Lyapunov rank of polyhedral positive operators

Michael Orlitzky

Part 1, Section 1

Background: Cones

Background: Cones

This story is set in a finite-dimensional real Hilbert space V. You can pretend that V is \mathbb{R}^{n}.

If W is another such space, then the set of all linear operators from V to W is $\mathcal{B}(V, W)$.

When $V=W$, we simply write $\mathcal{B}(V)$.

Background: Cones

Definition.

A nonempty subset K of V is a cone if $\lambda K=K$ for all $\lambda>0$. A closed convex cone is a cone that is closed and convex as a subset of V.

You might also see this condition with $\lambda \geq 0$. They're the same thing for closed cones.

Background: Cones

Closed convex cones can contain subspaces or fail to have interior: \mathbb{R}^{2} is a closed convex cone in \mathbb{R}^{3}.

Definition.
A full-dimensional closed convex cone that contains no subspaces is called proper.

Background: Cones

The conic hull of a nonempty subset X of V is

$$
\operatorname{cone}(X):=\left\{\sum_{i=1}^{m} \alpha_{i} x_{i} \mid x_{i} \in X, \alpha_{i} \geq 0, m \in \mathbb{N}\right\}
$$

The conic hull is like a convex hull where we extend every point "up" as well as "in."

Background: Cones

Every proper cone K has a set of extreme directions Ext (K) such that

$$
K=\operatorname{cone}(\operatorname{Ext}(K)) .
$$

Ext (K) is the smallest set with that property.
Definition.

If $\operatorname{Ext}(K)$ is finite, then K is polyhedral.

Background: Cones

Example.

The nonnegative orthant \mathbb{R}_{+}^{3} in \mathbb{R}^{3} has the standard basis as its extreme directions,

$$
\mathbb{R}_{+}^{3}=\operatorname{cone}\left(\left\{e_{1}, e_{2}, e_{3}\right\}\right) .
$$

$\operatorname{Ext}\left(\mathbb{R}_{+}^{3}\right)$ is finite, so \mathbb{R}_{+}^{3} is polyhedral.

Background: Cones

Example.

Any proper cone in \mathbb{R}^{2} is polyhedral.
Start with two extreme directions in the plane and try to add a third. If it lies in the cone, it is redundant (not extreme). If it lies outside of the cone, then it renders one of the other two directions redundant.

Background: Cones

Example.

The ice-cream cone in \mathbb{R}^{3} is not polyhedral.
Clearly, it is the conic hull of its boundary rays; however, if you attempt to remove any boundary ray from the conic hull, a part of the cone will become flat (no longer an ice-cream cone).

Background: Cones

Definition.

If K is a subset of V, then the dual cone of K is

$$
K^{*}:=\{y \in V \mid \forall x \in K,\langle x, y\rangle \geq 0\} .
$$

The dual K^{*} is always a closed convex cone. If K is a closed convex cone, then the duality is faithful and $\left(K^{*}\right)^{*}=K$.

Background: Cones

Example.

The nonnegative orthant \mathbb{R}_{+}^{n} is self-dual. Note that any element s in its dual must have $\left\langle s, e_{i}\right\rangle=s_{i} \geq 0$ for every basis vector e_{i}.

If the entries of s are all nonnegative, then $s \in \mathbb{R}_{+}^{n}$. The converse is easy.

Background: Cones

Example. $K=\operatorname{cone}\left(\left\{(3,2)^{T},(3,-2)^{T}\right\}\right)$.

Background: Cones

Example. The ice-cream cone is self-dual.
This is a special case of the following result.
Theorem (Güler [4], 1996).
A cone is symmetric (self-dual and homogeneous)
if and only if it is the cone of squares in some
Euclidean Jordan Algebra.

Background: Cones

Proposition.

A closed convex cone is polyhedral if and only if its dual is polyhedral.

Intuition:

1. Only $\operatorname{Ext}(K)$ matters in the definition of K^{*}.
2. Every $x \in \operatorname{Ext}(K)$ defines a half-space.
3. K^{*} is the intersection of half-spaces.

Background: Cones

From now on, every cone will be both proper and polyhedral.
(That's the simplest possible case.)
We're interested in a quantity called the Lyapunov rank of a proper polyhedral cone. A few examples motivate its definition.

