Lyapunov Rank and Perfect Cones

Michael Orlitzky

Definitions

Let K be a proper cone in \mathbb{R}^{n} and denote its dual by K^{*}.

Definition (dual cone).
The dual K^{*} of K is defined to be,

$$
K^{*}:=\left\{y \in \mathbb{R}^{n}: \forall x \in K,\langle x, y\rangle \geq 0\right\}
$$

Cones and their duals are generalizations of vector (sub)spaces and their orthogonal complements.

Definitions

Definition (complementarity set).
The complementarity set of a cone K is,

$$
C(K):=\left\{(x, s): x \in K, s \in K^{*},\langle x, s\rangle=0\right\}
$$

The complementarity set can be used to generalize certain optimization problems posed over "easy" cones like $K=K^{*}=\mathbb{R}_{+}^{n}$.

Definitions

Definition (Lyapunov-like transformation).

We say that a transformation $L \in \mathbb{R}^{n \times n}$ is Lyapunov-like on a proper cone K if,

$$
(x, s) \in C(K) \Longrightarrow\langle L x, s\rangle=0
$$

In other words, $L x$ and s are perpendicular for all pairs (x, s) in the complementarity set of K.

Definitions

Definition (Lyapunov rank).
For a given proper cone K, it is easy to see that the set of all Lyapunov-like transformations form a vector space, denoted $L L(K)$.

The dimension of this vector space is called the Lyapunov rank of K, and is denoted $\beta(K)$. (The beta refers to "bilinearity rank," which is a synonym for the Lyapunov rank.)

The LCP

For an example, we turn to the Linear
Complementarity Problem, or LCP. The LCP asks us to find a vector x satisfying a system of linear inequalities: given a vector $q \in \mathbb{R}^{n}$ and a $\operatorname{matrix} M \in \mathbb{R}^{n \times n}$, find an $x \in \mathbb{R}^{n}$ such that,

$$
\begin{aligned}
x & \geq 0 \\
q+M x & \geq 0 \\
x^{T}(q+M x) & =0
\end{aligned}
$$

The LCP

If we let $s=q+M x$ and $K=\mathbb{R}_{+}^{n}=K^{*}$, then this can be rewritten as,

$$
\left.\begin{array}{ll}
x & \in K \\
s & \in K^{*} \\
\langle x, s\rangle & =0
\end{array}\right\}(x, s) \in C(K)
$$

In other words, the problem can be completely described in terms of the complementarity set $C(K)$ of K.

The LCP

It is noted in [2] that \mathbb{R}_{+}^{n} has Lyapunov rank $\beta\left(\mathbb{R}_{+}^{n}\right)=n$. This is reflected in the fact that the condition $\langle x, s\rangle=0$ in the linear complementarity problem can be rewritten as n equations,

$$
\begin{gathered}
x_{1} s_{1}=0 \\
x_{2} s_{2}=0 \\
\vdots \\
x_{n} s_{n}=0
\end{gathered}
$$

The LCP

Each equation $x_{i} s_{i}=0$ corresponds to an

$$
L_{i}=\left(\delta_{i i}\right)
$$

in $\left\langle L_{i}(x), s\right\rangle=0$. Since they are obviously linearly-independent, the n transformations $L_{1}, L_{2}, \ldots, L_{n}$ form a basis for $L L\left(R_{+}^{n}\right)$ and thus $\beta\left(R_{+}^{n}\right)=n$.

Perfect Cones

Definition (perfect cone).
A proper cone K is said to be perfect if $C(K)$ can be expressed in terms of n linearly-independent Lyapunov-like transformations $L_{1}, L_{2}, \ldots, L_{n}$.

That is, if the following two sets are equal:

$$
\begin{aligned}
& C(K)=\left\{(x, s) \in K \times K^{*}:\langle x, s\rangle=0\right\} \\
& \tilde{C}(K)=\bigcap_{i=1}^{n}\left\{(x, s) \in K \times K^{*}:\left\langle L_{i} x, s\right\rangle=0\right\}
\end{aligned}
$$

Perfect Cones

Example $\left(K=\mathbb{R}_{+}^{n}\right)$. Recall the nonnegative orthant \mathbb{R}_{+}^{n} which was used in the linear complementarity problem. We were able to express $C\left(\mathbb{R}_{+}^{n}\right)$ in terms of n elements of $L L(K)$ equations:

$$
\begin{gathered}
\left\langle L_{1}(x), s\right\rangle=0 \\
\vdots \\
\left\langle L_{n}(x), s\right\rangle=0
\end{gathered}
$$

Therefore, \mathbb{R}_{+}^{n} is perfect.

