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Background: Cones
This story is set in a finite-dimensional real
Hilbert space V . You can pretend that V is Rn.

If W is another such space, then the set of all
linear operators from V to W is B (V ,W ).

When V = W , we simply write B (V ).
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Background: Cones
Definition.

A nonempty subset K of V is a cone if λK = K
for all λ > 0. A closed convex cone is a cone that
is closed and convex as a subset of V .

You might also see this condition with λ ≥ 0.
They’re the same thing for closed cones.
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Background: Cones
Closed convex cones can contain subspaces or fail
to have interior: R2 is a closed convex cone in R3.

Definition.

A full-dimensional closed convex cone that
contains no subspaces is called proper.
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Background: Cones
The conic hull of a nonempty subset X of V is

cone (X) :=


m∑
i=1

αixi

∣∣∣∣∣∣ xi ∈ X , αi ≥ 0, m ∈ N
 .

The conic hull is like a convex hull where we
extend every point “up” as well as “in.”
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Background: Cones
Every proper cone K has a set of extreme
directions Ext (K ) such that

K = cone (Ext (K )) .

Ext (K ) is the smallest set with that property.

Definition.

If Ext (K ) is finite, then K is polyhedral.
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Background: Cones
Example.

The nonnegative orthant R3
+ in R3 has the

standard basis as its extreme directions,

R3
+ = cone ({e1, e2, e3}) .

Ext (R3
+) is finite, so R3

+ is polyhedral.
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Background: Cones
Example.

Any proper cone in R2 is polyhedral.

Start with two extreme directions in the plane
and try to add a third. If it lies in the cone, it is
redundant (not extreme). If it lies outside of the
cone, then it renders one of the other two
directions redundant.
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Background: Cones
Example.

The ice-cream cone in R3 is not polyhedral.

Clearly, it is the conic hull of its boundary rays;
however, if you attempt to remove any boundary
ray from the conic hull, a part of the cone will
become flat (no longer an ice-cream cone).
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Background: Cones
Definition.

If K is a subset of V , then the dual cone of K is

K ∗ := {y ∈ V | ∀x ∈ K , 〈x , y〉 ≥ 0} .

The dual K ∗ is always a closed convex cone. If K
is a closed convex cone, then the duality is
faithful and (K ∗)∗ = K .
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Background: Cones
Example.

The nonnegative orthant Rn
+ is self-dual. Note

that any element s in its dual must have
〈s, ei〉 = si ≥ 0 for every basis vector ei .

If the entries of s are all nonnegative, then
s ∈ Rn

+. The converse is easy.
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Background: Cones
Example. K = cone

({
(3, 2)T , (3,−2)T

})
.

x

y

K

K ∗
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Background: Cones
Example. The ice-cream cone is self-dual.

This is a special case of the following result.

Theorem (Güler [4], 1996).

A cone is symmetric (self-dual and homogeneous)
if and only if it is the cone of squares in some
Euclidean Jordan Algebra.
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Background: Cones
Proposition.

A closed convex cone is polyhedral if and only if
its dual is polyhedral.

Intuition:

1. Only Ext (K ) matters in the definition of K ∗.
2. Every x ∈ Ext (K ) defines a half-space.
3. K ∗ is the intersection of half-spaces.
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Background: Cones
From now on, every cone will be both proper and
polyhedral.

(That’s the simplest possible case.)

We’re interested in a quantity called the
Lyapunov rank of a proper polyhedral cone. A
few examples motivate its definition.
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Background: Lyapunov rank
Lyapunov rank was introduced in Bilinear
optimality constraints for the cone of positive
polynomials by G. Rudolf, N. Noyan, D. Papp,
and F. Alizadeh [6] (2011).

The authors intended to use it to show that the
cone of positive polynomials was, in a sense, bad.

Oh, and they called it bilinearity rank.
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Background: Lyapunov rank
The linear complementarity problem LCP (q,M ).

Given: q ∈ Rn and M ∈ Rn×n.

Asked: find an x ∈ Rn such that

x ≥ 0
q + Mx ≥ 0

xT (q + Mx) = 0.
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Background: Lyapunov rank
If s := q + Mx and K := Rn

+ = K ∗, then the
LCP (q,M ) asks for a pair (x , s) such that

x ∈ K , s ∈ K ∗, 〈x , s〉 = 0.

Note that 〈x , s〉 = 0 is necessary for any solution.
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Background: Lyapunov rank
The primal linear programming problem. Given:

• An objective function 〈b, ·〉 where b ∈ Rn.
• Some linear constraints L ∈ Rn×n.
• A shift c ∈ Rn for those linear constraints.