Part 1, Section 2

Background: Lyapunov rank

Background: Lyapunov rank

Lyapunov rank was introduced in Bilinear optimality constraints for the cone of positive polynomials by G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh [6] (2011).

The authors intended to use it to show that the cone of positive polynomials was, in a sense, bad.

Oh, and they called it bilinearity rank.

Background: Lyapunov rank

The linear complementarity problem LCP (q, M).
Given: $q \in \mathbb{R}^{n}$ and $M \in \mathbb{R}^{n \times n}$.
Asked: find an $x \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
x & \geq 0 \\
q+M x & \geq 0 \\
x^{T}(q+M x) & =0 .
\end{aligned}
$$

Background: Lyapunov rank

If $s:=q+M x$ and $K:=\mathbb{R}_{+}^{n}=K^{*}$, then the
$\mathrm{LCP}(q, M)$ asks for a pair (x, s) such that

$$
x \in K, \quad s \in K^{*}, \quad\langle x, s\rangle=0
$$

Note that $\langle x, s\rangle=0$ is necessary for any solution.

Background: Lyapunov rank

The primal linear programming problem. Given:

- An objective function $\langle b, \cdot\rangle$ where $b \in \mathbb{R}^{n}$.
- Some linear constraints $L \in \mathbb{R}^{n \times n}$.
- A shift $c \in \mathbb{R}^{n}$ for those linear constraints.

We are asked to
minimize $\langle b, x\rangle$
subject to $L(x) \geq c$

$$
x \geq 0
$$

Background: Lyapunov rank

The dual linear programming problem asks us to

$$
\begin{aligned}
\operatorname{maximize} & \langle c, s\rangle \\
\text { subject to } L^{*}(s) & \leq b \\
s & \geq 0 .
\end{aligned}
$$

If \bar{x} solves the primal problem and \bar{s} solves the dual problem, then $\langle\bar{x}, \bar{s}\rangle=0$. This is called "complementary slackness."

Background: Lyapunov rank

So, being able to solve the equation $\langle x, s\rangle=0$ helps us solve optimization problems.

Over the cone $K=\mathbb{R}_{+}^{n}$, something nice happens.
If $x \in K$ and $s \in K^{*}=K$, then

$$
\langle x, s\rangle=0 \Longleftrightarrow x_{i} s_{i}=0 \text { for all } i .
$$

Background: Lyapunov rank

It's a lot easier to solve n equations $x_{i} s_{i}=0$ than it is to solve the single equation $\langle x, s\rangle=0$.

Can the same thing happen over other cones?
We can always write the identity operator in terms of some others, say, $\mathrm{id}_{V}=L_{1}+L_{2}$.

Background: Lyapunov rank

Then,

$$
\langle x, s\rangle=0
$$

$$
\begin{gathered}
\left\langle\operatorname{id}_{V}(x), s\right\rangle=0 \\
\Longleftrightarrow \\
\left\langle L_{1}(x), s\right\rangle+\left\langle L_{2}(x), s\right\rangle=0 .
\end{gathered}
$$

Background: Lyapunov rank

This won't split into two equations, but we can simply require that it does.

Definition.
$L \in \mathcal{B}(V)$ is Lyapunov-like on K if $\langle L(x), s\rangle=0$ for all orthogonal $x \in K$ and $s \in K^{*}$.

Background: Lyapunov Rank

If L_{1} and L_{2} are Lyapunov-like, then that's exactly what we need to split

$$
\left\langle L_{1}(x), s\right\rangle+\left\langle L_{2}(x), s\right\rangle=0
$$

into

$$
\begin{aligned}
& \left\langle L_{1}(x), s\right\rangle=0 \\
& \left\langle L_{2}(x), s\right\rangle=0 .
\end{aligned}
$$

Background: Lyapunov rank

But how many equations can we get?
The set of all Lyapunov-like operators on K turns out to be a vector space $\mathbf{L L}(K)$ whose dimension is the number of equations we can obtain.

Definition. The Lyapunov rank of K is

$$
\beta(K):=\operatorname{dim}(\mathbf{L L}(K)) .
$$

(Mnemonic: "beta" is for "bilinearity.")

