Jordan automorphisms and derivatives of symmetric cones

Michael Orlitzky

ILAS Madrid, Tuesday, June 13th, 2023

Section 1

Motivation

Motivation

Theorem (Ito/Lourenço 2023).

$$
\operatorname{Aut}\left(K_{p, e}^{(i)}\right)=\operatorname{Aut}\left(K_{p, e}\right) \cap \operatorname{Aut}\left(\mathbb{R}_{+} e\right)
$$

where

- $K_{p, e}$ is a hyperbolicity cone
- $K_{p, e}^{(i)}$ is its i th Renegar derivative
- some technical conditions have been omitted

Motivation

Observation.

If G_{e} denotes a stabilizer subgroup of G, then

$$
\operatorname{Aut}\left(K_{p, e}\right) \cap \operatorname{Aut}\left(\mathbb{R}_{+} e\right)=\mathbb{R}_{++} \operatorname{Aut}\left(K_{p, e}\right)_{e}
$$

and it follows that

$$
\operatorname{Aut}\left(K_{p, e}^{(i)}\right)=\mathbb{R}_{++} \operatorname{Aut}\left(K_{p, e}\right)_{e}
$$

Motivation

Lemma (Gowda, 2017). If K is the cone of squares in a simple Euclidean Jordan algebra V and if 1_{V} is its unit element,

$$
\operatorname{Aut}(K)_{1_{V}}=\operatorname{JAut}(V)
$$

Recall:

$$
\operatorname{Aut}\left(K_{p, e}^{(i)}\right)=\mathbb{R}_{++} \operatorname{Aut}\left(K_{p, e}\right)_{e}
$$

Motivation

From this we are inspired to

1. Extend Gowda's result to a non-simple EJA
2. Make $K_{p, e}$ be the cone of squares
3. Paste the previous two results together:

$$
\operatorname{Aut}\left(K_{p, e}^{(i)}\right)=\mathbb{R}_{++} \operatorname{JAut}(V)
$$

4. Find JAut (V) where possible

SECtion 2

EJA Introduction

EJA Introduction

An EJA (call it V) is an algebra:

- it's a vector space over \mathbb{R}
- it's finite-dimensional
- it has a commutative bilinear multiplication
- with a unit element 1_{V}
- and cone of squares $K=\left\{x^{2} \mid x \in V\right\}$
- the cone of squares is symmetric

EJA Introduction

- every $x \in V$ has a spectral decomposition,

$$
x=\lambda_{1}(x) c_{1}+\cdots+\lambda_{r}(x) c_{r}
$$

- the cone of squares K is the set of elements x having all $\lambda_{i}(x) \geq 0$
- there's a determinant, $\operatorname{det}(x):=\prod_{i=1}^{r} \lambda_{i}(x)$
- Aut (K) denotes linear automorphisms of K
- JAut (V) denotes invertible homomorphisms

EJA Introduction

There are "five" simple EJAs,

1. The Jordan spin algebra \mathcal{L}^{n}
2. Real Hermitian matrices $\mathcal{H}^{n}(\mathbb{R})$
3. Complex Hermitian matrices $\mathcal{H}^{n}(\mathbb{C})$
4. Quaternion Hermitian matrices $\mathcal{H}^{n}(\mathbb{H})$
5. Octonion 3×3 Hermitian matrices $\mathcal{H}^{3}(\mathbb{O})$

EJA Introduction

We pretend all EJAs are of the form

$$
V=V_{1} \times V_{2}
$$

where

- V_{1} and V_{2} are simple
- V_{1} and V_{2} are not isomorphic

EJA Introduction

As a result, we pretend that

$$
K=K_{1} \times K_{2}
$$

is the cone of squares, where

- K_{1} and K_{2} are symmetric and irreducible
- K_{1} and K_{2} are not isomorphic

EJA Introduction

Theorem (Jordan/von Neumann/Wigner 1934).