We are asked to

minimize 〈b, x〉
subject to L (x) ≥ c

x ≥ 0.
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Background: Lyapunov rank
The dual linear programming problem asks us to

maximize 〈c, s〉
subject to L∗ (s) ≤ b

s ≥ 0.

If x̄ solves the primal problem and s̄ solves the
dual problem, then 〈x̄ , s̄〉 = 0. This is called
“complementary slackness.”
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Background: Lyapunov rank
So, being able to solve the equation 〈x , s〉 = 0
helps us solve optimization problems.

Over the cone K = Rn
+, something nice happens.

If x ∈ K and s ∈ K ∗ = K , then

〈x , s〉 = 0 ⇐⇒ xisi = 0 for all i.
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Background: Lyapunov rank
It’s a lot easier to solve n equations xisi = 0 than
it is to solve the single equation 〈x , s〉 = 0.

Can the same thing happen over other cones?

We can always write the identity operator in
terms of some others, say, idV = L1 + L2.
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Background: Lyapunov rank
Then,

〈x , s〉 = 0
⇐⇒

〈idV (x), s〉 = 0
⇐⇒

〈L1 (x), s〉+ 〈L2 (x), s〉 = 0.
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Background: Lyapunov rank
This won’t split into two equations, but we can
simply require that it does.

Definition.

L ∈ B (V ) is Lyapunov-like on K if 〈L (x), s〉 = 0
for all orthogonal x ∈ K and s ∈ K ∗.

Michael Orlitzky UMBC



Background: Lyapunov rank
If L1 and L2 are Lyapunov-like, then that’s
exactly what we need to split

〈L1 (x), s〉+ 〈L2 (x), s〉 = 0

into

〈L1 (x), s〉 = 0
〈L2 (x), s〉 = 0.
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Background: Lyapunov rank
But how many equations can we get?

The set of all Lyapunov-like operators on K turns
out to be a vector space LL (K ) whose dimension
is the number of equations we can obtain.

Definition. The Lyapunov rank of K is

β (K ) := dim (LL (K )) .

(Mnemonic: “beta” is for “bilinearity.”)
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Background: Lyapunov rank
Example.

The Lyapunov rank of Rn
+ is n because we can

get n equations from 〈x , s〉 = 0 when x , s ∈ Rn
+:

x1s1 = 0
x2s2 = 0

...
xnsn = 0.
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Background: Lyapunov rank
Example (Gowda and Tao [3], 2013).

The Lyapunov rank of the ice-cream cone in Rn is
(n2 − n + 2) /2, much larger than n.
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Background: Lyapunov rank
Example (Gowda and Tao [3], 2013).

The cone Sn
+ of symmetric positive semidefinite

n × n matrices has Lyapunov rank n2.

Note: the elements of Sn
+ live in a space of

dimension (n2 + n) /2 which is less than n2.
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Background: Lyapunov rank
Example.

The positive operators on a proper polyhedral
cone K , denoted by π (K ), have Lyapunov rank

β (π (K )) = β (K )2 .

Just kidding, I’m going to prove this.
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Background: Lyapunov rank
Theorem (Rudolf et al. [6], 2011).

The Lyapunov rank of a proper cone is,

• invariant under invertible linear operators
• additive on cartesian products
• the same as the Lyapunov rank of its dual.
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Background: Lyapunov rank
The first two items show that

β (K ⊕ H ) = β (K ) + β (H )

for proper cones K and H .

This follows since any direct sum can be sent to a
cartesian product by an invertible linear operator.
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Background: Lyapunov rank
Definition.

A proper cone is (ir)reducible if it is (not) a
nontrivial direct sum of proper cones.

Theorem (Gowda and Tao [3], 2013).

The Lyapunov rank of any irreducible proper
polyhedral cone is one.
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π (K ): Definition
Every closed convex cone K orders its ambient
vector space V by

x < y ⇐⇒ x − y ∈ K .

If K is proper, then this ordering is “nice,” it
respects the linear structure of V .
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π (K ): Definition
In any ordered vector space (V ,<), an element
x ∈ V is called a positive element if x < 0.

A positive operator on V is an L ∈ B (V ) such
that L (x) < 0 for all x < 0.

Positive operators preserve positivity.

(The term positive is wrong, but standard.)

Michael Orlitzky UMBC



π (K ): Definition
Notice that with a proper cone ordering,

• x is a positive element ⇐⇒ x ∈ K .
• L is a positive operator ⇐⇒ L (K ) ⊆ K .