Background: LYAPunov Rank

Example.

The Lyapunov rank of \mathbb{R}_{+}^{n} is n because we can get n equations from $\langle x, s\rangle=0$ when $x, s \in \mathbb{R}_{+}^{n}$:

$$
\begin{gathered}
x_{1} s_{1}=0 \\
x_{2} s_{2}=0 \\
\vdots \\
x_{n} s_{n}=0
\end{gathered}
$$

Background: LYAPunov Rank

Example (Gowda and Tao [3], 2013).
The Lyapunov rank of the ice-cream cone in \mathbb{R}^{n} is $\left(n^{2}-n+2\right) / 2$, much larger than n.

Background: LYAPunov Rank

Example (Gowda and Tao [3], 2013).
The cone \mathcal{S}_{+}^{n} of symmetric positive semidefinite $n \times n$ matrices has Lyapunov rank n^{2}.

Note: the elements of \mathcal{S}_{+}^{n} live in a space of dimension $\left(n^{2}+n\right) / 2$ which is less than n^{2}.

Background: LYAPunov Rank

Example.

The positive operators on a proper polyhedral cone K, denoted by $\pi(K)$, have Lyapunov rank

$$
\beta(\pi(K))=\beta(K)^{2} .
$$

Just kidding, I'm going to prove this.

Background: LYAPunov Rank

Theorem (Rudolf et al. [6], 2011).
The Lyapunov rank of a proper cone is,

- invariant under invertible linear operators
- additive on cartesian products
- the same as the Lyapunov rank of its dual.

Background: LYapunov Rank

The first two items show that

$$
\beta(K \oplus H)=\beta(K)+\beta(H)
$$

for proper cones K and H.
This follows since any direct sum can be sent to a cartesian product by an invertible linear operator.

Background: LYAPunov Rank

Definition.

A proper cone is (ir)reducible if it is (not) a nontrivial direct sum of proper cones.

Theorem (Gowda and Tao [3], 2013).
The Lyapunov rank of any irreducible proper polyhedral cone is one.

Part 2, Section 3

$$
\pi(K): D e f i n i t i o n
$$

$\pi(K):$ Definition
Every closed convex cone K orders its ambient vector space V by

$$
x \succcurlyeq y \Longleftrightarrow x-y \in K
$$

If K is proper, then this ordering is "nice," it respects the linear structure of V.

$\pi(K):$ Definition

In any ordered vector space (V, \succcurlyeq), an element $x \in V$ is called a positive element if $x \succcurlyeq 0$.

A positive operator on V is an $L \in \mathcal{B}(V)$ such that $L(x) \succcurlyeq 0$ for all $x \succcurlyeq 0$.

Positive operators preserve positivity.
(The term positive is wrong, but standard.)
$\pi(K):$ Definition
Notice that with a proper cone ordering,

- x is a positive element $\Longleftrightarrow x \in K$.
- L is a positive operator $\Longleftrightarrow L(K) \subseteq K$.

By example, we define positive operators on K,

$$
\pi(K):=\{L \in \mathcal{B}(V) \mid L(K) \subseteq K\}
$$

$\pi(K):$ Definition
Example (Perron-Frobenius).
Let $K=\mathbb{R}_{+}^{n}$, the nonnegative orthant in \mathbb{R}^{n}. Then the positive operators on K are the real $n \times n$ matrices having nonnegative elements.

Let $L \in \pi(K)$ and $\rho(L)$ be its spectral radius.
The Perron-Frobenius theorem states that
$L(x)=\rho(L) x$ for some $x \succcurlyeq 0$.

$\pi(K):$ Definition

In fact, we can extend the definition of a positive operator to two cones $K \subseteq V$ and $H \subseteq W$,

$$
\pi(K, H):=\{L \in \mathcal{B}(V, W) \mid L(K) \subseteq H\}
$$

We will need the general version to prove our result for the simpler $\pi(K)$ case.

Part 2, Section 4

$\pi(K):$ Lyapunov rank
$\pi(K):$ LYAPUNOV RANK
Goal: compute the Lyapunov rank $\beta(\pi(K))$.
Note: this goal makes sense.
Proposition (Schneider and Vidyasagar [7], 1970).