This scenario is real life:

- Working up to Jordan isomorphism
- Suppressing repeated factors
- With $N=2$
- And if we don't care about $V=\{0\}$
(The paper makes no such assumptions.)

Section 3

Decomposing automorphisms

DECOMPOSING AUTOMORPHISMS

Theorem (Horne 1978).

$$
\operatorname{Aut}\left(K_{1} \times K_{2}\right)=\operatorname{Aut}\left(K_{1}\right) \times \operatorname{Aut}\left(K_{2}\right)
$$

and, consequently,

$$
\begin{gathered}
\operatorname{Aut}\left(K_{1} \times K_{2}\right)_{\left(e_{1}, e_{2}\right)} \\
= \\
\operatorname{Aut}\left(K_{1}\right)_{e_{1}} \times \operatorname{Aut}\left(K_{2}\right)_{e_{2}}
\end{gathered}
$$

DECOMPOSING AUTOMORPHISMS

Theorem.

$$
\operatorname{JAut}(V)=\operatorname{Aut}(K)_{1_{V}}
$$

Proof.

JAut (V) is contained in $\operatorname{Aut}(K)_{1_{V}}$ because squares and 1_{V} are preserved when multiplication is.

DECOMPOSING AUTOMORPHISMS

Proof (cont'd).

In the other direction, Horne says that

$$
\operatorname{Aut}(K)_{1_{V}}=\operatorname{Aut}\left(K_{1}\right)_{1_{V_{1}}} \times \operatorname{Aut}\left(K_{2}\right)_{1_{V_{2}}}
$$

Then from Gowda's simple EJA Lemma,

$$
\begin{aligned}
\operatorname{Aut}(K)_{1_{V}} & =\operatorname{JAut}\left(V_{1}\right) \times \operatorname{JAut}\left(V_{2}\right) \\
& \subseteq \operatorname{JAut}(V)
\end{aligned}
$$

DECOMPOSING AUTOMORPHISMS

Remark.

$$
\operatorname{JAut}(V)=\operatorname{Aut}(K)_{1_{V}}
$$

- Stated without proof by Vinberg in 1965
- Given a proof by Chua 2008
- Appears in 2003 Alfsen and Shultz book

DECOMPOSING AUTOMORPHISMS

Corollary (Gowda/Jeong 2017).

$$
\operatorname{JAut}\left(V_{1} \times V_{2}\right)=\operatorname{JAut}\left(V_{1}\right) \times \operatorname{JAut}\left(V_{2}\right)
$$

Proof. The last line of the preceding proof has

$$
\operatorname{Aut}(K)_{1_{V}}=\operatorname{JAut}\left(V_{1}\right) \times \operatorname{JAut}\left(V_{2}\right)
$$

but now $\operatorname{Aut}(K)_{1_{V}}=\operatorname{JAut}(V)$.

Section 4

Cone automorphisms

Cone automorphisms

Recall: all EJAs have

$$
\begin{aligned}
\operatorname{Jut}(V) & =\operatorname{JAut}\left(V_{1}\right) \times \operatorname{Jaut}\left(V_{2}\right) \\
\operatorname{Aut}(K) & =\operatorname{Aut}\left(K_{1}\right) \times \operatorname{Aut}\left(K_{2}\right)
\end{aligned}
$$

and there are only five potential V_{i} and K_{i}.
Question. Can we find the five corresponding JAut $\left(V_{i}\right)$ and $\operatorname{Aut}\left(K_{i}\right)$?

Cone automorphisms

Theorem. If $n \geq 1$, then

$$
\operatorname{Aut}\left(\mathcal{L}_{+}^{n}\right)=\left\{\left[\begin{array}{cc}
x_{0}^{2}+\|\tilde{x}\|^{2} & 2 x_{0} \tilde{x}^{T} U \\
2 x_{0} \tilde{x} & 2 \tilde{x} \tilde{x}^{T} U+\left(x_{0}^{2}-\|\tilde{x}\|^{2}\right) U
\end{array}\right]\right\}
$$

where

$$
\begin{aligned}
& x_{0} \in \mathbb{R} \\
& \tilde{x} \in \mathbb{R}^{n-1} \\
& 0 \leq\|\tilde{x}\|<x_{0} \\
& U \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

Cone automorphisms

The proof is by direct computation of the EJA polar decomposition. The details are unimportant to us.

