doesn’t tell us how
we might find either the rank or a regular element. This is annoying because
the rank is a prerequisite for the spectral decomposition in Theorem 1.

In many cases, the rank is known. In the algebras of n-by-n real or complex
Hermitian matrices, Theorem 1 reduces to the usual spectral decomposition and
the rank of the algebra is the number of rank-one projections you get, namely
n. The rank of the Jordan spin algebra is also easy to compute.

Example 2 (spin algebra rank). If z = (21,Z)" is an arbitrary element of the
Jordan spin algebra from Example 1, then

JJO = |:1:| xl = |:x1:| .2','2 = |:||x||2:|
0l AN 2.1313_3' )

and z2 is a linear combination of z° and z!:
2
2% = (||w|| — 23;%) 2% + 2z 2t

As a result, the minimal polynomial of z has degree two at most. We may need
fewer powers for some z, but we cannot need more. Now let e = (1,1,..., 1)T



be the vector of ones. For this element,

o ] e =[]

Clearly, e! cannot be written as a linear combination (that is, a scalar multiple)
of €%, nor vice-versa. So, deg(e) > 1. We showed that the maximum degree of
any element in this algebra is two, and then we found an element of degree two
or more. It follows that the rank of the Jordan spin algebra is two.

In fact, the ranks of all “simple” Euclidean Jordan algebras are known,
and any particular algebra is isomorphic to an orthogonal direct sum of simple
factors [3]. In theory this determines the rank of any algebra, but only if you
know the isomorphism that allows you to identify the factors.

As in the motivating case of the Hermitian matrices, the spectral decom-
position in a Euclidean Jordan algebra is closely related to the characteristic
polynomial of an element. Taking a cue from standard linear algebra, the charac-
teristic polynomial of a regular element in a Euclidean Jordan algebra is defined
to be equal to its minimal polynomial. A “characteristic polynomial of” func-
tion can then be defined on the entire algebra by continuously extending the
“minimal polynomial of” function from the dense set of regular elements to the
entire algebra. The eigenvalues of the element in Theorem 1 turn out to be
the roots of its characteristic polynomial. Below we paraphrase the relevant
portions of Faraut and Korényi’s Proposition 11.2.1 [3].

Theorem 2. If (V, o,(-,-)) is a Euclidean Jordan algebra of rank r and dimen-
sion n, then there exists a regular element £ € V', a basis bg, and polynomials
ag through a,.—1 in R[Xy, X, ..., X,] such that the characteristic polynomial of
any x €V is

A" +ia(b§ (z)) A" € R[A].
i=0

Here we have used b () to denote the representation of the algebra element
x with respect to the basis b, and a; : R™ — R to denote the polynomial
function that corresponds to a; € R[X1, Xa,..., Xp].

The basis b in this result begins with the first r powers {£°,&',..., 771} of
the regular element £, guaranteed to be linearly-independent by the definitions
of degree and rank. This choice expedites the proof, but raises two questions:
how do we find the rank r of the algebra, and (supposing we can answer that)
how do we find an element & whose degree is r? These are the practical matters
we grapple.

Our first contribution is an algorithm for computing the rank of a Euclidean
Jordan algebra, thereby answering the first question. The second, we cannot
answer per se. Instead we show how Theorem 2 can be reformulated to use
an arbitrary basis, alleviating the immediate need to locate a regular element.
Both results follow from a characterization in Theorem 3 of the circumstances



under which, with respect to an arbitrary basis, the coefficient polynomials
ap,ai,...,a,-_1 can be found.

We have essentially already computed a “characteristic polynomial of” func-
tion for the Jordan spin algebra in Example 2 with respect to the standard
basis. And, working in the standard basis, the need for a regular element never
arose. That encouraging example will guide us in the general case.

2 Polynomials and fractions

We adopt the standard interpretation of multivariate polynomials with real
coefficients. If R[X;] denotes a univariate polynomial ring, then R[X7, X5] is
defined recursively as (R [X7]) [X2], and so on until we reach R [ X7, Xo,...,X,].
We will frequently define R := R[X7, Xs,...,X,] to keep the notation from
getting out of hand.

