Lyapunov rank in conic optimization

Michael Orlitzky

Part 1, Section 1

Intro: Convex optimization

Intro: Convex optimization

Everything takes place in a Hilbert space V :

- V is finite-dimensional.
- V is a vector space over the real numbers.

It won't hurt to pretend that $V=\mathbb{R}^{n}$.

Intro: Convex optimization

Optimization is:

- trying to find the best value of a function,
- or its least-bad value,
- or simply any value that works.

Intro: Convex optimization

Example. Minimize a real function over $[0,1]$.

Intro: Convex optimization

Example. Minimize a real function over $[0,1]$.

Intro: Convex optimization

In other words,
minimize $f(x)=$ a nice polynomial subject to $\quad x \in[0,1]$.

Intro: Convex optimization

Why can we solve it?
The minimum exists because,

- the function f is continuous, and
- the interval $[0,1]$ is closed and bounded.

Intro: Convex optimization

We can find the minimum because,

- the function f is differentiable,
- the interval $[0,1]$ is convex, and
- there aren't too many places to look:

Intro: Convex optimization

Definition (convex set).
A set is convex if we can

- pick a point x in the set
- pick a point y in the set and be sure that
- the line segment joining x and y is in the set

Intro: Convex optimization

Example (convex).

Intro: Convex optimization

Example (convex).

Intro: Convex optimization

Example (not convex).

Intro: Convex optimization

Question. Why convexity?
Answer (via joke).
In optimization we have only two tools,

1. Taylor series
2. Newton's method

Intro: Convex optimization

Often some constraints will make life difficult.
Example.

$$
\begin{array}{lr}
\operatorname{minimize} & f(x)=\text { a nice polynomial } \\
\text { subject to } & x \in[0,1] \\
\text { and } & x \text { is rational. }
\end{array}
$$

Intro: Convex optimization

The constraints can even be the hardest part.
Example.

$$
\begin{aligned}
& \text { minimize } \quad f(x, y, z)=1 \\
& \text { subject to } \quad x, y, z \in[0,1] \\
& \text { and } \quad x^{3} y^{2} z-y^{3}=-\sqrt{\pi} \text {, } \\
& \text { and } \\
& \sin (z)=y \int_{0}^{x} \Gamma(t) d t, \\
& \text { and } \quad \cdots \text { make it stop }
\end{aligned}
$$

Intro: Convex optimization

It's real easy to make up impossible problems.
Example.

$$
\begin{array}{lrl}
\operatorname{minimize} & f(x) & =\text { whatever } \\
\text { subject to } & x & \in[0,1] \\
\text { and } & x & \geq 9000 .
\end{array}
$$

Intro: Convex optimization

To keep things manageable, we insist that

- the function f is a convex function, and
- we're optimizing over a convex set.

That's "convex optimization."

Part 1, Section 2

Intro: Cones

Intro: Cones

Definition.

A set K is a cone if $\lambda K \subseteq K$ for all $\lambda \geq 0$.

Intro: Cones

Example (convex cone).

Intro: Cones

Example (non-convex cone).

Intro: Cones

Example (convex cone).

Intro: Cones

Example (nonconvex cone).

Intro: Cones

Definition (dual cone).

The dual cone of K is

$$
K^{*}:=\{y \in V \mid\langle x, y\rangle \geq 0 \text { for all } x \in K\}
$$

Intro: Cones

Dual cones generalize orthogonal complements:

- the x -axis is a convex cone in \mathbb{R}^{2}
- its dual cone is the y-axis
- but don't worry about it too much

Intro: Cones

Question. Why (dual) cones?

Answer.

Along the boundary of a convex set, the directions you can go form a (dual) cone.

Intro: Cones

Example (optimality conditions).

Part 1, Section 3

Intro: Complementarity

Intro: Complementarity

Example (primal linear program).
Given L, b, c; find a vector x to

$$
\begin{aligned}
\text { minimize } & \langle b, x\rangle \\
\text { subject to } L(x)-c & \geq 0 \\
x & \geq 0 .
\end{aligned}
$$

Intro: Complementarity

Example (dual linear program).

Simultaneously, find a vector s to

$$
\begin{aligned}
& \operatorname{maximize} \quad\langle c, s\rangle \\
& \text { subject to } b-L^{T}(s) \geq 0 \\
& s
\end{aligned}
$$

Intro: Complementarity

If x and s are primal and dual optimal, then $\langle b, x\rangle=\langle c, s\rangle$. Thus by substitution,

$$
\underbrace{\langle L(x), s\rangle-\langle c, s\rangle}_{\geq 0}=\underbrace{\left\langle L^{T}(s), x\right\rangle-\langle b, x\rangle}_{\leq 0} .
$$

It follows that

$$
\langle s, L(x)-c\rangle=0=\left\langle x, L^{T}(s)-b\right\rangle .
$$

Intro: Complementarity

As a result, we always have

$$
\langle s, L(x)-c\rangle=0=\left\langle x, L^{T}(s)-b\right\rangle
$$

for optimal x and s in the linear program.
This condition is complementary slackness.

