Lyapunov rank of polyhedral positive operators

Michael Orlitzky

PART 1, SECTION 1

Background: Cones

This story is set in a finite-dimensional real Hilbert space V. You can pretend that V is \mathbb{R}^n .

If W is another such space, then the set of all linear operators from V to W is $\mathcal{B}(V, W)$.

When V = W, we simply write $\mathcal{B}(V)$.

Definition.

A nonempty subset K of V is a cone if $\lambda K = K$ for all $\lambda > 0$. A closed convex cone is a cone that is closed and convex as a subset of V.

You might also see this condition with $\lambda \geq 0$. They're the same thing for closed cones.

Closed convex cones can contain subspaces or fail to have interior: \mathbb{R}^2 is a closed convex cone in \mathbb{R}^3 .

Definition.

A full-dimensional closed convex cone that contains no subspaces is called *proper*.

The *conic hull* of a nonempty subset X of V is

cone
$$(X) \coloneqq \left\{ \sum_{i=1}^{m} \alpha_i x_i \mid x_i \in X, \ \alpha_i \ge 0, \ m \in \mathbb{N} \right\}.$$

The conic hull is like a convex hull where we extend every point "up" as well as "in."

Every proper cone K has a set of *extreme* directions Ext (K) such that

 $K = \operatorname{cone}\left(\operatorname{Ext}\left(K\right)\right).$

 $\operatorname{Ext}(K)$ is the smallest set with that property.

Definition.

If Ext(K) is finite, then K is *polyhedral*.

Example.

The nonnegative orthant \mathbb{R}^3_+ in \mathbb{R}^3 has the standard basis as its extreme directions,

$$\mathbb{R}^3_+ = \operatorname{cone}(\{e_1, e_2, e_3\}).$$

Ext (\mathbb{R}^3_+) is finite, so \mathbb{R}^3_+ is polyhedral.

Example.

Any proper cone in \mathbb{R}^2 is polyhedral.

Start with two extreme directions in the plane and try to add a third. If it lies in the cone, it is redundant (not extreme). If it lies outside of the cone, then it renders one of the other two directions redundant.

Example.

The ice-cream cone in \mathbb{R}^3 is not polyhedral.

Clearly, it is the conic hull of its boundary rays; however, if you attempt to remove any boundary ray from the conic hull, a part of the cone will become flat (no longer an ice-cream cone).

Definition.

If K is a subset of V, then the *dual cone* of K is

$$K^* \coloneqq \{ y \in V \mid \forall x \in K, \ \langle x, y \rangle \ge 0 \}.$$

The dual K^* is always a closed convex cone. If K is a closed convex cone, then the duality is faithful and $(K^*)^* = K$.

Example.

The nonnegative orthant \mathbb{R}^n_+ is self-dual. Note that any element s in its dual must have $\langle s, e_i \rangle = s_i \ge 0$ for every basis vector e_i .

If the entries of s are all nonnegative, then $s \in \mathbb{R}^n_+$. The converse is easy.

Example.
$$K = \operatorname{cone}\left(\left\{ (3, 2)^T, (3, -2)^T \right\} \right).$$

Example. The ice-cream cone is self-dual.

This is a special case of the following result.

Theorem (Güler [4], 1996).

A cone is symmetric (self-dual and *homogeneous*) if and only if it is the cone of squares in some Euclidean Jordan Algebra.

Proposition.

A closed convex cone is polyhedral if and only if its dual is polyhedral.

Intuition:

- 1. Only Ext(K) matters in the definition of K^* .
- 2. Every $x \in \text{Ext}(K)$ defines a half-space.
- 3. K^* is the intersection of half-spaces.

From now on, every cone will be both proper and polyhedral.

(That's the simplest possible case.)

We're interested in a quantity called the *Lyapunov rank* of a proper polyhedral cone. A few examples motivate its definition.

PART 1, SECTION 2

Background: Lyapunov rank

Lyapunov rank was introduced in *Bilinear* optimality constraints for the cone of positive polynomials by G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh [6] (2011).

The authors intended to use it to show that the cone of positive polynomials was, in a sense, bad.

Oh, and they called it *bilinearity rank*.

