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Definitions

Let K be a proper cone in Rn and denote its dual
by K∗.

Definition (dual cone).

The dual K∗ of K is defined to be,

K∗ := {y ∈ Rn : ∀x ∈ K, 〈x, y〉 ≥ 0}

Cones and their duals are generalizations of
vector (sub)spaces and their orthogonal
complements.
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Definitions

Definition (complementarity set).

The complementarity set of a cone K is,

C(K) := {(x, s) : x ∈ K, s ∈ K∗, 〈x, s〉 = 0}

The complementarity set can be used to
generalize certain optimization problems posed
over “easy” cones like K = K∗ = Rn

+.
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Definitions

Definition (Lyapunov-like transformation).

We say that a transformation L ∈ Rn×n is
Lyapunov-like on a proper cone K if,

(x, s) ∈ C (K) =⇒ 〈Lx, s〉 = 0

In other words, Lx and s are perpendicular for all
pairs (x, s) in the complementarity set of K.
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Definitions

Definition (Lyapunov rank).

For a given proper cone K, it is easy to see that
the set of all Lyapunov-like transformations form
a vector space, denoted LL (K).

The dimension of this vector space is called the
Lyapunov rank of K, and is denoted β (K). (The
beta refers to “bilinearity rank,” which is a
synonym for the Lyapunov rank.)
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The LCP

For an example, we turn to the Linear
Complementarity Problem, or LCP. The LCP
asks us to find a vector x satisfying a system of
linear inequalities: given a vector q ∈ Rn and a
matrix M ∈ Rn×n, find an x ∈ Rn such that,

x ≥ 0

q +Mx ≥ 0

xT (q +Mx) = 0
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The LCP

If we let s = q +Mx and K = Rn
+ = K∗, then

this can be rewritten as,

x ∈ K
s ∈ K∗

〈x, s〉 = 0

 (x, s) ∈ C (K)

In other words, the problem can be completely
described in terms of the complementarity set
C (K) of K.
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The LCP

It is noted in [2] that Rn
+ has Lyapunov rank

β (Rn
+) = n. This is reflected in the fact that the

condition 〈x, s〉 = 0 in the linear complementarity
problem can be rewritten as n equations,

x1s1 = 0

x2s2 = 0
...

xnsn = 0
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The LCP

Each equation xisi = 0 corresponds to an

Li = (δii)

in 〈Li (x) , s〉 = 0. Since they are obviously
linearly-independent, the n transformations
L1, L2, . . . , Ln form a basis for LL (Rn

+) and thus
β (Rn

+) = n.
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Perfect Cones

Definition (perfect cone).

A proper cone K is said to be perfect if C (K) can
be expressed in terms of n linearly-independent
Lyapunov-like transformations L1, L2, . . . , Ln.

That is, if the following two sets are equal:

C (K) = {(x, s) ∈ K ×K∗ : 〈x, s〉 = 0}

C̃ (K) =
n
∩
i=1
{(x, s) ∈ K ×K∗ : 〈Lix, s〉 = 0}
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Perfect Cones

Example (K = Rn
+). Recall the nonnegative

orthant Rn
+ which was used in the linear

complementarity problem. We were able to
express C (Rn

+) in terms of n elements of LL (K)
equations:

〈L1 (x) , s〉 = 0
...

〈Ln (x) , s〉 = 0

Therefore, Rn
+ is perfect.
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Perfect Cones

Let K be a proper cone in Rn
+. Then

1 =⇒ 2 =⇒ 3 =⇒ 4 [2].

1 β (K) = n

2 The identity is a linear combination of n
independent elements of LL (K).

3 K is perfect

4 β (K) ≥ n

(Clearly, 4 6=⇒ 1.)
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Perfect Cones

Theorem 1. 2, 3 and 4 are equivalent.

Proof (4 =⇒ 2).

Suppose n ≤ m = dim (LL (K)).

The identity transformation is Lyapunov-like, so
we can extend the set {I} to a basis
{I, L2, . . . , Ln, . . . , Lm} of LL (K).

