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Intro: Convex optimization
Everything takes place in a Hilbert space V :

• V is finite-dimensional.
• V is a vector space over the real numbers.

It won’t hurt to pretend that V = Rn.
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Intro: Convex optimization
Optimization is:

• trying to find the best value of a function,
• or its least-bad value,
• or simply any value that works.
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Intro: Convex optimization
Example. Minimize a real function over [0, 1].
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Michael Orlitzky UMBC



Intro: Convex optimization
Example. Minimize a real function over [0, 1].

0 1

there it is
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Intro: Convex optimization
In other words,

minimize f (x) = a nice polynomial
subject to x ∈ [0, 1] .
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Intro: Convex optimization
Why can we solve it?

The minimum exists because,

• the function f is continuous, and
• the interval [0, 1] is closed and bounded.
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Intro: Convex optimization
We can find the minimum because,

• the function f is differentiable,
• the interval [0, 1] is convex, and
• there aren’t too many places to look:
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Intro: Convex optimization
Definition (convex set).

A set is convex if we can

• pick a point x in the set
• pick a point y in the set

and be sure that

• the line segment joining x and y is in the set
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Intro: Convex optimization
Example (convex).
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Intro: Convex optimization
Example (convex).
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Intro: Convex optimization
Example (not convex).

x

y
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Intro: Convex optimization
Question. Why convexity?

Answer (via joke).

In optimization we have only two tools,

1. Taylor series
2. Newton’s method
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Intro: Convex optimization
Often some constraints will make life difficult.

Example.

minimize f (x) = a nice polynomial
subject to x ∈ [0, 1]
and x is rational.
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Intro: Convex optimization
The constraints can even be the hardest part.

Example.

minimize f (x, y, z) = 1
subject to x, y, z ∈ [0, 1]
and x3y2z − y3 = −

√
π,

and sin (z) = y
∫ x

0
Γ (t) dt,

and · · · make it stop
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Intro: Convex optimization
It’s real easy to make up impossible problems.

Example.

minimize f (x) = whatever
subject to x ∈ [0, 1]
and x ≥ 9000.
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Intro: Convex optimization
To keep things manageable, we insist that

• the function f is a convex function, and
• we’re optimizing over a convex set.

That’s “convex optimization.”
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Intro: Cones
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Intro: Cones
Definition.

A set K is a cone if λK ⊆ K for all λ ≥ 0.
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Intro: Cones
Example (convex cone).
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Intro: Cones
Example (non-convex cone).
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Intro: Cones
Example (convex cone).
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Intro: Cones
Example (nonconvex cone).
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Intro: Cones
Definition (dual cone).

The dual cone of K is

K∗ := {y ∈ V | 〈x, y〉 ≥ 0 for all x ∈ K} .
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Intro: Cones
Dual cones generalize orthogonal complements:

• the x-axis is a convex cone in R2

• its dual cone is the y-axis
• but don’t worry about it too much
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Intro: Cones
Question. Why (dual) cones?

Answer.

Along the boundary of a convex set, the
directions you can go form a (dual) cone.
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Intro: Cones
Example (optimality conditions).

∇f
feasible moves

you
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Intro: Complementarity
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Intro: Complementarity
Example (primal linear program).

Given L, b, c; find a vector x to

minimize 〈b, x〉
subject to L (x)− c ≥ 0

x ≥ 0.
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Intro: Complementarity
Example (dual linear program).

Simultaneously, find a vector s to

maximize 〈c, s〉
subject to b− LT (s) ≥ 0

s ≥ 0.
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Intro: Complementarity
If x and s are primal and dual optimal, then
〈b, x〉 = 〈c, s〉. Thus by substitution,

〈L (x), s〉 − 〈c, s〉︸ ︷︷ ︸
≥ 0

=
〈
LT (s), x

〉
− 〈b, x〉︸ ︷︷ ︸

≤ 0

.

It follows that

〈s, L (x)− c〉 = 0 =
〈
x, LT (s)− b

〉
.
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Intro: Complementarity
As a result, we always have

〈s, L (x)− c〉 = 0 =
〈
x, LT (s)− b

〉
for optimal x and s in the linear program.

This condition is complementary slackness.
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Intro: Complementarity
Example (linear complementarity).