If K and H are proper polyhedral cones, then $\pi(K, H)$ is too.
$\pi(K):$ LYAPUNOV RANK
What we'd like to do:

1. Decompose $\pi(K, H)$ into a direct sum of irreducible cones.
2. Use the fact that Lyapunov rank is additive on a direct sum.
3. Conclude that $\beta(\pi(K, H))=\beta(K) \beta(H)$ is one in the base case.
4. Hand-wave induction.
$\pi(K):$ LYAPUNOV RANK
Here's what was known towards that goal.
Proposition (Barker and Loewy [1], 1975).
K is reducible if and only if $\pi(K)$ is reducible.
Proposition (Haynsworth, Fiedler, and Pták [5], 1976).

If K or H is reducible, then $\pi(K, H)$ is reducible.
$\pi(K):$ Lyapunov rank
And here's what's missing:
Theorem.
$\pi(K, H)$ is reducible if and only if either K or H is reducible.
(The converse of Haynsworth, Fiedler, and Pták.)
$\pi(K):$ Lyapunov rank
Proof.

Copy the proof of Barker and Loewy, who proved the result for $H=K$, line-for-line. Then change K^{*} to H^{*} everywhere.

Now, when K and H are irreducible, we know that $\pi(K, H)$ is too.
$\pi(K):$ LYAPUNOV RANK
Recall: the Lyapunov rank of a proper polyhedral irreducible cone is one. So suppose that K and H are irreducible. Then,

$$
\beta(K) \beta(H)=1 .
$$

For the same reason, $\beta(\pi(K, H))=1$. Thus

$$
\beta(\pi(K, H))=\beta(K) \beta(H)
$$

when K and H are irreducible.
$\pi(K):$ Lyapunov rank
For the general case, suppose $K=K_{1} \oplus K_{2}$ and $H=H_{1} \oplus H_{2}$ are direct sums of irreducible cones.
Lyapunov rank is additive on a direct sum, so

$$
\begin{aligned}
\beta(K) \beta(H) & =\beta\left(K_{1}\right) \beta\left(H_{1}\right) \\
& +\beta\left(K_{1}\right) \beta\left(H_{2}\right) \\
& +\beta\left(K_{2}\right) \beta\left(H_{1}\right) \\
& +\beta\left(K_{2}\right) \beta\left(H_{2}\right) \\
& =4 .
\end{aligned}
$$

$\pi(K):$ Lyapunov rank
What about $\pi(K, H)$ in this case?
There exist invertible linear A and B such that

$$
\begin{aligned}
& A(K)=K_{1} \times K_{2} \\
& B(H)=H_{1} \times H_{2}
\end{aligned}
$$

Lyapunov rank is invariant under invertible linear operators, so the extra A, B won't matter.
$\pi(K):$ Lyapunov rank

It turns out that

$$
\pi(A(K), B(H))=B \circ \pi(K, H) \circ A^{-1} .
$$

But, $X \mapsto B X A^{-1}$ is an invertible linear operator, so that won't matter either.
$\pi(K):$ Lyapunov rank
Since our maps A and B won't matter, throw them away for simplicity, and pretend that

$$
\begin{aligned}
K & =K_{1} \times K_{2} \\
H & =H_{1} \times H_{2}
\end{aligned}
$$

Now what is $\pi(K, H)$?

$\pi(K):$ Lyapunov rank

If $V_{i}:=\operatorname{span}\left(K_{i}\right)$ and $W_{i}:=\operatorname{span}\left(H_{i}\right)$,

$$
\begin{gathered}
\pi(K, H) \\
\subseteq \\
\left\{\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \\
\\
\\
\\
\\
\left.\hline \begin{array}{ll}
A \in \mathcal{B}\left(V_{1}, W_{1}\right) \\
C \in \mathcal{B}\left(V_{2}, W_{1}\right) \\
D \in \mathcal{B}\left(V_{1}, W_{2}, W_{2}\right)
\end{array}\right\} .
\end{gathered}
$$

$\pi(K):$ Lyapunov rank
It's easy to check that for $\pi(K, H)$,

$$
\begin{aligned}
& A \in \pi\left(K_{1}, H_{1}\right) \\
& B \in \pi\left(K_{2}, H_{1}\right) \\
& C \in \pi\left(K_{1}, H_{2}\right) \\
& D \in \pi\left(K_{2}, H_{2}\right) .
\end{aligned}
$$

If any of those fail, the same counterexample shows that the whole thing isn't in $\pi(K, H)$.