The linear complementarity problem LCP (q, M).

Given: $q \in \mathbb{R}^n$ and $M \in \mathbb{R}^{n \times n}$.

Asked: find an $x \in \mathbb{R}^n$ such that

 $x \ge 0$ $q + Mx \ge 0$ $x^{T} (q + Mx) = 0.$

If s := q + Mx and $K := \mathbb{R}^n_+ = K^*$, then the LCP (q, M) asks for a pair (x, s) such that

$$x \in K, s \in K^*, \langle x, s \rangle = 0.$$

Note that $\langle x, s \rangle = 0$ is necessary for any solution.

The primal linear programming problem. Given:

- An objective function $\langle b, \cdot \rangle$ where $b \in \mathbb{R}^n$.
- Some linear constraints $L \in \mathbb{R}^{n \times n}$.
- A shift $c \in \mathbb{R}^n$ for those linear constraints.

We are asked to

minimize $\langle b, x \rangle$ subject to $L(x) \ge c$ $x \ge 0.$

The dual linear programming problem asks us to

$$\begin{array}{ll} \text{maximize} & \langle c, s \rangle \\ \text{subject to } L^*(s) \leq b \\ & s \geq 0. \end{array}$$

If \bar{x} solves the primal problem and \bar{s} solves the dual problem, then $\langle \bar{x}, \bar{s} \rangle = 0$. This is called "complementary slackness."

So, being able to solve the equation $\langle x, s \rangle = 0$ helps us solve optimization problems.

Over the cone $K = \mathbb{R}^n_+$, something nice happens.

If $x \in K$ and $s \in K^* = K$, then

$$\langle x, s \rangle = 0 \iff x_i s_i = 0 \text{ for all } i.$$

It's a lot easier to solve *n* equations $x_i s_i = 0$ than it is to solve the single equation $\langle x, s \rangle = 0$.

Can the same thing happen over other cones?

We can always write the identity operator in terms of some others, say, $id_V = L_1 + L_2$.

Then,

$$\langle x, s \rangle = 0 \iff \\ \langle \operatorname{id}_{V}(x), s \rangle = 0 \\ \iff \\ \langle L_{1}(x), s \rangle + \langle L_{2}(x), s \rangle = 0.$$

This won't split into two equations, but we can simply require that it does.

Definition.

 $L \in \mathcal{B}(V)$ is Lyapunov-like on K if $\langle L(x), s \rangle = 0$ for all orthogonal $x \in K$ and $s \in K^*$.

If L_1 and L_2 are Lyapunov-like, then that's exactly what we need to split

$$\langle L_1(x), s \rangle + \langle L_2(x), s \rangle = 0$$

into

$$\langle L_1(x), s \rangle = 0$$

 $\langle L_2(x), s \rangle = 0.$

But how many equations can we get?

The set of all Lyapunov-like operators on K turns out to be a vector space $\mathbf{LL}(K)$ whose dimension is the number of equations we can obtain.

Definition. The Lyapunov rank of K is

 $\beta(K) \coloneqq \dim(\mathbf{LL}(K)).$

(Mnemonic: "beta" is for "bilinearity.")

Example.

The Lyapunov rank of \mathbb{R}^n_+ is *n* because we can get *n* equations from $\langle x, s \rangle = 0$ when $x, s \in \mathbb{R}^n_+$:

$$x_1 s_1 = 0$$
$$x_2 s_2 = 0$$
$$\vdots$$
$$x_n s_n = 0.$$

Example (Gowda and Tao [3], 2013).

The Lyapunov rank of the ice-cream cone in \mathbb{R}^n is $(n^2 - n + 2)/2$, much larger than n.

Example (Gowda and Tao [3], 2013).

The cone S^n_+ of symmetric positive semidefinite $n \times n$ matrices has Lyapunov rank n^2 .

Note: the elements of S^n_+ live in a space of dimension $(n^2 + n)/2$ which is less than n^2 .

Example.

The positive operators on a proper polyhedral cone K, denoted by $\pi(K)$, have Lyapunov rank

$$\beta\left(\pi\left(K\right)\right) = \beta\left(K\right)^{2}.$$

Just kidding, I'm going to prove this.