By example, we define positive operators on K ,

π (K ) := {L ∈ B (V ) | L (K ) ⊆ K} .
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π (K ): Definition
Example (Perron-Frobenius).

Let K = Rn
+, the nonnegative orthant in Rn.

Then the positive operators on K are the real
n × n matrices having nonnegative elements.

Let L ∈ π (K ) and ρ (L) be its spectral radius.
The Perron-Frobenius theorem states that
L (x) = ρ (L) x for some x < 0.
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π (K ): Definition
In fact, we can extend the definition of a positive
operator to two cones K ⊆ V and H ⊆W ,

π (K ,H ) := {L ∈ B (V ,W ) | L (K ) ⊆ H} .

We will need the general version to prove our
result for the simpler π (K ) case.

Michael Orlitzky UMBC



Part 2, Section 4

π (K ): Lyapunov rank
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π (K ): Lyapunov rank
Goal: compute the Lyapunov rank β (π (K )).

Note: this goal makes sense.

Proposition (Schneider and Vidyasagar [7],
1970).

If K and H are proper polyhedral cones, then
π (K ,H ) is too.
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π (K ): Lyapunov rank
What we’d like to do:

1. Decompose π (K ,H ) into a direct sum of
irreducible cones.

2. Use the fact that Lyapunov rank is additive
on a direct sum.

3. Conclude that β (π (K ,H )) = β (K ) β (H ) is
one in the base case.

4. Hand-wave induction.
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π (K ): Lyapunov rank
Here’s what was known towards that goal.

Proposition (Barker and Loewy [1], 1975).

K is reducible if and only if π (K ) is reducible.

Proposition (Haynsworth, Fiedler, and
Pták [5], 1976).

If K or H is reducible, then π (K ,H ) is reducible.
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π (K ): Lyapunov rank
And here’s what’s missing:

Theorem.

π (K ,H ) is reducible if and only if either K or H
is reducible.

(The converse of Haynsworth, Fiedler, and Pták.)
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π (K ): Lyapunov rank
Proof.

Copy the proof of Barker and Loewy, who proved
the result for H = K , line-for-line. Then change
K ∗ to H ∗ everywhere.

Now, when K and H are irreducible, we know
that π (K ,H ) is too.
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π (K ): Lyapunov rank
Recall: the Lyapunov rank of a proper polyhedral
irreducible cone is one. So suppose that K and H
are irreducible. Then,

β (K ) β (H ) = 1.

For the same reason, β (π (K ,H )) = 1. Thus

β (π (K ,H )) = β (K ) β (H )

when K and H are irreducible.
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π (K ): Lyapunov rank
For the general case, suppose K = K1 ⊕K2 and
H = H1 ⊕ H2 are direct sums of irreducible cones.
Lyapunov rank is additive on a direct sum, so

β (K ) β (H ) = β (K1) β (H1)
+ β (K1) β (H2)
+ β (K2) β (H1)
+ β (K2) β (H2)
= 4.
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π (K ): Lyapunov rank
What about π (K ,H ) in this case?

There exist invertible linear A and B such that

A (K ) = K1 ×K2

B (H ) = H1 × H2.

Lyapunov rank is invariant under invertible linear
operators, so the extra A,B won’t matter.
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π (K ): Lyapunov rank
It turns out that

π (A (K ),B (H )) = B ◦ π (K ,H ) ◦ A−1.

But, X 7→ BXA−1 is an invertible linear operator,
so that won’t matter either.
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π (K ): Lyapunov rank
Since our maps A and B won’t matter, throw
them away for simplicity, and pretend that

K = K1 ×K2

H = H1 × H2.

Now what is π (K ,H )?
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π (K ): Lyapunov rank
If Vi := span (Ki) and Wi := span (Hi),

π (K ,H )
⊆

A B
C D


∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A ∈ B (V1,W1)
B ∈ B (V2,W1)
C ∈ B (V1,W2)
D ∈ B (V2,W2)


.
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π (K ): Lyapunov rank
It’s easy to check that for π (K ,H ),

A ∈ π (K1,H1)
B ∈ π (K2,H1)
C ∈ π (K1,H2)
D ∈ π (K2,H2) .