Intro: Complementarity

Example (linear complementarity).

Given $M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^{n}$, the $\operatorname{LCP}(M, q)$ is

$$
\begin{array}{rlrl}
& \text { to find } & x, s & \geq 0 \\
\text { such that } & s & =M(x)+q \\
& \text { and } & \langle x, s\rangle & =0
\end{array}
$$

Intro: Complementarity

If we set

$$
M:=\left[\begin{array}{rr}
0 & -L^{T} \\
L & 0
\end{array}\right] \quad \text { and } \quad q:=\left[\begin{array}{r}
b \\
-c
\end{array}\right]
$$

then LCP (M, q) solves our linear programs.

Intro: Complementarity

A linear complementarity problem can be forumated over a cone K and its dual K^{*} :

$$
\begin{aligned}
& \text { find } \begin{aligned}
x & \in K, s \in K^{*} \\
\text { such that } & =M(x)+q \\
& \text { and } \quad\langle x, s\rangle
\end{aligned}=0 .
\end{aligned}
$$

Intro: Complementarity

Why? To solve harder problems:

- robust linear programs
- nonconvex quadratric programs
- graph max-cut

Our goal: solve cone complementarity problems by finding all $x \in K$ and $s \in K^{*}$ with $\langle x, s\rangle=0$.

Intro: Complementarity

This technique works even if we replace the linear operator M with a more general f :

$$
\begin{aligned}
& \text { find } & x & \in K \\
& \text { such that } & f(x) & \in K^{*} \\
& \text { and } & \langle x, f(x)\rangle & =0 .
\end{aligned}
$$

Intro: Complementarity

Let $C(K)$ be the set of complementary pairs,

$$
C(K):=\left\{(x, s) \in K \times K^{*} \mid\langle x, s\rangle=0\right\}
$$

Our general complementarity problem is then to

$$
\text { find }(x, f(x)) \in C(K)
$$

Part 1, Section 4

Intro: Lyapunov-like operators

Intro: LYAPUNOV-LIKE OPERATORS

Ok, but how should we find all (x, s) with

- $x \in K$,
- $s \in K^{*}$, and
- $\langle x, s\rangle=0$?

Intro: LYAPUNOV-LIKE OPERATORS

We can write id ${ }_{V}$ in terms of a basis $\left\{L_{i}\right\}$,

$$
\mathrm{id}_{V}=\sum L_{i} .
$$

Then

$$
0=\langle x, s\rangle=\left\langle\operatorname{id}_{V}(x), s\right\rangle=\sum\left\langle L_{i}(x), s\right\rangle .
$$

Intro: Lyapunov-Like operators

... but so what? The equation

$$
\sum\left\langle L_{i}(x), s\right\rangle=0
$$

isn't any easier to solve than $\langle x, s\rangle=0$.

Idea.

Define some operators that make it easier.

Intro: LyApunov-LIKE OPERATORS

Definition (Lyapunov-like operator).

The linear operator L is Lyapunov-like on K if

$$
\langle L(x), s\rangle=0 \text { for all }(x, s) \in C(K),
$$

where you will recall that

$$
C(K):=\left\{(x, s) \in K \times K^{*} \mid\langle x, s\rangle=0\right\} .
$$

Intro: LYAPUNOV-LIKE OPERATORS

The set of all Lyapunov-like operators on K is denoted by LL (K).

It turns out that

- $\mathbf{L L}(K)$ is a vector subspace, and
- $\mathbf{L L}(K)$ always contains the identity, id $_{V}$.

Intro: LYAPUNOV-LIKE OPERATORS

If $\left\{L_{1}, L_{2}\right\}$ is a basis of $\mathbf{L L}(K)$, then

$$
\begin{gathered}
(x, s) \in C(K) \\
\mathbb{\Downarrow} \\
(x, s) \in K \times K^{*} \text { and }\left\langle\operatorname{id}_{V}(x), s\right\rangle=0 \\
\mathbb{\Uparrow} \\
(x, s) \in K \times K^{*} \text { and }\left\langle L_{i}(x), s\right\rangle=0 \text { for } i=1,2
\end{gathered}
$$

Intro: Lyapunov-Like operators

The definition of Lyapunov-like is exactly what we need to split the single equation

$$
\sum_{i=1}^{2}\left\langle L_{i}(x), s\right\rangle=0
$$

into two equations

$$
\begin{aligned}
& \left\langle L_{1}(x), s\right\rangle=0 \\
& \left\langle L_{2}(x), s\right\rangle=0 .
\end{aligned}
$$

Intro: LyAPunov-LIKE OPERATORS

Example.