$\pi(K):$ LYAPUNOV RANK

For example, the space of 2×2 real matrices is isomorphic to $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$. Likewise,

$$
\begin{aligned}
\pi(K, H) & \cong \pi\left(K_{1}, H_{1}\right) \\
& \times \pi\left(K_{2}, H_{1}\right) \\
& \times \pi\left(K_{1}, H_{2}\right) \\
& \times \pi\left(K_{2}, H_{2}\right) .
\end{aligned}
$$

$\pi(K):$ LYAPUNOV RANK
Each factor $\pi\left(K_{j}, H_{i}\right)$ is irreducible, because K_{j} and H_{i} are. The additivity of Lyapunov rank therefore gives,

$$
\beta(\pi(K, H))=1+1+1+1=\beta(K) \beta(H) .
$$

$\pi(K):$ LYAPUNOV RANK
If it works with two factors, it works for more:
The number of terms in $\beta(K) \beta(H)$ is equal to the number of blocks possessed by a block-form operator in $\pi(K, H)$.

Each term/block contributes one to the Lyapunov rank.
$\pi(K):$ LYAPUNOV RANK
Theorem.
If K and H are proper polyhedral cones, then $\beta(\pi(K, H))=\beta(K) \beta(H)$.

Corollary.
When $H=K$, we have $\beta(\pi(K))=\beta(K)^{2}$.

Part 2, SEction 5

$\pi(K):$ Lyapunov-like operators
$\pi(K):$ LYAPUNOV-LIKE OPERATORS

Definition.

If $x, s \in V$, we define $s \otimes x$ to be the linear map $t \mapsto\langle x, t\rangle s$. That is,

$$
(s \otimes x)(t):=\langle x, t\rangle s
$$

In finite dimensions, $s \otimes x$ can be thought of as the matrix $s x^{T}$.
$\pi(K):$ LYAPUNOV-LIKE OPERATORS
For subsets $X, S \subseteq V$ we will write

$$
S \otimes X:=\{s \otimes x \mid s \in S, x \in X\}
$$

This is simply Minkowski notation.
It is known that $\operatorname{dim}(S \otimes X)=\operatorname{dim}(S) \operatorname{dim}(X)$.
$\pi(K):$ LYAPUNOV-LIKE OPERATORS
Proposition (Berman and Gaiha [2], 1972).
If K and H are proper polyhedral cones, then,

$$
\pi(K, H)^{*}=\operatorname{cone}\left(H^{*} \otimes K\right) .
$$

For polyhedral cones, it follows that

$$
\operatorname{Ext}\left(\pi(K, H)^{*}\right)=\operatorname{Ext}\left(H^{*}\right) \otimes \operatorname{Ext}(K) .
$$

$\pi(K):$ LYAPUNOV-LIKE OPERATORS

Recall that the Lyapunov rank of a cone's dual is the same as that of the original cone. Thus,

$$
\beta\left(\pi(K, H)^{*}\right)=\beta(K) \beta(H) .
$$

We're going to conjure up some Lyapunov-like operators on $\pi(K, H)^{*}$, and this equation tells us when to quit.
$\pi(K):$ LYAPUNOV-LIKE OPERATORS
Theorem (Gowda and Tao [3], 2013).
If K is a proper polyhedral cone, then L is Lyapunov-like on K if and only if every element of $\operatorname{Ext}(K)$ is an eigenvector of L.

Since we know $\operatorname{Ext}\left(\pi(K, H)^{*}\right)$, its Lyapunov-like operators are now within reach.

$\pi(K):$ LYAPUNOV-LIKE OPERATORS

The elements of $\operatorname{Ext}\left(\pi(K, H)^{*}\right)$ look like $s \otimes x$ where $x \in \operatorname{Ext}(K)$ and $s \in \operatorname{Ext}\left(H^{*}\right)$.