Remark.
An equivalent description was found a few years ago by Roman Sznajder, but the polar decomposition provides a shortcut.

Cone automorphisms

Proposition. In $\mathcal{H}^{n}(\mathbb{H})$ the cone of squares is the quaternion PSD cone.

Proof.

Same as over \mathbb{R} or \mathbb{C} using Rodman's Topics in Quaternion Linear Algebra for the spectral theory: diagonalize to $U D U^{*}$, take \sqrt{D} which has nonnegative entries, etc.

Cone automorphisms

Theorem.

$$
\begin{aligned}
\text { Aut }\left(\mathcal{H}_{+}^{n}(\mathbb{R})\right) & =\left\{X \mapsto U^{*} X U \mid U \in \mathrm{GL}_{n}(\mathbb{R})\right\} \\
\text { Aut }\left(\mathcal{H}_{+}^{n}(\mathbb{C})\right) & =\left\{X \mapsto U^{*} X U \mid U \in \mathrm{GL}_{n}(\mathbb{C})\right\} \\
& \cup\left\{X \mapsto U^{*} \bar{X} U \mid U \in \mathrm{GL}_{n}(\mathbb{C})\right\} \\
\text { Aut }\left(\mathcal{H}_{+}^{n}(\mathbb{H})\right) & =\left\{X \mapsto U^{*} X U \mid U \in \mathrm{GL}_{n}(\mathbb{H})\right\}
\end{aligned}
$$

Proof. Direct consequence of Schneider/Rodman inertia theorems over \mathbb{R}, \mathbb{C}, and \mathbb{H}.

Section 5

Jordan automorphisms

JORDAN AUTOMORPHISMS

Theorem.

$$
\begin{aligned}
\operatorname{JAut}\left(\mathcal{L}^{n}\right) & =\left\{\operatorname{id}_{\mathbb{R}} \times U \mid U \in \operatorname{Isom}\left(\mathbb{R}^{n-1}\right)\right\} \\
\operatorname{JAut}\left(\mathcal{H}^{n}(\mathbb{R})\right) & =\left\{X \mapsto U^{*} X U \mid U \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)\right\} \\
\operatorname{JAut}\left(\mathcal{H}^{n}(\mathbb{C})\right) & =\left\{X \mapsto U^{*} X U \mid U \in \operatorname{Isom}\left(\mathbb{C}^{n}\right)\right\} \\
& \cup\left\{X \mapsto U^{*} \bar{X} U \mid U \in \operatorname{Isom}\left(\mathbb{C}^{n}\right)\right\} \\
\operatorname{JAut}\left(\mathcal{H}^{n}(\mathbb{H})\right) & =\left\{X \mapsto U^{*} X U \mid U \in \operatorname{Isom}\left(\mathbb{H}^{n}\right)\right\} \\
\operatorname{JAut}\left(\mathcal{H}^{3}(\mathbb{O})\right) & =\text { the exceptional Lie group } F_{4}
\end{aligned}
$$

JORDAN AUTOMORPHISMS

Proof.

Gowda, Tao, and Sznajder found JAut (\mathcal{L}^{n}) and JAut $\left(\mathcal{H}^{n}(\mathbb{R})\right)$ in 2004. Chevalley and Shafer found JAut $\left(\mathcal{H}^{3}(\mathbb{O})\right)$ in 1950.

For the others, use JAut $(V)=\operatorname{Aut}(K)_{1_{V}}$ with $1_{V}=I$ and the characterization of $\operatorname{Aut}(K)$. \square

JORDAN AUTOMORPHISMS

Remark.