Now I = 1I + 0L2 + · · ·+ 0Ln.

Michael Orlitzky UMBC



Bounding the Lyapunov Rank

If our goal is to determine β (K) for some K,
then it is useful to have an upper bound: if the
upper bound is achieved, then β (K) is equal to
the upper bound.

Clearly, dim (LL (K)) ≤ dim (Rn×n) = n2. But
we can reduce this bound via the codimension
formula:

β (K) = codim
(
span

{
sxT : (x, s) ∈ C (K)

})
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Bounding the Lyapunov Rank

Theorem (Gowda/Tao). For every proper
cone K in Rn with n ≥ 2, we have
1 ≤ β (K) ≤ n2 − n.

Proof. First we note that β (K) is invariant
under an isomorphism, so for convenience we
assume that the standard basis vectors
e1, e2, . . . , en lie on the boundary of K.
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Bounding the Lyapunov Rank

Proof (continued).

The definition of

K = (K∗)∗ = {x ∈ Rn : ∀y ∈ K∗, 〈x, y〉 ≥ 0}

suggests that every vector ei on the boundary of
K has an associated si on the boundary of K∗

with 〈ei, si〉 = 0.

Thus, (ei, si) ∈ C (K). A more technical
argument is needed to show that si 6= 0.
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Bounding the Lyapunov Rank

Proof (continued).

If we let Ai = sie
T
i , then

A1 =
(
s1, 0, · · ·

)
A2 =

(
0, s2, · · ·

)
...

An =
(
0, · · · , sn

)
Clearly the Ai are linearly-independent, so
β (K) ≤ n2 − n by the codimension formula.
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Bounding the Lyapunov Rank

Theorem 2. For every proper, non-polyhedral
cone K in Rn with n ≥ 3, we have
1 ≤ β(K) ≤ (n− 1)2.

The proof of this theorem proceeds in the same
way: we use the n matrices constructed by
Gowda and Tao, but find an additional n− 1
pairs (x, s) ∈ C (K) such that the matrices Ai

and sxT are all linearly independent. This gives
us a total of 2n− 1 for our new upper bound of
n2 − (2n− 1) = (n− 1)2.
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Bounding the Lyapunov Rank

Lemma 3. Suppose K is a proper cone in Rn

with n ≥ 2 whose boundary is contained in a

finite union of hyperplanes
N
∪
i=1
Hi. Then, K is

polyhedral.

Proof. The proof is by induction on the number
of non-supporting-hyperplanes. In the base case,
each Hi supports K and thus they define a
collection of half-spaces Gi each of which contain
K.
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Bounding the Lyapunov Rank

Proof (continued). The cone

C =
N
∩
i=1
Gi

is polyhedral by definition [4] and we claim that
K = C. Assume that K 6= C on the contrary.
Then without loss of generality there exists an
x ∈ bdy (C) such that x /∈ K. Now choose some
other y ∈ int (K) ⊆ int (C).
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Bounding the Lyapunov Rank

C

K

x

y
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Bounding the Lyapunov Rank

Proof (continued). Now we know that the
segment (x, y] ⊆ int (C) and there exists an
r ∈ (x, y] which lies on the boundary of K.

C

K

x

y
r
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Bounding the Lyapunov Rank

Proof (continued). But by assumption,

bdy (K) ⊆
N
∪
i=1
Hi.

So r must belong to one of the Hi, and r ∈ int (C)
as well. But each Hi is a supporting hyperplane
to C; therefore, r ∈ bdy (C), a contradiction.

We conclude that K = C proving that K is
polyhedral in the base case.
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Bounding the Lyapunov Rank

Proof (continued). But what if there are
non-supporting hyperplanes (i.e. not the base
case)? Any non-supporting-hyperplane must pass
through the interior of K splitting it into two
smaller cones K1 and K2 with K = K1 ∪K2.