Theorem (Rudolf et al. [6], 2011).

The Lyapunov rank of a proper cone is,

- invariant under invertible linear operators
- additive on cartesian products
- the same as the Lyapunov rank of its dual.

The first two items show that

$$\beta\left(K\oplus H\right)=\beta\left(K\right)+\beta\left(H\right)$$

for proper cones K and H.

This follows since any direct sum can be sent to a cartesian product by an invertible linear operator.

Definition.

A proper cone is *(ir)reducible* if it is (not) a nontrivial direct sum of proper cones.

Theorem (Gowda and Tao [3], 2013).

The Lyapunov rank of any irreducible proper polyhedral cone is one.

PART 2, SECTION 3

$\pi(K)$: Definition
$\pi(K)$: Definition

Every closed convex cone K orders its ambient vector space V by

$$x \succcurlyeq y \iff x - y \in K.$$

If K is proper, then this ordering is "nice," it respects the linear structure of V.

$\pi(K)$: Definition

In any ordered vector space (V, \succcurlyeq) , an element $x \in V$ is called a *positive element* if $x \succcurlyeq 0$.

A positive operator on V is an $L \in \mathcal{B}(V)$ such that $L(x) \succeq 0$ for all $x \succeq 0$.

Positive operators preserve positivity.

(The term *positive* is wrong, but standard.)

$\pi(K)$: Definition

Notice that with a proper cone ordering,

- x is a positive element $\iff x \in K$.
- L is a positive operator $\iff L(K) \subseteq K$.

By example, we define positive operators on K,

$$\pi\left(K\right) \coloneqq \left\{L \in \mathcal{B}\left(V\right) \mid L\left(K\right) \subseteq K\right\}.$$

Example (Perron-Frobenius).

Let $K = \mathbb{R}^n_+$, the nonnegative orthant in \mathbb{R}^n . Then the positive operators on K are the real $n \times n$ matrices having nonnegative elements.

Let $L \in \pi(K)$ and $\rho(L)$ be its spectral radius. The Perron-Frobenius theorem states that $L(x) = \rho(L) x$ for some $x \succeq 0$.

$\pi\left(K ight)$: Definition

In fact, we can extend the definition of a positive operator to two cones $K \subseteq V$ and $H \subseteq W$,

$$\pi(K, H) \coloneqq \{L \in \mathcal{B}(V, W) \mid L(K) \subseteq H\}.$$

We will need the general version to prove our result for the simpler $\pi(K)$ case.

PART 2, SECTION 4

$\pi\left(K ight)$: Lyapunov rank

Goal: compute the Lyapunov rank $\beta(\pi(K))$.

Note: this goal makes sense.

Proposition (Schneider and Vidyasagar [7], 1970).

If K and H are proper polyhedral cones, then $\pi(K, H)$ is too.

What we'd like to do:

- 1. Decompose $\pi(K, H)$ into a direct sum of irreducible cones.
- 2. Use the fact that Lyapunov rank is additive on a direct sum.
- 3. Conclude that $\beta(\pi(K, H)) = \beta(K)\beta(H)$ is one in the base case.
- 4. Hand-wave induction.

Here's what was known towards that goal.

Proposition (Barker and Loewy [1], 1975).

K is reducible if and only if $\pi(K)$ is reducible.

Proposition (Haynsworth, Fiedler, and Pták [5], 1976).

If K or H is reducible, then $\pi(K, H)$ is reducible.

And here's what's missing:

Theorem.

 $\pi\left(K,H\right)$ is reducible if and only if either K or H is reducible.

(The converse of Haynsworth, Fiedler, and Pták.)

Proof.

Copy the proof of Barker and Loewy, who proved the result for H = K, line-for-line. Then change K^* to H^* everywhere.

Now, when K and H are irreducible, we know that $\pi(K, H)$ is too.

Recall: the Lyapunov rank of a proper polyhedral irreducible cone is one. So suppose that K and H are irreducible. Then,

$$\beta\left(K\right)\beta\left(H\right)=1.$$

For the same reason, $\beta(\pi(K, H)) = 1$. Thus

$$\beta\left(\pi\left(K,H\right)\right) = \beta\left(K\right)\beta\left(H\right)$$

when K and H are irreducible.