If the automorphisms of $\mathbb{A} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ are known, a 2008 theorem of Huang can be used for JAut $\left(\mathcal{H}^{n}(\mathbb{A})\right)$ when $n \geq 3$.

Rodman's book contains the automorphisms of \mathbb{H}, and we get the same result either way.

JORDAN AUTOMORPHISMS

Remark.

A 1947 result of Kalisch gives an isomorphic representation of $\operatorname{Jaut}\left(\mathcal{H}^{n}(\mathbb{A})\right)$ for $\mathbb{A} \in\{\mathbb{R}, \mathbb{H}\}$.

JORDAN AUTOMORPHISMS

Remark.

In JAut $\left(\mathcal{H}^{n}(\mathbb{C})\right)$, the maps

$$
\left\{X \mapsto U^{*} \bar{X} U \mid U \in \operatorname{Isom}\left(\mathbb{C}^{n}\right)\right\}
$$

are not redundant. They cannot be written as $X \mapsto V^{*} X V$ for $V \in \operatorname{Isom}\left(\mathbb{C}^{n}\right)$, without the conjugation.

Jordan automorphisms

Proposition.

The right-eigenvalues of a matrix in $\mathcal{H}^{n}(\mathbb{H})$ are the same as its Jordan-algebraic eigenvalues.

Proof.
EJA/matrix diagonalization produces EJA/matrix eigenvalues. The form of $\operatorname{JAut}\left(\mathcal{H}^{n}(\mathbb{H})\right)$ shows that they're the same process.

Jordan automorphisms

Theorem.

1. JAut $\left(\mathcal{L}^{n}\right)$ is path-connected if $n \in\{0,1\}$ and disconnected otherwise
2. JAut $\left(\mathcal{H}^{n}(\mathbb{R})\right)$ is path-connected if n is odd and disconnected otherwise
3. JAut $\left(\mathcal{H}^{n}(\mathbb{C})\right)$ is disconnected
4. JAut $\left(\mathcal{H}^{n}(\mathbb{H})\right)$ is path-connected
5. JAut $\left(\mathcal{H}^{3}(\mathbb{O})\right)$ is path-connected

JORDAN AUTOMORPHISMS

Proof.

Two are easy:

- JAut $\left(\mathcal{L}^{n}\right) \cong \operatorname{Isom}\left(\mathbb{R}^{n-1}\right)$ has two components for $n \geq 2$
- JAut $\left(\mathcal{H}^{3}(\mathbb{O})\right)$ is simply connected (Yokota's book)

JORDAN AUTOMORPHISMS

Proof (cont'd).

JAut $\left(\mathcal{H}^{n}(\mathbb{H})\right)$ is also not bad:

- Isom ($\left.\mathbb{H}^{n}\right)$ is path-connected (Tapp's book). Define,

$$
\varphi_{U}:=X \mapsto U^{*} X U
$$

The path from U to V in $\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ induces a path from φ_{U} to φ_{V} in $\operatorname{JAut}\left(\mathcal{H}^{n}(\mathbb{H})\right)$.

JORDAN AUTOMORPHISMS

Proof (cont'd).

In JAut $\left(\mathcal{H}^{n}(\mathbb{C})\right)$ we saw that $\varphi_{U}:=X \mapsto U^{*} X U$ and $\psi_{V}:=X \mapsto V^{*} \bar{X} V$ cannot be equal.