Given M ∈ Rn×n and q ∈ Rn, the LCP (M, q) is

to find x, s ≥ 0
such that s = M (x) + q

and 〈x, s〉 = 0.
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Intro: Complementarity
If we set

M :=
 0 −LT

L 0

 and q :=
 b

−c

 ,
then LCP (M, q) solves our linear programs.
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Intro: Complementarity
A linear complementarity problem can be
forumated over a cone K and its dual K∗:

find x ∈ K, s ∈ K∗

such that s = M (x) + q

and 〈x, s〉 = 0.
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Intro: Complementarity
Why? To solve harder problems:

• robust linear programs
• nonconvex quadratric programs
• graph max-cut

Our goal: solve cone complementarity problems
by finding all x ∈ K and s ∈ K∗ with 〈x, s〉 = 0.
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Intro: Complementarity
This technique works even if we replace the linear
operator M with a more general f :

find x ∈ K
such that f (x) ∈ K∗

and 〈x, f (x)〉 = 0.
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Intro: Complementarity
Let C (K) be the set of complementary pairs,

C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0} .

Our general complementarity problem is then to

find (x, f (x)) ∈ C (K) .
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Intro: Lyapunov-like operators
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Intro: Lyapunov-like operators
Ok, but how should we find all (x, s) with

• x ∈ K,
• s ∈ K∗, and
• 〈x, s〉 = 0?
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Intro: Lyapunov-like operators
We can write idV in terms of a basis {Li},

idV =
∑
Li.

Then

0 = 〈x, s〉 = 〈idV (x), s〉 =
∑
〈Li (x), s〉 .
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Intro: Lyapunov-like operators
. . . but so what? The equation

∑
〈Li (x), s〉 = 0

isn’t any easier to solve than 〈x, s〉 = 0.

Idea.

Define some operators that make it easier.
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Intro: Lyapunov-like operators
Definition (Lyapunov-like operator).

The linear operator L is Lyapunov-like on K if

〈L (x), s〉 = 0 for all (x, s) ∈ C (K) ,

where you will recall that

C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0} .
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Intro: Lyapunov-like operators
The set of all Lyapunov-like operators on K is
denoted by LL (K).

It turns out that

• LL (K) is a vector subspace, and
• LL (K) always contains the identity, idV .
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Intro: Lyapunov-like operators
If {L1, L2} is a basis of LL (K), then

(x, s) ∈ C (K)
m

(x, s) ∈ K ×K∗ and 〈idV (x), s〉 = 0
m

(x, s) ∈ K ×K∗ and 〈Li (x), s〉 = 0 for i = 1, 2
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Intro: Lyapunov-like operators
The definition of Lyapunov-like is exactly what
we need to split the single equation

2∑
i=1
〈Li (x), s〉 = 0

into two equations

〈L1 (x), s〉 = 0
〈L2 (x), s〉 = 0.
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Intro: Lyapunov-like operators
Example.

If K is the quadrant where x ≥ 0 and y ≥ 0, then

LL (K) = span


1 0
0 0

 ,
0 0
0 1


 .
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Intro: Lyapunov-like operators
Example.

These are the only orthogonal x ≥ 0 and y ≥ 0:

y = (0, y2)T

x = (x1, 0)T
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Intro: Lyapunov-like operators
Example.

It’s easy to check that
〈1 0

0 0

 x1
0

,
 0
y2

〉
= 0

and
〈0 0

0 1

 x1
0

,
 0
y2

〉
= 0 . . .
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Intro: Lyapunov-like operators
Example.

and
〈1 0

0 0

  0
y2

,
x1

0

〉
= 0

and
〈0 0

0 1

  0
y2

,
x1

0

〉
= 0.
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Intro: Lyapunov-like operators
We get dim (LL (K)) equations from 〈x, s〉 = 0.

The more equations, the better.

We call dim (LL (K)) the Lyapunov rank of K,
and denote it by

β (K) := dim (LL (K)) .

Michael Orlitzky UMBC



Intro: Lyapunov-like operators
Definition (good cone).

K is a “good” cone if β (K) ≥ dim (V ).

(We get a square system in that case.)
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Part 2, Section 5

Results: Lyapunov rank
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Results: Lyapunov rank
Theorem (Gowda and Tao, 2014).

All symmetric cones are good cones.

Symmetric means:

• self-dual
• (which implies proper)
• and “homogeneous”
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Results: Lyapunov rank
Example.

• β (Rn
+) = n in Rn

• β (Ln
+) = (n2 − n+ 2) /2 in Rn

• β (Sn
+) = n2 in Sn

• β (Hn
+) = 2n2 − 1 in Hn
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Results: Lyapunov rank
Corollary.

There exist non-self-dual good cones.

Proof.

β (K1 ×K2) = β (K1) + β (K2) for proper K1, K2.
Pick K1 = Hn

+ and K2 asymmetric.
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Results: Lyapunov rank
Theorem (Sznajder, 2016).

There exist irreducible non-self-dual good cones.

(That is, not using the cartesian product trick.)
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Results: Lyapunov rank
Question.

How does homogeneity affect Lyapunov rank?

Guess.