Each p € R corresponds to a function p : R™ — R defined in the obvious
way so that p(zq1,z9,...,2,) is the same expression as p, but with each X;
replaced by z;. When z is an element of an n-dimensional Euclidean Jordan
algebra, we will write b (z) € R™ for the vector of its coordinates with respect
to the basis b. Thus if p € R, we can evaluate p(b (x)) € R. Similarly, if L is
a linear operator, we will write b (L) for the matrix of L with respect to b so
that b (L (z)) =b (L) b () for all .

The multivariate polynomial ring R is an infinite integral domain [1], and
the mapping p — p is a ring isomorphism between R and its image, a ring of
functions. Polynomial addition and multiplication are defined precisely so that
this map a homomorphism; a recursive root-counting procedure then shows that
it is injective [2]. In particular, p is the zero polynomial if and only if p (z) =0
for all x € R™. It is a standard exercise in algebraic geometry to show that the
complement of every Zariski-closed proper subset of R™ is both open and dense
in the Euclidean topology on R™. As a result, the set {z € R" | p(x) # 0} is
open and dense in R" for all nonzero p € R. It is from this raw material that
the following result is manufactured.

Proposition 1 (Faraut and Kordnyi [3], Proposition I11.2.1). The subset of reg-
ular elements in any Fuclidean Jordan algebra is open and dense in the topology
induced by the inner product.

Since R is an integral domain, its field of fractions Frac (R) is defined. The
set Frac (R) consists of the equivalence classes a/b = [(a, b)] with b # Or under
the relation a/b ~ ¢/d <= ad = bc and the latter equality interpreted in
R. With the usual kindergarten addition and multiplication defined, the set
Frac (R) forms a field. Its additive identity (zero) element is Og/1g, and its
multiplicative unit element is 1z/1z. The embedding ¢ : R — Frac (R) with
¢ (a) == a/1g is an injective ring homomorphism [1]. In particular, the following
are equivalent:

e a/lr =t(a) is zero in Frac (R)



e q is the zero polynomial in R
e a(z) =0 forall z € R

We will also work with matrices whose entries are polynomials. Any such
matrix A € R™*™ whose entries are A;; € R corresponds to a function A :
R™ — R™*" such that the entries of A (z) are Z; (). The entrywise formulae
for matrix addition and multiplication show that, when the dimensions of the
matrices are compatible, the map A — A is bo/thidditive and multiplicative.
We apply this, for example, to conclude that det (A) (z) = det (21\ (:U)) for all

x € R". We extend the fraction-field embedding ¢ to R™*™ by applying it
entrywise.

3 Building blocks

We digress to restate explicitly (and in the present notation) two results that
underlie our main theorem. They are used implicitly by Faraut and Koranyi,
but the reader may benefit from seeing them written down.

Recalling that the Jordan product in Definition 1 is bilinear, we may define
a linear operator L, : V — V on a Euclidean Jordan algebra (V, o, (-,-)) by
L, (y) =z oy. It follows that « — L, is itself linear.

Lemma 1. If (V, o, () is a Euclidean Jordan algebra of dimension n with
basis b and if R = R[X1, Xo,...,X,], then there exists a matriz My € R™*"
such that -

Ve eV :Myp(b(z)) =b(L,).

Proof. Recall that the map x +— L, is linear, and let x = x1by + 2200+ -+x,b,
be the representation of an arbitrary = € V with respect to the basis b =
{b1,b2,...,b,}. Then by linearity,

Ly =x1Lp, + x2Llp, +- -+ xnLp,,
and thus
b (Lw)ij = 1b (Lbl)ij + 22b (Lbz)ij + -+ anb (Lbn)ij

for all 4,7 € {1,2,...,n}. Each b(Ls,),; above is a constant, because the left-
multiplication-by-b, matrix is fixed. It follows that

satisfies o

Ve € Vi My (b(x) = b (L),
because evaluating it at X7 = x1, Xo = x9, et cetera, gives us the (4, j)th entry
of b(L,). All that remains is to define My, := [M;]. O



Notice that in Lemma 1, one set of polynomials works for all elements x of
the algebra. As a result, we need only compute the polynomials once, delaying
their evaluation until we are given a specific « for which we want to know b (L,,).

Since ¥ = Lk (1y), repeated matrix multiplications can be used to find
polynomial column-matrices that produce the b-coordinates of any power x*.
This is the content of the subsequent proposition, whose proof consists more or

less of what has already been said.