For the general case, suppose $K = K_1 \oplus K_2$ and $H = H_1 \oplus H_2$ are direct sums of irreducible cones. Lyapunov rank is additive on a direct sum, so

$$\beta(K) \beta(H) = \beta(K_1) \beta(H_1) + \beta(K_1) \beta(H_2) + \beta(K_2) \beta(H_1) + \beta(K_2) \beta(H_2) = 4.$$

What about $\pi(K, H)$ in this case?

There exist invertible linear A and B such that

 $A(K) = K_1 \times K_2$ $B(H) = H_1 \times H_2.$

Lyapunov rank is invariant under invertible linear operators, so the extra A, B won't matter.

It turns out that

$$\pi\left(A\left(K\right),B\left(H\right)\right) = B \circ \pi\left(K,H\right) \circ A^{-1}.$$

But, $X \mapsto BXA^{-1}$ is an invertible linear operator, so that won't matter either.

Since our maps A and B won't matter, throw them away for simplicity, and pretend that

 $K = K_1 \times K_2$ $H = H_1 \times H_2.$

Now what is $\pi(K, H)$?

$\pi(K)$: Lyapunov rank

If
$$V_i \coloneqq \operatorname{span}(K_i)$$
 and $W_i \coloneqq \operatorname{span}(H_i)$,

$$\pi(K, H) \subseteq \\ \begin{cases} A & B \\ C & D \end{bmatrix} \begin{vmatrix} A \in \mathcal{B}(V_1, W_1) \\ B \in \mathcal{B}(V_2, W_1) \\ C \in \mathcal{B}(V_1, W_2) \\ D \in \mathcal{B}(V_2, W_2) \end{vmatrix}.$$

It's easy to check that for $\pi(K, H)$,

 $A \in \pi (K_1, H_1)$ $B \in \pi (K_2, H_1)$ $C \in \pi (K_1, H_2)$ $D \in \pi (K_2, H_2).$

If any of those fail, the same counterexample shows that the whole thing isn't in $\pi(K, H)$.

For example, the space of 2×2 real matrices is isomorphic to $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$. Likewise,

$$\pi (K, H) \cong \pi (K_1, H_1)$$

$$\times \pi (K_2, H_1)$$

$$\times \pi (K_1, H_2)$$

$$\times \pi (K_2, H_2)$$

Each factor $\pi(K_j, H_i)$ is irreducible, because K_j and H_i are. The additivity of Lyapunov rank therefore gives,

$$\beta(\pi(K, H)) = 1 + 1 + 1 + 1 = \beta(K)\beta(H).$$

If it works with two factors, it works for more:

The number of terms in $\beta(K)\beta(H)$ is equal to the number of blocks possessed by a block-form operator in $\pi(K, H)$.

Each term/block contributes one to the Lyapunov rank.

Theorem.

If K and H are proper polyhedral cones, then $\beta(\pi(K, H)) = \beta(K)\beta(H)$.

Corollary.

When H = K, we have $\beta(\pi(K)) = \beta(K)^2$.

PART 2, SECTION 5

$\pi(K)$: Lyapunov-like operators

Definition.

If $x, s \in V$, we define $s \otimes x$ to be the linear map $t \mapsto \langle x, t \rangle s$. That is,

$$(s \otimes x)(t) \coloneqq \langle x, t \rangle s.$$

In finite dimensions, $s \otimes x$ can be thought of as the matrix sx^T .

For subsets $X, S \subseteq V$ we will write

$$S \otimes X \coloneqq \{s \otimes x \mid s \in S, x \in X\}.$$

This is simply Minkowski notation.

It is known that $\dim (S \otimes X) = \dim (S) \dim (X)$.

Proposition (Berman and Gaiha [2], 1972).

If K and H are proper polyhedral cones, then,

$$\pi \left(K, H \right)^* = \operatorname{cone} \left(H^* \otimes K \right).$$

For polyhedral cones, it follows that

 $\operatorname{Ext}\left(\pi\left(K,H\right)^{*}\right) = \operatorname{Ext}\left(H^{*}\right) \otimes \operatorname{Ext}\left(K\right).$

Recall that the Lyapunov rank of a cone's dual is the same as that of the original cone. Thus,

$$\beta\left(\pi\left(K,H\right)^{*}\right) = \beta\left(K\right)\beta\left(H\right).$$

We're going to conjure up some Lyapunov-like operators on $\pi (K, H)^*$, and this equation tells us when to quit.