Makes it bigger.
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Results: Lyapunov rank
Theorem (Gowda and Tao, 2014).

If K is proper and polyhedral, then

β (K) ≤ dim (V ) .
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Results: Lyapunov rank
Theorem (Gowda and Tao, 2014).

If K is proper and polyhedral, then

L is Lyapunov-like on K

⇐⇒
L (x) = λx for all x ∈ Ext (K) .
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Results: Lyapunov rank
Theorem (Gowda and Tao, 2014).

If K is proper and polyhedral, then

β (K) = 1 ⇐⇒ K is irreducible.

Reducible means “into a nontrivial direct sum.”

Michael Orlitzky UMBC



Results: Lyapunov rank
Proposition (Orlitzky, 2017).

If K is a closed convex cone, then

β (K∗) = β (K) .
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Results: Lyapunov rank
Proposition (Orlitzky, 2017).

If K is a closed convex cone, then

β (L (K)) = β (K)

for any invertible linear operator L.
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Results: Lyapunov rank
Theorem (Orlitzky, 201X).

If K is a polyhedral closed convex cone, then
LL (K) is closed under composition.
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Results: Lyapunov rank
Lemma (Orlitzky, 2017).

If K = cone (G1) and if K∗ = cone (G2), then

L is Lyapunov-like on K

⇐⇒
〈L (x), s〉 = 0 for all x ∈ G1

and s ∈ G2 with 〈x, s〉 = 0.

We can check a polyhedral cone in finite time.
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Results: Lyapunov rank
Theorem (Orlitzky, 2017).

If K is a closed convex cone in V , then

β (K) = β (KSP ) + lin (K) dim (K)
+ codim (K) dim (V ) .

where KSP is a proper subcone of K in an
appropriate subspace.
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Results: Lyapunov rank
The previous theorem provides a shortcut for
computing the Lyapunov rank of improper cones.

sage: K = random_cone(); K
12-d cone in 34-d lattice N
sage: timeit(’K.lyapunov_like_basis()’)
5 loops, best of 3: 10.8 s per loop
sage: timeit(’K.lyapunov_rank()’)
5 loops, best of 3: 289 ms per loop
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Results: Lyapunov rank
Theorem (Orlitzky, 2017).

If K is a polyhedral closed convex cone in V , then

β (K) 6= dim (V )− 1.
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Results: Lyapunov rank
Theorem (Orlitzky, 2017).

If K is a closed convex cone and if L is linear,
then the following are equivalent:

• L is Lyapunov-like on K.
• etL ∈ Aut (K) for all t ∈ R.
• L ∈ Lie (Aut (K)).
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Results: Lyapunov rank
Definition (copositive operator).

The linear operator L is copositive on K if

〈L (x), x〉 ≥ 0 for all x ∈ K

The set of copositive operators on K is CoP (K).

Example. The PSD matrices are CoP (Rn).
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Results: Lyapunov rank
Theorem (Gowda, Sznajder, Tao, 2013).

If K is a proper cone, then

β (CoP (K)) = β (K) .
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Results: Lyapunov rank
Definition (positive operator).

The linear operator L is positive on K if

L (K) ⊆ K.

The set of all positive operators on K is π (K).

Example. Nonnegative matrices are π (Rn
+).
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Results: Lyapunov rank
Theorem (Orlitzky, 201X).

If K is a proper polyhedral cone, then

β (π (K)) = β (K)2 .

Question.

What about nonpolyhedral K?
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Results: Lyapunov rank
Theorem (Orlitzky and Gowda, 2016).

If K is a proper cone in V , then

β (K) ≤ (dim (V )− 1)2 .

This is “easy” with a lemma.
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Results: Lyapunov rank
Lemma (Orlitzky and Gowda, 2016).

If

• K is proper
• H1, H2, . . . , HN are hyperplanes,
• bdy (K) is a subset of ⋃

Hi,

then K is polyhedral.
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Results: Lyapunov rank
Take a cross-section of a proper cone:
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Results: Lyapunov rank

ok
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Results: Lyapunov rank

ok
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Results: Lyapunov rank
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Results: Lyapunov rank
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Results: Lyapunov rank
If there aren’t any red planes:

• the planes generate a cone
• that cone is polyhedral by definition
• and it equals K (our hexagon)
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Results: Lyapunov rank
One or more red planes:

• kill one
• now there’s one fewer
• use recursion
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Results: Lyapunov rank

uh
oh
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Results: Lyapunov rank

K1
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Results: Lyapunov rank

K2
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Results: Lyapunov rank
Now using convexity,

K = K1 ∪K2,

and the red plane doesn’t hurt K1 or K2.

So,

• the result holds for K1 and K2,
• K is polyhedral if both K1 and K2 are.
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