Proposition 2. In the context of Lemma 1, define py to be the embedding
of b(ly) into R™1. Then for all k € N, the polynomial column-matrices

pr = (My)* py € ™ satisfy py. (b (x)) = b (a*).

Example 3. If z = (xl,xg,xg)T in the Jordan spin algebra on R3, then by
checking its action on the standard basis b, we see that

r1 X9 I3
b(Lw) = |2 X1 0] e R3%3.
z3 0 a1

If we let R := R[X;, X2, X3], then as a result, the corresponding polynomial
matrix in Lemma 1 is

X1 Xo Xs
My=|Xo X7 0| e R¥3.
X; 0 X

Recalling that the unit element of this algebra is (1,0, O)T, we can compute the
column matrices in Proposition 2 by applying successive powers of My,

1r X1 X7+ X3+ X3
p=101, pr=|X2|, p2= 2X1Xo € R¥*1,
0 X4 2X, X5

and so on.

4 Main results

Our two main results involve the solution of polynomial systems over a polyno-
mial fraction field. To show that these solutions have the properties we desire,
we will ultimately evaluate the corresponding functions on elements of R™. This
creates a problem, in that we have not said how we intend to turn an element
¢/d € Frac (R[X1,X2,...,X,]) into a function. This turns out to be a subtle
issue that is best simply avoided. Instead, we will make heavy use of the fraction
field embedding ¢ : R < Frac (R), using its injectivity to convert back to the
ring of polynomials prior to evaluation. This is aesthetically awkward, but our
hope is that the didactic dividends offset the price paid in parsimony.



Theorem 3. Let (V, o, (-,-)) be a Euclidean Jordan algebra of dimension n > 1
and rank r with basis b. Define R = R[X1, X2, ..., X,] with its embedding ¢
into F := Frac (R), and let py through p, € R™ be as in Proposition 2. Then if
s € N with s < r, the system

[t(po) t(p1) -+ t(ps—1)]a=1t(ps) (1)
has a solution a € F™* if and only if s = r.

Proof. First we show that {¢(po),t(p1),...,¢t(pr—1)} is linearly-independent
over F. Suppose that

r—1 c
k
Z (d7> L(pk) = O]anl. (2)
k
k=0
If all of the ¢ are zero, then we are done, so suppose that p € N is the largest
index such that ¢, # Ogr. If p = 0, we contradict ourselves with

€o
<d70) L(po) = Opnx1 <= copo = Ognx1 <= c¢o = Op,
since po (2) = b (1y) # Og» for all z € R™. Thus we may suppose that p > 1 to
avoid empty sums and products in what follows. Cancelling the denominators
in Equation (2) and rearranging, we arrive at

=1 ¢ = .

Tn o = 'R = nx1.

,1:[01R <1R>L(pp)+; 1:[01R (IR)L(pk) Ot
J= — j=
J#k

Or, in terms of the fraction-field embedding,

11e@) Jeteo) e+ | TTe) | eler)e(pr) =2 (Opma),
j=0 k=0

= §=0
j#k
which by injectivity reduces to
p—1 p—1 P
H d; | cppp + Z H d; | ckpr = Ognx1. (3)
§j=0 k=0 \ j=0
J#k

We have assumed that c, # O, and the d; are all non-zero because they started
out as denominators in F. The set of regular elements in V' is open and dense—
as are the sets where the c/i; and ¢, are nonzero—so we can find a regular element
x € V such that

o= Idi ) b@)e (b)) # 0.

Jj=0



If we evaluate Equation (3) at b (x) and divide by this a # Og, then we arrive
at an expression of the form

p—1
b (z*) +a* Zﬁkb (z%) = Ognxa
k=0
for some collection of 8; € R. Inverting the basis-representation map now gives
p—1
xf + Z (a™'Bk) z¥ = Oy
k=0

But this is the result of evaluating a monic univariate polynomial of degree p < r
at x. Since x is regular, it has degree r, and Definition 2 says that the result
cannot be zero for p < r. We conclude that indeed all of the ¢; are zero, and
our claim that {¢(pg),t(p1),...,¢(pr—1)} is linearly-independent follows. This
shows that Equation (1) has no solution for s < r.