Perfect Cones

Let K be a proper cone in \mathbb{R}_{+}^{n}. Then
$1 \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 4[2]$.
(1) $\beta(K)=n$
(2) The identity is a linear combination of n independent elements of $L L(K)$.
(3) K is perfect

- $\beta(K) \geq n$
(Clearly, $4 \nRightarrow 1$.

Perfect Cones

Theorem 1. 2,3 and 4 are equivalent.
Proof $(4 \Longrightarrow 2)$.
Suppose $n \leq m=\operatorname{dim}(L L(K))$.
The identity transformation is Lyapunov-like, so we can extend the set $\{I\}$ to a basis $\left\{I, L_{2}, \ldots, L_{n}, \ldots, L_{m}\right\}$ of $L L(K)$.

Now $I=1 I+0 L_{2}+\cdots+0 L_{n}$.

Bounding the Lyapunov Rank

If our goal is to determine $\beta(K)$ for some K, then it is useful to have an upper bound: if the upper bound is achieved, then $\beta(K)$ is equal to the upper bound.

Clearly, $\operatorname{dim}(L L(K)) \leq \operatorname{dim}\left(\mathbb{R}^{n \times n}\right)=n^{2}$. But we can reduce this bound via the codimension formula:

$$
\beta(K)=\operatorname{codim}\left(\operatorname{span}\left\{s x^{T}:(x, s) \in C(K)\right\}\right)
$$

Bounding the Lyapunov Rank

Theorem (Gowda/Tao). For every proper cone K in \mathbb{R}^{n} with $n \geq 2$, we have
$1 \leq \beta(K) \leq n^{2}-n$.
Proof. First we note that $\beta(K)$ is invariant under an isomorphism, so for convenience we assume that the standard basis vectors $e_{1}, e_{2}, \ldots, e_{n}$ lie on the boundary of K.

Bounding the Lyapunov Rank

Proof (continued).

The definition of

$$
K=\left(K^{*}\right)^{*}=\left\{x \in \mathbb{R}^{n}: \forall y \in K^{*},\langle x, y\rangle \geq 0\right\}
$$

suggests that every vector e_{i} on the boundary of K has an associated s_{i} on the boundary of K^{*} with $\left\langle e_{i}, s_{i}\right\rangle=0$.

Thus, $\left(e_{i}, s_{i}\right) \in C(K)$. A more technical argument is needed to show that $s_{i} \neq 0$.

Bounding the Lyapunov Rank

Proof (continued).
If we let $A_{i}=s_{i} e_{i}^{T}$, then

$$
\begin{aligned}
A_{1} & =\left(s_{1}, 0, \cdots\right) \\
A_{2} & =\left(0, s_{2}, \cdots\right) \\
\vdots & \\
A_{n} & =\left(0, \cdots, s_{n}\right)
\end{aligned}
$$

Clearly the A_{i} are linearly-independent, so $\beta(K) \leq n^{2}-n$ by the codimension formula.

Bounding the Lyapunov Rank

Theorem 2. For every proper, non-polyhedral cone K in \mathbb{R}^{n} with $n \geq 3$, we have $1 \leq \beta(K) \leq(n-1)^{2}$.

The proof of this theorem proceeds in the same way: we use the n matrices constructed by Gowda and Tao, but find an additional $n-1$ pairs $(x, s) \in C(K)$ such that the matrices A_{i} and $s x^{T}$ are all linearly independent. This gives us a total of $2 n-1$ for our new upper bound of $n^{2}-(2 n-1)=(n-1)^{2}$.

Bounding the Lyapunov Rank

Lemma 3. Suppose K is a proper cone in \mathbb{R}^{n} with $n \geq 2$ whose boundary is contained in a finite union of hyperplanes $\bigcup_{i=1}^{N} H_{i}$. Then, K is polyhedral.

Proof. The proof is by induction on the number of non-supporting-hyperplanes. In the base case, each H_{i} supports K and thus they define a collection of half-spaces G_{i} each of which contain K.