If any of those fail, the same counterexample
shows that the whole thing isn’t in π (K ,H ).
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π (K ): Lyapunov rank
For example, the space of 2× 2 real matrices is
isomorphic to R× R× R× R. Likewise,

π (K ,H ) ∼= π (K1,H1)
× π (K2,H1)
× π (K1,H2)
× π (K2,H2) .
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π (K ): Lyapunov rank
Each factor π (Kj ,Hi) is irreducible, because Kj
and Hi are. The additivity of Lyapunov rank
therefore gives,

β (π (K ,H )) = 1 + 1 + 1 + 1 = β (K ) β (H ) .
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π (K ): Lyapunov rank
If it works with two factors, it works for more:

The number of terms in β (K ) β (H ) is equal to
the number of blocks possessed by a block-form
operator in π (K ,H ).

Each term/block contributes one to the
Lyapunov rank.
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π (K ): Lyapunov rank
Theorem.

If K and H are proper polyhedral cones, then
β (π (K ,H )) = β (K ) β (H ).

Corollary.

When H = K , we have β (π (K )) = β (K )2.
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π (K ): Lyapunov-like operators
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π (K ): Lyapunov-like operators
Definition.

If x , s ∈ V , we define s ⊗ x to be the linear map
t 7→ 〈x , t〉 s. That is,

(s ⊗ x) (t) := 〈x , t〉 s.

In finite dimensions, s ⊗ x can be thought of as
the matrix sxT .
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π (K ): Lyapunov-like operators
For subsets X , S ⊆ V we will write

S ⊗ X := {s ⊗ x | s ∈ S , x ∈ X} .

This is simply Minkowski notation.

It is known that dim (S ⊗ X) = dim (S) dim (X).
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π (K ): Lyapunov-like operators
Proposition (Berman and Gaiha [2], 1972).

If K and H are proper polyhedral cones, then,

π (K ,H )∗ = cone (H ∗ ⊗K ) .

For polyhedral cones, it follows that

Ext (π (K ,H )∗) = Ext (H ∗)⊗ Ext (K ).
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π (K ): Lyapunov-like operators
Recall that the Lyapunov rank of a cone’s dual is
the same as that of the original cone. Thus,

β (π (K ,H )∗) = β (K ) β (H ) .

We’re going to conjure up some Lyapunov-like
operators on π (K ,H )∗, and this equation tells us
when to quit.
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π (K ): Lyapunov-like operators
Theorem (Gowda and Tao [3], 2013).

If K is a proper polyhedral cone, then L is
Lyapunov-like on K if and only if every element
of Ext (K ) is an eigenvector of L.

Since we know Ext (π (K ,H )∗), its Lyapunov-like
operators are now within reach.
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π (K ): Lyapunov-like operators
The elements of Ext (π (K ,H )∗) look like s ⊗ x
where x ∈ Ext (K ) and s ∈ Ext (H ∗).

Consider the following operator on such a thing:

[M � L] (s ⊗ x) := M (s)⊗ L (x) ∼= (Ms) (Lx)T .

This is the Kronecker product of M and L.
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π (K ): Lyapunov-like operators
The Kronecker product is another type of tensor
product, but the symbol ⊗ is worn out.

However, dim (M� L) = dim (M) dim (L), since
that was true of sets of tensor products.
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π (K ): Lyapunov-like operators
Proposition.

Let K and H be proper polyhedral cones.

If L is Lyapunov-like on K and M is
Lyapunov-like on H ∗, then M � L is
Lyapunov-like on π (K ,H )∗.
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π (K ): Lyapunov-like operators
Proof.

Let s ⊗ x ∈ Ext (π (K ,H )∗) be arbitrary, and
show that it’s an eigenvector of M � L.

We have x ∈ Ext (K ) and s ∈ Ext (H ∗), so x is an
eigenvector of L and s is an eigenvector of M .
Thus,

M (s)⊗ L (x) = λ1λ2 (s ⊗ x) .
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π (K ): Lyapunov-like operators
Now consider the space of all such operators,

span (LL (H ∗)� LL (K )) .

This has dimension β (K ) β (H ), which we now
know to be the Lyapunov rank of π (K ,H )∗.
And, they’re all Lyapunov-like on π (K ,H )∗.

It follows that the two spaces are equal.
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π (K ): Lyapunov-like operators
We’re almost there, we need one more result.

Proposition (Rudolf et al. [6], 2011).

L is Lyapunov-like on K if and only if its adjoint
L∗ is Lyapunov-like on the dual K ∗.
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π (K ): Lyapunov-like operators
Theorem.

If K and H are proper polyhedral cones, then

LL (π (K ,H )) = span (LL (H )� LL (K ∗)) .

Proof.

Use the result for π (K ,H )∗ and take
duals/adjoints on both sides.
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π (K ): Lyapunov-like operators
Corollary.

If K is a proper polyhedral cone, then

LL (π (K )) = span (LL (K )� LL (K ∗)) .
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