The important observation is that both K1 and
K2 have one fewer non-supporting-hyperplane
than K, allowing us to apply the induction
hypothesis.
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Bounding the Lyapunov Rank

K
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Bounding the Lyapunov Rank

K1

K2
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Bounding the Lyapunov Rank

Proof (continued). At this point we know
that K1 and K2 are polyhedral and thus
finitely-generated:

K1 = conv ({x1, x2, . . . , xl})
K2 = conv ({y1, y2, . . . , yk})

By convexity of K, we are able to conclude that,

K = conv ({x1, x2, . . . , xl, y1, y2, . . . , yk}) .

Hence, K is polyhedral.
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Bounding the Lyapunov Rank

With Lemma 3 in hand, we are ready to improve
the upper bound.

Proof (Theorem 2). We begin with the same
{Ai}ni=1 constructed by Gowda and Tao. Using
the same procedure, we can find 0 6= a1 ∈ bdy (K)
with 〈a1, b1〉 = 0, i.e. (a1, b1) ∈ C (K). We define
a new matrix B1 = b1a

T
1 , and claim that the set

{B1} ∪ {Ai : i = 1, 2, . . . , n} is
linearly-independent.
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Bounding the Lyapunov Rank

Proof (continued). In fact, this procedure
can be repeated (n− 1) times. Certainly it
becomes more difficult with the addition of each
successive bi, so we will assume that we have
(n− 2) such vectors b1, b2, . . . , bn−2,
linearly-independent, and find bn−1.

Denote by Hi the set,

Hi := span {b1, b2, . . . , bn−2, si}

Michael Orlitzky UMBC



Bounding the Lyapunov Rank

Proof (continued). Each Hi defines an
(n− 1)-dimensional space, i.e. a hyperplane. By
Lemma 3, we can always find a point on the
boundary of K∗ not contained in any of the Hi.
Take that point to be our bn−1 ∈ bdy(K∗).

Define Bi = bia
T
i as before. We will show that the

set {B1, B2, . . . Bn−1, A1, . . . , An} is
linearly-independent.
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Bounding the Lyapunov Rank

Proof (continued). Let,

Cn−1 = µn−1Bn−1 +
n−2∑
k=1

µkBk +
n∑

i=1

λiAi

and consider the equation Cn−1 = 0. We will
assume that µn−1 6= 0, and derive a contradiction.

The ith column of Bj is a
(i)
j bj. Therefore the ith

column of Cn−1 is,

µn−1a
(i)
n−1bn−1 + λisi +

n−2∑
k=1

µka
(i)
k bk
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Bounding the Lyapunov Rank

Proof (continued). Cn−1 = 0 implies,

µn−1a
(i)
n−1bn−1 + λisi +

n−2∑
k=1

µka
(i)
k bk = 0

or,

a
(i)
n−1bn−1 = − λi

µn−1
si −

n−2∑
k=1

µk
µn−1

a
(i)
k bk

∈ Hi, i = 1, 2, . . . , n
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Bounding the Lyapunov Rank

Proof (continued). If λi = 0 and each µk = 0,

then clearly, a
(i)
n−1 = 0 since bn−1 is non-zero. On

the other hand, if λi 6= 0 or µk 6= 0 for some k,
then recall that we have chosen bn−1 /∈ Hi, so the

only solution to the above equation is a
(i)
n−1 = 0.

In both cases, a
(i)
n−1 = 0, so we have a

(i)
n−1 = 0 for

all i, and thus, an−1 = 0. But this is a
contradiction: we chose an−1 to be non-zero.
Therefore the assumption that µn−1 6= 0 must be
at fault.
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Bounding the Lyapunov Rank

Proof (continued). But what if µn−1 = 0?
Then the equation Cn−1 = 0 reduces to,

λisi +
n−2∑
k=1

µka
(i)
k bk = 0

By assumption, all of the vectors involved are
linearly-independent, so all of their coefficients
must be zero.
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Bounding the Lyapunov Rank

Proof (continued). Adding to these the fact
that µn−1 = 0, we have λi = µk = 0, for all k up
to n− 1. Thus we conclude that the set