Bounding the Lyapunov Rank

Proof (continued). The cone

$$
C=\hat{N}_{i=1}^{N} G_{i}
$$

is polyhedral by definition [4] and we claim that $K=C$. Assume that $K \neq C$ on the contrary.
Then without loss of generality there exists an $x \in \operatorname{bdy}(C)$ such that $x \notin K$. Now choose some other $y \in \operatorname{int}(K) \subseteq \operatorname{int}(C)$.

Bounding the Lyapunov Rank

Bounding the Lyapunov Rank

Proof (continued). Now we know that the segment $(x, y] \subseteq \operatorname{int}(C)$ and there exists an $r \in(x, y]$ which lies on the boundary of K.

Bounding the Lyapunov Rank

Proof (continued). But by assumption,

$$
\operatorname{bdy}(K) \subseteq \bigcup_{i=1}^{N} H_{i} .
$$

So r must belong to one of the H_{i}, and $r \in \operatorname{int}(C)$ as well. But each H_{i} is a supporting hyperplane to C; therefore, $r \in \operatorname{bdy}(C)$, a contradiction.

We conclude that $K=C$ proving that K is polyhedral in the base case.

Bounding the Lyapunov Rank

Proof (continued). But what if there are non-supporting hyperplanes (i.e. not the base case)? Any non-supporting-hyperplane must pass through the interior of K splitting it into two smaller cones K_{1} and K_{2} with $K=K_{1} \cup K_{2}$.

The important observation is that both K_{1} and K_{2} have one fewer non-supporting-hyperplane than K, allowing us to apply the induction hypothesis.

Bounding the Lyapunov Rank

Bounding the Lyapunov Rank

Bounding the Lyapunov Rank

Proof (continued). At this point we know that K_{1} and K_{2} are polyhedral and thus finitely-generated:

$$
\begin{aligned}
& K_{1}=\operatorname{conv}\left(\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}\right) \\
& K_{2}=\operatorname{conv}\left(\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}\right)
\end{aligned}
$$

By convexity of K, we are able to conclude that,

$$
K=\operatorname{conv}\left(\left\{x_{1}, x_{2}, \ldots, x_{l}, y_{1}, y_{2}, \ldots, y_{k}\right\}\right)
$$

Hence, K is polyhedral.

Bounding the Lyapunov Rank

With Lemma 3 in hand, we are ready to improve the upper bound.

Proof (Theorem 2). We begin with the same $\left\{A_{i}\right\}_{i=1}^{n}$ constructed by Gowda and Tao. Using the same procedure, we can find $0 \neq a_{1} \in \operatorname{bdy}(K)$ with $\left\langle a_{1}, b_{1}\right\rangle=0$, i.e. $\left(a_{1}, b_{1}\right) \in C(K)$. We define a new matrix $B_{1}=b_{1} a_{1}^{T}$, and claim that the set $\left\{B_{1}\right\} \cup\left\{A_{i}: i=1,2, \ldots, n\right\}$ is
linearly-independent.

Bounding the Lyapunov Rank

Proof (continued). In fact, this procedure can be repeated $(n-1)$ times. Certainly it becomes more difficult with the addition of each successive b_{i}, so we will assume that we have $(n-2)$ such vectors $b_{1}, b_{2}, \ldots, b_{n-2}$,
linearly-independent, and find b_{n-1}.
Denote by H_{i} the set,

$$
H_{i}:=\operatorname{span}\left\{b_{1}, b_{2}, \ldots, b_{n-2}, s_{i}\right\}
$$

Bounding the Lyapunov Rank

Proof (continued). Each H_{i} defines an ($n-1$)-dimensional space, i.e. a hyperplane. By Lemma 3, we can always find a point on the boundary of K^{*} not contained in any of the H_{i}. Take that point to be our $b_{n-1} \in \operatorname{bdy}\left(K^{*}\right)$.

Define $B_{i}=b_{i} a_{i}^{T}$ as before. We will show that the set $\left\{B_{1}, B_{2}, \ldots B_{n-1}, A_{1}, \ldots, A_{n}\right\}$ is linearly-independent.