If K is the quadrant where $x \geq 0$ and $y \geq 0$, then

$$
\mathbf{L L}(K)=\operatorname{span}\left(\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}\right)
$$

Intro: Lyapunov-Like operators

Example.

These are the only orthogonal $x \geq 0$ and $y \geq 0$:

$$
y=\left(0, y_{2}\right)^{T} \uparrow \xrightarrow{\substack{ \\ \\x=\left(x_{1}, 0\right)^{T}}}
$$

Intro: LyAPunov-LIKE OPERATORS

Example.

It's easy to check that

$$
\begin{gathered}
\left\langle\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
y_{2}
\end{array}\right]\right\rangle=0 \\
\text { and } \\
\left\langle\left[\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
y_{2}
\end{array}\right]\right\rangle=0 \ldots
\end{gathered}
$$

Intro: LYAPUNOV-LIKE OPERATORS

Example.

$$
\begin{gathered}
\text { and } \\
\left\langle\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
y_{2}
\end{array}\right],\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]\right\rangle=0 \\
\text { and } \\
\left\langle\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
y_{2}
\end{array}\right],\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]\right\rangle=0
\end{gathered}
$$

Intro: LYAPUNOV-LIKE OPERATORS

We get $\operatorname{dim}(\mathbf{L L}(K))$ equations from $\langle x, s\rangle=0$.
The more equations, the better.
We call $\operatorname{dim}(\mathbf{L L}(K))$ the Lyapunov rank of K, and denote it by

$$
\beta(K):=\operatorname{dim}(\mathbf{L L}(K)) .
$$

Intro: LYAPUNOV-LIKE OPERATORS

Definition (good cone).
K is a "good" cone if $\beta(K) \geq \operatorname{dim}(V)$.
(We get a square system in that case.)

Part 2, SEction 5

Results: Lyapunov rank

Results: Lyapunov Rank

Theorem (Gowda and Tao, 2014).
All symmetric cones are good cones.
Symmetric means:

- self-dual
- (which implies proper)
- and "homogeneous"

Results: Lyapunov Rank

Example.

- $\beta\left(\mathbb{R}_{+}^{n}\right)=n$ in \mathbb{R}^{n}
- $\beta\left(\mathcal{L}_{+}^{n}\right)=\left(n^{2}-n+2\right) / 2$ in \mathbb{R}^{n}
- $\beta\left(\mathcal{S}_{+}^{n}\right)=n^{2}$ in \mathcal{S}^{n}
- $\beta\left(\mathcal{H}_{+}^{n}\right)=2 n^{2}-1$ in \mathcal{H}^{n}

Results: Lyapunov Rank

Corollary.

There exist non-self-dual good cones.
Proof.
$\beta\left(K_{1} \times K_{2}\right)=\beta\left(K_{1}\right)+\beta\left(K_{2}\right)$ for proper K_{1}, K_{2}.
Pick $K_{1}=\mathcal{H}_{+}^{n}$ and K_{2} asymmetric.

Results: Lyapunov Rank

Theorem (Sznajder, 2016).
There exist irreducible non-self-dual good cones.
(That is, not using the cartesian product trick.)

Results: Lyapunov Rank

Question.

How does homogeneity affect Lyapunov rank?

Guess.

Makes it bigger.

Results: LYapunov Rank

Theorem (Gowda and Tao, 2014).
If K is proper and polyhedral, then

$$
\beta(K) \leq \operatorname{dim}(V) .
$$

Results: LYapunov Rank

Theorem (Gowda and Tao, 2014).
If K is proper and polyhedral, then

$$
\begin{gathered}
L \text { is Lyapunov-like on } K \\
\Longleftrightarrow \\
L(x)=\lambda x \text { for all } x \in \operatorname{Ext}(K) .
\end{gathered}
$$

Results: LYapunov Rank

Theorem (Gowda and Tao, 2014).
If K is proper and polyhedral, then

$$
\beta(K)=1 \Longleftrightarrow K \text { is irreducible. }
$$

Reducible means "into a nontrivial direct sum."

Results: LYapunov Rank

Proposition (Orlitzky, 2017).
If K is a closed convex cone, then

$$
\beta\left(K^{*}\right)=\beta(K) .
$$

Results: LYapunov Rank

Proposition (Orlitzky, 2017).
If K is a closed convex cone, then

$$
\beta(L(K))=\beta(K)
$$

for any invertible linear operator L.