Now if, on the other hand, we have s = r, then Equation (1) has a solution.
To see this, extend the linearly-independent set {¢(po),¢(p1),...,¢(pr—1)} to
a basis for F"* by appending elements §i, o, ..., Gn—r. Without loss of gener-
ality we assume that each entry of each ¢ has denominator one. This can be
accomplished without destroying the linear-independence of the set by scaling
each i by the least common multiple of their denominators, and thus we may
presume that these new basis elements satisfy G = ¢ (gx) for some ¢ € R™, and
that therefore there exists a nonsingular matrix @ € R"*" with

1(Q) = [e(po) t(p1) -+ tlpr—1) tl@) ¢l@2) -+ t(Gn-r)] € T

Every entry of ¢(Q) has denominator 1g, and the determinant of ¢(Q) is
nonzero because its columns are linearly-independent. As a result, we can apply
Cramer’s rule to find the unique solution a = (ag, a1, - .. ,an_l)T to the system
t(Q)a = t(p,). If we write A;ry, to denote a matrix A having its ith column
replaced by the vector v, then Cramer’s rule says that

@ — det (L (Q)H—H(m))
T det (1(Q))

It remains to be seen that a; = Op when ¢ > r, so that no ¢ (gx) are present
in the solution and that therefore a = (ag, a1, ...,a,—1)" solves Equation (1).
However, this follows relatively easily from the properties of the determinant.

First notice that by definition we have a; = Oy if and only if det (L (Q)“_H(M)) =
1

eF.

Op. This determinant is a sum/product of elements of F, so we can apply ¢~
to conclude that a; = O if and only if det (Qiwp,) = Or. But det (Q;wp,) must
be zero for i > r, since the corresponding function from R"™ — R is zero on
the b-coordinates of any regular element x, the power x” being a real linear
combination of the lower powers in that case. More explicitly,

det (Qicp, ) (b (2)) = det (Qicp, (b (2)))




and the latter is zero on the dense subset of regular € V by the linear-

dependence of {xo,xl, .. .,m’“} in that case. By continuity we conclude that
det (Qiep,.) and hence det (Q;esp,.) are zero when i > r. O

This result already provides a (rather wasteful) means to compute the rank
of a Euclidean Jordan algebra. Notice that, since rank is bounded above by
dimension, we may ignore zero-dimensional algebras entirely. Then to compute
the rank of a Euclidean Jordan algebra of dimension n > 1, we can try to solve
Equation (1) for s = 1,2,...,n, stopping when we succeed. The last iteration
with s = n can be skipped if we are interested only in the rank and not the
solution of the system. If the system isn’t solvable for s < n, then s = n is
the only other possibility for the rank of the algebra. Towards improving this
procedure, we notice the following.

Corollary 1. Let (V, o, (-,-)) be a Euclidean Jordan algebra of dimensionn > 1
and rank r with basis b. If we define R == R [X1, X2, ..., Xy] with its embedding
¢ into F := Frac (R) and let py through p, € R™ be as in Proposition 2, then the
matriz [v(po) ¢(p1) -+ t(pn—1)] has rank r over F.

Proof. While proving Theorem 3 we saw that the set {¢ (po), ¢ (p1),... ¢ (Pr—1)}
is linearly-independent over F. It follows that the rank of the matrix is at least
r and that, moreover, if r = n, we are done. This leaves us to prove only that
the rank of the matrix cannot exceed r when r < n.

With that in mind, take any k € {r,r +1,...,n — 1}, and let M}, € R"*" be
the polynomial matrix from Lemma 1. Then, because this is how we constructed
p; for ¢ > 1,

pe= (Mu)* " pr = (i) = (Mu) T e (pr),

and we can use Theorem 3 to replace ¢ (p,) with a linear combination of ¢ (pg)
through ¢ (p,—1),

i) = (M) (i <pi>) =Y (M) ) = 3 it (ps )
=0 1=0 =0

Letting j == k — r 4 ¢ in this sum, we see that

E

—1

t(pr) = A(j—k4r)t (Pj) .
J

Il
el

-

Thus we have expressed ¢ (py) in terms of ¢ (pg—1) through ¢ (px—,). If necessary,
this process can be repeated to write ¢ (pg—1) in terms of ¢ (pr_2) and so forth,
until a linear combination involving only ¢ (p,—1) through ¢ (pg) is reached. This
shows that ¢ (px) € span ({¢ (po),¢(p1),.-- ¢ (pr—1)}) when k > r. O

With this result at our disposal, we can find the rank of any nontrivial Eu-
clidean Jordan algebra by computing the rank of the matrix in Corollary 1.