Bounding the Lyapunov Rank

Proof (continued). Let,

$$
C_{n-1}=\mu_{n-1} B_{n-1}+\sum_{k=1}^{n-2} \mu_{k} B_{k}+\sum_{i=1}^{n} \lambda_{i} A_{i}
$$

and consider the equation $C_{n-1}=0$. We will assume that $\mu_{n-1} \neq 0$, and derive a contradiction. The i th column of B_{j} is $a_{j}^{(i)} b_{j}$. Therefore the i th column of C_{n-1} is,

$$
\mu_{n-1} a_{n-1}^{(i)} b_{n-1}+\lambda_{i} s_{i}+\sum_{k=1}^{n-2} \mu_{k} a_{k}^{(i)} b_{k}
$$

Bounding the Lyapunov Rank

Proof (continued). $\quad C_{n-1}=0$ implies,

$$
\mu_{n-1} a_{n-1}^{(i)} b_{n-1}+\lambda_{i} s_{i}+\sum_{k=1}^{n-2} \mu_{k} a_{k}^{(i)} b_{k}=0
$$

or,

$$
\begin{aligned}
a_{n-1}^{(i)} b_{n-1} & =-\frac{\lambda_{i}}{\mu_{n-1}} s_{i}-\sum_{k=1}^{n-2} \frac{\mu_{k}}{\mu_{n-1}} a_{k}^{(i)} b_{k} \\
& \in H_{i}, i=1,2, \ldots, n
\end{aligned}
$$

Bounding the Lyapunov Rank

Proof (continued). If $\lambda_{i}=0$ and each $\mu_{k}=0$, then clearly, $a_{n-1}^{(i)}=0$ since b_{n-1} is non-zero. On the other hand, if $\lambda_{i} \neq 0$ or $\mu_{k} \neq 0$ for some k, then recall that we have chosen $b_{n-1} \notin H_{i}$, so the only solution to the above equation is $a_{n-1}^{(i)}=0$.

In both cases, $a_{n-1}^{(i)}=0$, so we have $a_{n-1}^{(i)}=0$ for all i, and thus, $a_{n-1}=0$. But this is a contradiction: we chose a_{n-1} to be non-zero. Therefore the assumption that $\mu_{n-1} \neq 0$ must be at fault.

Bounding the Lyapunov Rank

Proof (continued). But what if $\mu_{n-1}=0$?
Then the equation $C_{n-1}=0$ reduces to,

$$
\lambda_{i} s_{i}+\sum_{k=1}^{n-2} \mu_{k} a_{k}^{(i)} b_{k}=0
$$

By assumption, all of the vectors involved are linearly-independent, so all of their coefficients must be zero.

Bounding the Lyapunov Rank

Proof (continued). Adding to these the fact that $\mu_{n-1}=0$, we have $\lambda_{i}=\mu_{k}=0$, for all k up to $n-1$. Thus we conclude that the set

$$
\left\{B_{1}, B_{2}, \ldots, B_{n-1}, A_{1}, \ldots, A_{n}\right\}
$$

is linearly-independent, and it contains $2 n-1$ elements, giving us an upper bound of $n^{2}-(2 n-1)=(n-1)^{2}$.

Applications

Example $\left(\beta\left(\mathcal{P}_{+}^{3}\right)\right.$). The cone of positive polynomials in \mathbb{R}^{3} is defined by,

$$
\mathcal{P}_{+}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: p(t)=x_{1}+x_{2} t+x_{3} t^{2} \geq 0\right\}
$$

and comprises the coefficient vectors of all nonnegative polynomials $p(t)$ with $\operatorname{deg}(p) \leq 2$. It has as its dual the moment cone,

$$
\mathcal{M}^{3}=\operatorname{conv}\left(\left\{\left(1, t, t^{2}\right)^{T}: t \in \mathbb{R}\right\}\right)
$$

Applications

Example $\left(\beta\left(\mathcal{P}_{+}^{3}\right)\right.$, continued).
Note that if $x \in \mathcal{P}_{+}^{3}$ and $s \in \mathcal{M}^{3}$, we have $p(t)=\langle x, s\rangle$. In particular, $p(t) \equiv 0 \Longleftrightarrow\langle x, s\rangle=0$. Any such x therefore lies on the boundary of \mathcal{P}_{+}^{3}.

Since $p(t) \geq 0$ on all of \mathbb{R}, we cannot have $\operatorname{deg}(p)=1$. Therefore, if $x \neq 0$, we have $\operatorname{deg}(p)=2$ implying $x_{3} \neq 0$. Now the existence of any root implies $x_{1}=0$. Finally, if $p(t)$ has a root, then clearly that root is a double root.