1. JAut $\left(\mathcal{H}^{n}(\mathbb{C})\right)$ is a disjoint union...
2. ...of continuous images of Isom $\left(\mathbb{C}^{n}\right)$
3. Closed disjoint sets are separated

JORDAN AUTOMORPHISMS

Proof (cont'd). For JAut $\left(\mathcal{H}^{n}(\mathbb{R})\right)$:

- EJAs are real vector spaces
- JAut $\left(\mathcal{H}^{n}(\mathbb{R})\right)$ preserves the trace norm
- So JAut $\left(\mathcal{H}^{n}(\mathbb{R})\right) \cong \operatorname{Isom}\left(\mathbb{R}^{k}\right)$ for some k
- A priori, two components
- $\operatorname{det}\left(-\mathrm{id}_{\mathbb{R}} \times I\right)=-1$ for even n
- otherwise $\varphi_{U}=\varphi_{-U}$ and $\operatorname{det}(-U)=\operatorname{det}(V)$ lets you make a path between φ_{U}, φ_{V}

Section 6

Hyperbolicity cones

Hyperbolicity cones

Definition. The polynomial

$$
p \in \mathbb{R}\left[X_{1}, X_{2}, \ldots, X_{n}\right]
$$

is hyperbolic along $e \in \mathbb{R}^{n}$ if,

- p is homogeneous
- $p(e)>0$
- all roots of $\lambda \mapsto p(\lambda e-x)$ are real

Hyperbolicity cones

The roots of $\lambda \mapsto p(\lambda e-x)$ are called the eigenvalues of x.

The hyperbolicity cone of p along e is

$$
K_{p, e}:=\left\{x \in \mathbb{R}^{n} \mid p(\lambda e-x) \neq 0 \text { for all } \lambda<0\right\}
$$

and is the set where all eigenvalues are nonnegative.

Hyperbolicity cones

Example.

In a Euclidean Jordan algebra:

- The determinant is a homogeneous polynomial
- All eigenvalues are real
- The determinant is hyperbolic along 1_{V}
- $K_{\text {det, } 1_{V}}$ is the cone of squares

Hyperbolicity cones

Renegar 2006:

- Take the derivative of p along e
- Get a new hyperbolicity cone $K_{p, e}^{(1)}$
- $K_{p, e}^{(1)}$ is a relaxation of $K_{p, e}$
- Repeat:

$$
K_{p, e} \subseteq K_{p, e}^{(1)} \subseteq \cdots \subseteq K_{p, e}^{(i)}
$$

Hyperbolicity cones

Recall:

Theorem (Ito/Lourenço 2023).
Subject to some technical conditions,

$$
\operatorname{Aut}\left(K_{p, e}^{(i)}\right)=\mathbb{R}_{++} \operatorname{Aut}\left(K_{p, e}\right)_{e}
$$

Hyperbolicity cones

Theorem. Let V be an EJA of rank $r \geq 4$ and $1 \leq i \leq r-3$. Then in coordinates,

$$
\operatorname{Aut}\left(K_{\mathrm{det}, 1_{V}}^{(i)}\right)=\mathbb{R}_{++} \operatorname{JAut}(V)
$$

Proof. Substitute into the Ito/Lourenço result:

$$
\begin{align*}
p & =\operatorname{det} \\
e & =1_{V} \\
\operatorname{JAut}(V) & =\operatorname{Aut}(K)_{1_{V}}
\end{align*}
$$

SEction 7

Summary

Summary

- New proof of JAut $(V)=\operatorname{Aut}(K)_{1_{V}}$
- New proof of

$$
\operatorname{JAut}\left(V_{1} \times V_{2}\right)=\operatorname{JAut}\left(V_{1}\right) \times \operatorname{JAut}\left(V_{2}\right)
$$

- New description of $\operatorname{Aut}\left(\mathcal{L}_{+}^{n}\right)$
- Found $\operatorname{Aut}\left(\mathcal{H}_{+}^{n}(\mathbb{H})\right)$
- Found $\operatorname{JAut}\left(\mathcal{H}^{n}(\mathbb{C})\right)$ and $\operatorname{JAut}\left(\mathcal{H}^{n}(\mathbb{H})\right)$
- Path-connectedness of JAut (V)
- Found $\operatorname{Aut}\left(K_{\text {det, }, 1_{V}}^{(i)}\right)$ in an EJA

Section 8

The end