Theorem (Gowda and Tao [3], 2013).

If K is a proper polyhedral cone, then L is Lyapunov-like on K if and only if every element of Ext(K) is an eigenvector of L.

Since we know $\operatorname{Ext}(\pi(K, H)^*)$, its Lyapunov-like operators are now within reach.

The elements of $\operatorname{Ext}(\pi(K, H)^*)$ look like $s \otimes x$ where $x \in \operatorname{Ext}(K)$ and $s \in \operatorname{Ext}(H^*)$.

Consider the following operator on such a thing:

$$[M \odot L] (s \otimes x) \coloneqq M (s) \otimes L (x) \cong (Ms) (Lx)^T.$$

This is the Kronecker product of M and L.

The Kronecker product is another type of tensor product, but the symbol \otimes is worn out.

However, $\dim (\mathbf{M} \odot \mathbf{L}) = \dim (\mathbf{M}) \dim (\mathbf{L})$, since that was true of sets of tensor products.

Proposition.

Let K and H be proper polyhedral cones.

If L is Lyapunov-like on K and M is Lyapunov-like on H^* , then $M \odot L$ is Lyapunov-like on $\pi (K, H)^*$.

Proof.

Let $s \otimes x \in \text{Ext}(\pi(K, H)^*)$ be arbitrary, and show that it's an eigenvector of $M \odot L$.

We have $x \in \text{Ext}(K)$ and $s \in \text{Ext}(H^*)$, so x is an eigenvector of L and s is an eigenvector of M. Thus,

$$M(s) \otimes L(x) = \lambda_1 \lambda_2 (s \otimes x).$$

Now consider the space of all such operators,

 $\operatorname{span}\left(\mathbf{LL}\left(H^{*}\right)\odot\mathbf{LL}\left(K\right)\right).$

This has dimension $\beta(K)\beta(H)$, which we now know to be the Lyapunov rank of $\pi(K, H)^*$. And, they're all Lyapunov-like on $\pi(K, H)^*$.

It follows that the two spaces are equal.

We're almost there, we need one more result.

Proposition (Rudolf et al. [6], 2011).

L is Lyapunov-like on K if and only if its adjoint L^* is Lyapunov-like on the dual K^* .

Theorem.

If K and H are proper polyhedral cones, then $\mathbf{LL}(\pi(K, H)) = \operatorname{span}(\mathbf{LL}(H) \odot \mathbf{LL}(K^*)).$

Proof.

Use the result for $\pi (K, H)^*$ and take duals/adjoints on both sides.

Corollary.

If K is a proper polyhedral cone, then

 $\mathbf{LL}(\pi(K)) = \operatorname{span}(\mathbf{LL}(K) \odot \mathbf{LL}(K^*)).$
REFERENCES

- G. P. Barker and R. Loewy. The structure of cones of matrices. *Linear Algebra and its Applications*, 12:87–94, 1975.
- [2] A. Berman and P. Gaiha.
 A generalization of irreducible monotonicity.
 Linear Algebra and its Applications, 5:29–38, 1972.
- [3] M. S. Gowda and J. Tao. On the bilinearity rank of a proper cone and Lyapunov-like transformations.

Mathematical Programming, 147:155–170, 2014.

[4]~ O. Güler.

Barrier functions in interior point methods. Mathematics of Operations Research, 21:860–885, 1996.

REFERENCES

- [5] E. Haynsworth, M. Fiedler, and V. Pták. Extreme operators on polyhedral cones. *Linear Algebra and its Applications*, 13:163–172, 1976.
- [6] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh.
 Bilinear optimality constraints for the cone of positive polynomials.
 Mathematical Programming, 129:5–31, 2011.
- H. Schneider and M. Vidyasagar. Cross-positive matrices.
 SIAM Journal on Numerical Analysis, 7:508–519, 1970.