10



Compared to our first idea, this approach is simpler and (if implemented prop-
erly) avoids redundant computations. On the other hand, it doesn’t necessarily
find the coefficients a;. So unless we are only interested in the rank of the
algebra, it also leaves something to be desired.

To emphasize this shortcoming, we present our modified version of Theo-
rem 2 that uses the solution to Equation (1). For contrast, the Faraut and
Koranyi result is in terms of a basis consisting of powers of a regular element
that we know must exist by definition. The regular-element basis is theoretically
convenient but practically problematic unless you know how to find a regular
element. We allow the customer to bring his own basis. This is above-all advan-
tageous when the standard basis with integer coordinates will suffice and fast
rational arithmetic may be used. We omit the proof, which is identical to the
one given by Faraut and Koranyi after using Theorem 3 to find the coeflicients
a; with respect to your favorite basis.

Theorem 4 (BYOB characteristic polynomial of). If (V, o, (-,-}) is a Euclidean
Jordan algebra of rank r and dimension n with basis b, then there exist polynomi-
als ag through a,—1 in R[ X1, Xs, ..., X,] such that the characteristic polynomial
of any x € V s

r—1
A"+ G (b(x) AT e R[A].
1=0

This is nothing more than the Faraut and Koranyi result after a change
of basis, but its utility stems from the constructive proof it now admits. We
point out, just in case it is not clear, that the polynomials a; in Theorem 4
depend on the basis used. The polynomials p; in Equation (1) are those ob-
tained in Lemma 1 and Proposition 2 where they were constructed using basis
information. As a result, the solution to Equation (1) depends on the basis too.

Our final algorithm we present in more detail. We begin by using Lemma 1
to construct the polynomial matrix My. We then proceed as in Proposition 2
to compute p; through p,, from py, which itself can be found using elementary
linear algebra. Finally we construct, augment, and row-reduce the matrix from
Corollary 1. It is worth keeping in mind that this last step involves nothing
more complicated than solving a consistent system over a field.

11



Algorithm 1 Compute the rank of a Euclidean Jordan algebra V'

Input: A basis b for V and a multiplication table for its Jordan product
Output: The r := rank (V') polynomials ag through a,_; in Theorem 4

n < dim (V') // the cardinality of b
if n =0 then

return () // trivial case
end if

Compute the matrices b (Ly,) for all i € {1,2,...,n}

for alli,j € {1,2,...,n} do

Mij < b (Ly,);; X1+ b (Ley);; Xo+ -+ b(Ls,);; Xn

end for
My, « [M;] // Lemma 1

Compute b (1y) from the matrices b (L, )
po < the embedding of b (1y) into R"*!
for allk € {1,2,...,n} do

pr — (Mp)* po // Proposition 2
end for

P+ [t(po) t¢(p1) -+ t(pn-1)] // Corollary 1

Augment P with an identity matrix and row-reduce

G < the augmented portion after reduction
r < the number of nonzero rows in rref (P)

return the first r entries of —Gp,

Thus we obtain the coefficients ay through a,_;, and the rank of the alge-
bra is their number, r. The added efficiency comes at the cost of a bit more
complexity and the need to keep track of some row operations.

Example 4. Continuing our running example, let P be the matrix in Corol-
lary 1 that arises from the Jordan spin algebra on R3. We computed the columns
of P in Example 3. Augment P with a three-by-three identity matrix, and call

the result P’:
Ip X1 X7+ X3+ X3
P/ = OF XQ 2X1X2
O]F X3 2X1X3

After row-reduction, we arrive at

lp Or —XP+ X5+ X35
rref (P') = |0p 1p 2X,
O Op Op

1p
O
O

1p
Op
Op

O
1p
O

O
Op
1p

—X]_/X3
1/X5
—Xo/X3

There are two non-zero rows in the non-augmented portion that corresponds to
rref (P), so r = 2. From the theory we know that py, the second column of P,

12



is a linear combination of pg and p;. Moreover if G is the augmented portion of
the matrix above, then Pa = ps if and only if rref (P) a = GPa = Gps, where