Applications

Example ($\beta\left(\mathcal{P}_{+}^{3}\right)$, continued). Consider the following linearly-independent transformations on \mathbb{R}^{3} :

$$
\begin{array}{ll}
L_{1}=I & L_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \\
L_{3}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) & L_{4}=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{array}
$$

Applications

Example ($\beta\left(\mathcal{P}_{+}^{3}\right.$), continued). To show that each L_{i} is Lyapunov-like, it suffices ([5], Lemma 25) to exhibit the property for pairs of extreme vectors $(x, s) \in C\left(\mathcal{P}_{+}^{3}\right)$.

For our particular problem, we can limit ourselves to a subset of the extreme vectors:

$$
\operatorname{Ext}\left(\mathcal{M}^{3}\right) \ni s \in\left\{\alpha\left(1, t, t^{2}\right)^{T}: \alpha>0, t \in \mathbb{R}\right\}
$$

Applications

Example $\left(\beta\left(\mathcal{P}_{+}^{3}\right)\right.$, continued).
The identity is obviously Lyapunov-like, and the other three transformations are easy to check using the fact that p has a double root at t_{0} :

$$
\begin{aligned}
& \left\langle L_{2}(x), s\right\rangle=x_{2}+2 x_{3} t_{0}=p^{\prime}\left(t_{0}\right)=0 \\
& \left\langle L_{3}(x), s\right\rangle=x_{2} t_{0}=2 p\left(t_{0}\right)-t_{0} p^{\prime}\left(t_{0}\right)=0 \\
& \left\langle L_{4}(x), s\right\rangle=x_{2} t_{0}^{2}=2 t_{0} p\left(t_{0}\right)-t_{0}^{2} p^{\prime}\left(t_{0}\right)=0
\end{aligned}
$$

Now from $4 \leq \beta\left(\mathcal{P}_{+}^{3}\right) \leq 4$ we have $\beta\left(\mathcal{P}_{+}^{3}\right)=4$.

Applications

Corollary 4. For each $n \geq 3$, there exists a non-symmetric cone $K \subseteq \mathbb{R}^{n}$ with $\beta(K)>n$.

Proof.

We use the fact that \mathcal{P}_{+}^{3} is non-symmetric:

$$
\begin{aligned}
K & =\mathcal{P}_{+}^{3} \times \mathbb{R}_{+}^{n-3} \subseteq \mathbb{R}^{3} \times \mathbb{R}^{n-3} \cong \mathbb{R}^{n} \\
K^{*} & =\mathcal{M}^{3} \times \mathbb{R}_{+}^{n-3} \neq K
\end{aligned}
$$

The Lyapunov rank is additive on a cartesian product, therefore, $\beta(K)=n+1$.

What Now?

The previous example shows that the bound $\beta(K) \leq(n-1)^{2}$ is tight in $n=3$, since $K=\mathcal{P}_{+}^{3}$ achieves the bound of $(3-1)^{2}=4$.

It is not known whether or not the bound is tight for larger n. Perhaps the bound can be improved, or maybe a cone will be found with $\beta(K)=9$ in \mathbb{R}^{4}. At present, $\beta\left(\mathcal{L}_{+}^{n}\right)=7$ is the highest known rank in \mathbb{R}^{4}.

What Now?

For each n, Corollary 4 exhibits a non-symmetric cone K for which $\beta(K)>n$. However, by construction, K is reducible. It is not known whether or not there exist irreducible cones having the same property.

What Now?

What does it mean for one system $\left\langle L_{i} x, s\right\rangle=0$ to be simpler than another? How can we find those systems?

For linear systems, n equations in n variables is naturally desirable. But a priori, $\langle L x, s\rangle=0$ is not linear. Even for simple(?) cones and simple(?) choices of the L_{i}, the resulting systems can be hard to solve. Are there choices of L_{i} that make the system easily solvable? Are there cones where no choice of L_{i} gives us an easy system?

References I

[1] Cottle, Richard, Pang, Jong-Shi, Stone, Richard. The Linear Complementarity Problem. SIAM, 2009.
[2] Gowda, M.S. and Tao, J. On the bilinearity rank of a proper cone and Lyapunov-like transformations. Mathematical Programming, 147 (2014) 155-170.
[3] S. Karlin and W.J. Studden. Tchebycheff Systems with Applications in Analysis and Statistics. Wiley Interscience Publishers, 1966.

References II

[4] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.
[5] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh, Bilinear optimality constraints for the cone of positive polynomials, Mathematical Programming, Series B, 129 (2011) 5-31.