Results: LYapunov Rank

Theorem (Orlitzky, 201X).
If K is a polyhedral closed convex cone, then $\mathbf{L L}(K)$ is closed under composition.

Results: LYapunov Rank

Lemma (Orlitzky, 2017).
If $K=\operatorname{cone}\left(G_{1}\right)$ and if $K^{*}=\operatorname{cone}\left(G_{2}\right)$, then
L is Lyapunov-like on K

$$
\begin{aligned}
& \langle L(x), s\rangle=0 \text { for all } x \in G_{1} \\
& \text { and } s \in G_{2} \text { with }\langle x, s\rangle=0
\end{aligned}
$$

We can check a polyhedral cone in finite time.

Results: LYapunov Rank

Theorem (Orlitzky, 2017).
If K is a closed convex cone in V, then

$$
\begin{aligned}
\beta(K)=\beta\left(K_{S P}\right) & +\operatorname{lin}(K) \operatorname{dim}(K) \\
& +\operatorname{codim}(K) \operatorname{dim}(V) .
\end{aligned}
$$

where $K_{S P}$ is a proper subcone of K in an appropriate subspace.

Results: LYapunov Rank

The previous theorem provides a shortcut for computing the Lyapunov rank of improper cones.
sage: $\mathrm{K}=$ random_cone() ; K
12-d cone in 34-d lattice N
sage: timeit('K.lyapunov_like_basis()')
5 loops, best of 3 : 10.8 s per loop
sage: timeit('K.lyapunov_rank()')
5 loops, best of 3: 289 ms per loop

Results: LYapunov Rank

Theorem (Orlitzky, 2017).
If K is a polyhedral closed convex cone in V, then

$$
\beta(K) \neq \operatorname{dim}(V)-1 .
$$

Results: LYapunov Rank

Theorem (Orlitzky, 2017).
If K is a closed convex cone and if L is linear, then the following are equivalent:

- L is Lyapunov-like on K.
- $e^{t L} \in \operatorname{Aut}(K)$ for all $t \in \mathbb{R}$.
- $L \in \operatorname{Lie}(\operatorname{Aut}(K))$.

Results: Lyapunov Rank

Definition (copositive operator).
The linear operator L is copositive on K if

$$
\langle L(x), x\rangle \geq 0 \text { for all } x \in K
$$

The set of copositive operators on K is $\mathbf{C o P}(K)$.
Example. The PSD matrices are $\operatorname{CoP}\left(\mathbb{R}^{n}\right)$.

Results: LYapunov Rank

Theorem (Gowda, Sznajder, Tao, 2013).
If K is a proper cone, then

$$
\beta(\mathbf{C o P}(K))=\beta(K)
$$

Results: Lyapunov Rank

Definition (positive operator).
The linear operator L is positive on K if

$$
L(K) \subseteq K
$$

The set of all positive operators on K is $\pi(K)$.
Example. Nonnegative matrices are $\pi\left(\mathbb{R}_{+}^{n}\right)$.

Results: Lyapunov Rank

Theorem (Orlitzky, 201X).
If K is a proper polyhedral cone, then

$$
\beta(\pi(K))=\beta(K)^{2} .
$$

Question.
What about nonpolyhedral K ?

Results: LYapunov Rank

Theorem (Orlitzky and Gowda, 2016).
If K is a proper cone in V, then

$$
\beta(K) \leq(\operatorname{dim}(V)-1)^{2} .
$$

This is "easy" with a lemma.

Results: LYapunov Rank

Lemma (Orlitzky and Gowda, 2016).
If

- K is proper
- $H_{1}, H_{2}, \ldots, H_{N}$ are hyperplanes,
- bdy (K) is a subset of $\cup H_{i}$,
then K is polyhedral.

Results: Lyapunov Rank

Take a cross-section of a proper cone:

Results: Lyapunov Rank

ok

Results: LYapunov Rank

ok

Results: Lyapunov Rank

Results: LYapunov Rank

Results: LYapunov Rank

If there aren't any red planes:

- the planes generate a cone
- that cone is polyhedral by definition
- and it equals K (our hexagon)

Results: Lyapunov Rank

One or more red planes:

- kill one
- now there's one fewer
- use recursion

Results: Lyapunov Rank

Results: Lyapunov Rank

Results: Lyapunov Rank

Results: Lyapunov Rank

Now using convexity,

$$
K=K_{1} \cup K_{2}
$$

and the red plane doesn't hurt K_{1} or K_{2}.
So,

- the result holds for K_{1} and K_{2},
- K is polyhedral if both K_{1} and K_{2} are.