{B1, B2, . . . , Bn−1, A1, . . . , An}

is linearly-independent, and it contains 2n− 1
elements, giving us an upper bound of
n2 − (2n− 1) = (n− 1)2.
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Applications

Example (β
(
P3

+

)
). The cone of positive

polynomials in R3 is defined by,

P3
+ =

{
(x1, x2, x3) ∈ R3 : p(t) = x1 + x2t+ x3t

2 ≥ 0
}

and comprises the coefficient vectors of all
nonnegative polynomials p (t) with deg (p) ≤ 2. It
has as its dual the moment cone,

M3 = conv
({(

1, t, t2
)T

: t ∈ R
})
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Applications

Example (β
(
P3

+

)
, continued).

Note that if x ∈ P3
+ and s ∈M3, we have

p (t) = 〈x, s〉. In particular,
p (t) ≡ 0 ⇐⇒ 〈x, s〉 = 0. Any such x therefore
lies on the boundary of P3

+.

Since p (t) ≥ 0 on all of R, we cannot have
deg (p) = 1. Therefore, if x 6= 0, we have
deg (p) = 2 implying x3 6= 0. Now the existence of
any root implies x1 = 0. Finally, if p (t) has a
root, then clearly that root is a double root.
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Applications

Example (β
(
P3

+

)
, continued). Consider the

following linearly-independent transformations on
R3:

L1 = I L2 =

0 1 0
0 0 2
0 0 0


L3 =

2 0 0
0 1 0
0 0 0

 L4 =

0 0 0
2 0 0
0 1 0
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Applications

Example (β
(
P3

+

)
, continued). To show that

each Li is Lyapunov-like, it suffices ([5], Lemma
25) to exhibit the property for pairs of extreme
vectors (x, s) ∈ C

(
P3

+

)
.

For our particular problem, we can limit
ourselves to a subset of the extreme vectors:

Ext
(
M3
)
3 s ∈

{
α
(
1, t, t2

)T
: α > 0, t ∈ R

}

Michael Orlitzky UMBC



Applications

Example (β
(
P3

+

)
, continued).

The identity is obviously Lyapunov-like, and the
other three transformations are easy to check
using the fact that p has a double root at t0:

〈L2 (x) , s〉 = x2 + 2x3t0 = p′ (t0) = 0

〈L3 (x) , s〉 = x2t0 = 2p (t0)− t0p′ (t0) = 0

〈L4 (x) , s〉 = x2t
2
0 = 2t0p (t0)− t20p′ (t0) = 0

Now from 4 ≤ β
(
P3

+

)
≤ 4 we have β

(
P3

+

)
= 4.
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Applications

Corollary 4. For each n ≥ 3, there exists a
non-symmetric cone K ⊆ Rn with β (K) > n.

Proof.

We use the fact that P3
+ is non-symmetric:

K = P3
+ × Rn−3

+ ⊆ R3 × Rn−3 ∼= Rn

K∗ =M3 × Rn−3
+ 6= K

The Lyapunov rank is additive on a cartesian
product, therefore, β (K) = n+ 1.
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What Now?

The previous example shows that the bound
β (K) ≤ (n− 1)2 is tight in n = 3, since K = P3

+

achieves the bound of (3− 1)2 = 4.

It is not known whether or not the bound is tight
for larger n. Perhaps the bound can be improved,
or maybe a cone will be found with β (K) = 9 in
R4. At present, β (Ln

+) = 7 is the highest known
rank in R4.
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What Now?

For each n, Corollary 4 exhibits a non-symmetric
cone K for which β (K) > n. However, by
construction, K is reducible. It is not known
whether or not there exist irreducible cones
having the same property.
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What Now?

What does it mean for one system 〈Lix, s〉 = 0 to
be simpler than another? How can we find those
systems?

For linear systems, n equations in n variables is
naturally desirable. But a priori, 〈Lx, s〉 = 0 is
not linear. Even for simple(?) cones and
simple(?) choices of the Li, the resulting systems
can be hard to solve. Are there choices of Li that
make the system easily solvable? Are there cones
where no choice of Li gives us an easy system?
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