Ip Op —X1/Xs)| [XP+X3+X5]  [-XP+ X5+ X3
Gp2: O]F 0]17 1/X3 2X1X2 = 2X1
OF 1[5‘ —X2/X3 2X1X3 O]F

Now the system that needs to be solved is rref (P) a = Gpa,

I Op —X7+ X3+ X2 ~ X2+ X2+ X2
OIF ]-]F 2X1 a = 2X1
Or Of O O

The theory tells us that the first » = 2 columns of P were linearly-independent,
and that therefore we seek only ag and a;. After pruning the irrelevant rows
and columns, we are left with the trivial system,

{hg OF} m B {—X%+X§+X§} M _ {fX%+X§+X§
OIF ]-]F al o 2X1 ai - 2X1 ’

Negating the solution to make it fit our definition of the minimal polynomial,
we finally arrive at ap = X7 — X3 — X7 and a1 = —2X; with respect to the
usual basis in R®. This agrees (how could it not?) with the solution found in
Example 2.

Call our algebra V', and let e = (1,1, 1)T € V. With respect to the standard
basis b, Theorem 4 says that the characteristic polynomial of e is

A? +a; (b(e)) A +ap (b(e)) A% = A2 — 27 — A”.

To verify the Cayley-Hamilton theorem for Euclidean Jordan algebras, for ex-
ample, we may simply replace A by e:

3 1 1
e2—2—1y= (2| =2 1| = [0] =0y.
2 1 0

Small examples build our confidence, but to truly test Algorithm 1, we would
prefer a Euclidean Jordan algebra whose rank is not already known. The follow-
ing is a specific (m = 2) member of a family of algebras described in Exercise
III.1.b of Faraut and Kordnyi [3]. In choosing such an example, we face com-
peting interests. If its dimension is too small, the problem is disingenuous: a
decomposition into simple algebras is easy to guess. On the other hand, if its
dimension is too large, the polynomial computations become unmanageable and
must be performed on a computer. We err on the side of authenticity in this
case, and must omit some of the computations.

Example 5. Define the block matrix

— 0 12} 4x4
J = LIQ 0 eC
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and consider the real vector space
V={XeC" | X" =-Xand XJ=JX},

where X denotes the entrywise complex conjugate. Under the Jordan- and
inner-products X oY = (XJY +YJX) /2 and (X,Y) = trace (X*Y), this
vector space forms a Euclidean Jordan algebra. A bit of work shows that b =
{b1, b2, b3, by, b5, b6} forms a basis for V, where

0 0 1 0] [0 -1 0 0] [0 —i 0 0]
by — 0 0 0 O by 1 0 0 0 b — i 0 00
]l-1 oo o020 00-1|"2"]10 0 0 ]|’
. 0 0 0 0 | L0 0 1 0 | |0 0 —i 0 |
[0 0 0 17 [0 0 0 —i] [0 0 0 0]
by — 0 0 1 0 bee 0 0 ¢ O be — 0 0 01
Tl o-1 00”0 =0 0" [0 0 00
-1 0 0 0 | L7 0 0 0 | L0 -1 0 0 |
Using Lemma 1, we compute
2X, 2X5 2X3 2X4 2X5 Or
Xy X1+ Xg Or Or Or Xo
M R .6 Or X1+ Xs Or Or X3
b= 2 | X4 Or Or X1+ X6 Or Xy
X5 Or Or Or X1 +Xe X5
Or 2X5 2X3 2X4 2X5 2X¢
The unit element in this algebra is 1y = —J, and its b-representation is

(-=1,0,0,0,0, —1)T. If we embed that vector into R%*! and call the result py,
then the columns p; through pg can be found using Proposition 2. The results
however are not amenable to transcription.

The remainder of Algorithm 1 produces the polynomials ag = X; Xg — X2 —
X2 — X7 — X2 and a; = X; + Xg, showing that the rank of this algebra is
two. Moreover by Theorem 4, if X € V has the basis representation b (X) =
(z1, 22, T3, 24, X5, xG)T, then its characteristic polynomial is

A + (21 + 26) A + (2126 — 25 — 25 — 2§ — 22) A°.
For a quick check, we note that this gives the correct answers A? for X = Oy,
and (A — A% for X = 1y.
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