Consider the following operator on such a thing:

$$
[M \odot L](s \otimes x):=M(s) \otimes L(x) \cong(M s)(L x)^{T} .
$$

This is the Kronecker product of M and L.
$\pi(K):$ LYAPUNOV-LIKE OPERATORS
The Kronecker product is another type of tensor product, but the symbol \otimes is worn out.

However, $\operatorname{dim}(\mathbf{M} \odot \mathbf{L})=\operatorname{dim}(\mathbf{M}) \operatorname{dim}(\mathbf{L})$, since that was true of sets of tensor products.
$\pi(K):$ LYAPUNOV-LIKE OPERATORS
Proposition.
Let K and H be proper polyhedral cones.
If L is Lyapunov-like on K and M is
Lyapunov-like on H^{*}, then $M \odot L$ is
Lyapunov-like on $\pi(K, H)^{*}$.
$\pi(K):$ LYAPUNOV-LIKE OPERATORS

Proof.

Let $s \otimes x \in \operatorname{Ext}\left(\pi(K, H)^{*}\right)$ be arbitrary, and show that it's an eigenvector of $M \odot L$.

We have $x \in \operatorname{Ext}(K)$ and $s \in \operatorname{Ext}\left(H^{*}\right)$, so x is an eigenvector of L and s is an eigenvector of M. Thus,

$$
M(s) \otimes L(x)=\lambda_{1} \lambda_{2}(s \otimes x) .
$$

$\pi(K):$ LYAPUNOV-LIKE OPERATORS
Now consider the space of all such operators,

$$
\operatorname{span}\left(\mathbf{L} \mathbf{L}\left(H^{*}\right) \odot \mathbf{L} \mathbf{L}(K)\right) .
$$

This has dimension $\beta(K) \beta(H)$, which we now know to be the Lyapunov rank of $\pi(K, H)^{*}$. And, they're all Lyapunov-like on $\pi(K, H)^{*}$.

It follows that the two spaces are equal.
$\pi(K):$ LYAPUNOV-LIKE OPERATORS
We're almost there, we need one more result.
Proposition (Rudolf et al. [6], 2011).
L is Lyapunov-like on K if and only if its adjoint L^{*} is Lyapunov-like on the dual K^{*}.
$\pi(K):$ LYAPUNOV-LIKE OPERATORS
Theorem.
If K and H are proper polyhedral cones, then

$$
\mathbf{L L}(\pi(K, H))=\operatorname{span}\left(\mathbf{L L}(H) \odot \mathbf{L L}\left(K^{*}\right)\right) .
$$

Proof.
Use the result for $\pi(K, H)^{*}$ and take duals/adjoints on both sides.

$\pi(K):$ LYAPUNOV-LIKE OPERATORS

Corollary.
If K is a proper polyhedral cone, then

$$
\mathbf{L} \mathbf{L}(\pi(K))=\operatorname{span}\left(\mathbf{L} \mathbf{L}(K) \odot \mathbf{L} \mathbf{L}\left(K^{*}\right)\right) .
$$

References

[1] G. P. Barker and R. Loewy.
The structure of cones of matrices.
Linear Algebra and its Applications, 12:87-94, 1975.
[2] A. Berman and P. Gaiha.
A generalization of irreducible monotonicity. Linear Algebra and its Applications, 5:29-38, 1972.
[3] M. S. Gowda and J. Tao.
On the bilinearity rank of a proper cone and Lyapunov-like transformations.
Mathematical Programming, 147:155-170, 2014.
[4] O. Güler.
Barrier functions in interior point methods.
Mathematics of Operations Research, 21:860-885, 1996.

References

[5] E. Haynsworth, M. Fiedler, and V. Pták.
Extreme operators on polyhedral cones. Linear Algebra and its Applications, 13:163-172, 1976.
[6] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh. Bilinear optimality constraints for the cone of positive polynomials.
Mathematical Programming, 129:5-31, 2011.
[7] H. Schneider and M. Vidyasagar. Cross-positive matrices.
SIAM Journal on Numerical Analysis, 7:508-519, 1970.

