Optimal Recovery of

Differentiable Functions by

 Univariate SplinesMichael Orlitzky

Polynomial Splines

Definition. A spline is a piecewise-defined polynomial. Example.

$$
s(x)= \begin{cases}(x+1)^{2}-1, & x \in[-1,0] \\ -(1-x)^{2}+1, & x \in[0,1]\end{cases}
$$

Polynomial Splines

Splines are used to approximate other functions. Usually, a spline is defined in terms of the values and derivatives of the function it approximates.

Example. If we're given the values and first derivatives of a function f at two points, a and b, then the spline $s(f ; x)$ interpolates f and f^{\prime} at those points.

$$
\begin{aligned}
4 \cdot s(f ; x) & =\left(x^{3}-3 x+2\right) \cdot f(a) \\
& +\left(x^{3}-x^{2}-x+1\right) \cdot f^{\prime}(a) \\
& +\left(-x^{3}+3 x+2\right) \cdot f(b) \\
& +\left(x^{3}+x^{2}-x-1\right) \cdot f^{\prime}(b)
\end{aligned}
$$

Polynomial Splines

If we let $a=-\pi, b=\pi$ and substitute $f(x)=\sin (x)$ into this formula, we get a decent approximation of $\sin (x)$ on $[-\pi, \pi]$.

Polynomial Splines

More generally, we can write a spline as,

$$
s(f ; x)=\sum_{k=0}^{n} A_{k}(x) \cdot f^{(k)}(a)+B_{k}(x) \cdot f^{(k)}(b)
$$

where $A_{k}(x)$ and $B_{k}(x)$ are piecewise polynomials and $f^{(k)}$ denotes the $k^{\text {th }}$ derivative of f.

Note. This formula doesn't make much sense unless the $k^{\text {th }}$ derivative of f exists. We can formalize this requirement.

Optimality

Definition. We denote by W^{r} the space of all functions f defined over $[-1,1]$ such that $f^{(r-1)}$ is continuous, $f^{(r)}$ is piecewise continuous, and $\left\|f^{(r)}\right\|_{\infty} \leq 1$.

Intuitively, this means that f cannot change too fast.

- Our choice of $[-1,1]$ here is merely for convenience.
- So is the bound on $\left\|f^{(r)}\right\|_{\infty}$.

If we restrict ourselves to the class W^{r}, it becomes possible to define an optimal spline.

Optimality

Example. The function $f(x)=\sin (x)$ is in W^{1} because $\sin (x)$ is continuous, and $f^{\prime}(x)=\cos (x)$ is continuous and bounded absolutely by 1 .

Optimality

Definition. The error of a spline $s(f ; x)$ at a point x is $|f(x)-s(f ; x)|$; i.e. the difference between the value of the spline and the value of the function it approximates.

Here, we depict the interpolation by cubic polynomial of $\sin (x)$ along with the error, in green.

Optimality

Definition. The maximal error achieved by the spline $s(f ; x)$ at x for any function in W^{r} is given by,

$$
e_{r}(s ; x)=\sup _{f \in W^{r}}|f(x)-s(f ; x)|
$$

In other words, at each point x, there is a function f for which the approximation $s(f ; x)$ is worse than for all other functions in W^{r}.

Optimality

Definition. The error at x of the best spline for the worst function f in the class W^{r} is given by,

$$
e_{r}^{*}(x)=\inf _{s}\left[e_{r}(s ; x)\right]
$$

If we're considering the entire class of functions rather than a particular function, $e_{r}^{*}(x)$ is the best possible error any spline can achieve at x.

Optimality

Definition. We say that a spline $s(f ; x)$ is optimal on W^{r} if,

$$
e_{r}(s ; x) \leq \sup _{x \in[-1,1]} e_{r}^{*}(x), x \in[-1,1]
$$

In the previous example,

- $\sup _{x \in[-1,1]} e_{2}^{*}(x)=e_{2}^{*}(0)=\frac{1}{4}$
- $e_{2}($ cubic, $x) \leq \frac{1}{4}, x \in[-1,1]$

Therefore, the cubic is optimal on W^{2}.

Optimality

Example. $e_{2}(s ; x)$ for some optimal splines.

Optimality

Our goal: determine whether or not a given spline is optimal.
It turns out, the maximum error of the best spline is always achieved at the midpoint. That is,

$$
\sup _{x \in[-1,1]} e_{r}^{*}(x)=e_{r}^{*}(0)
$$

So, the spline $s(f ; x)$ is optimal if,

$$
e_{r}(s ; x) \leq e_{r}^{*}(0)
$$

Therefore, we would like to know $e_{r}^{*}(0)$.

Computing $e_{r}^{*}(x)$

Boyanov [1] gives us $e_{r}^{*}(x)$:

$$
e_{r}^{*}(x)=\int_{-1}^{x}(x-t)^{r-1} \operatorname{sign}\left[U_{r}(t)\right] d t
$$

where $U_{r}(t)$ is the polynomial of the form $t^{r}+a_{1} t^{r-1}+\cdots+a_{r}$ that differs least from zero in the interval $[-1,1]$ with respect to the L_{1} norm.

However, we would prefer a closed form. To compute $\operatorname{sign}\left[U_{r}(t)\right]$, we need to know the roots of U_{r}.

Computing $e_{r}^{*}(x)$

From Powell [2], we know that the polynomial of the form $x^{n+1}+a_{1} x^{n}+\ldots a_{m}$ differing least from zero in the interval $[-1,1]$ is,

$$
T_{n+2}^{\prime}(t) /\left[2^{n+1}(n+2)\right]
$$

where T_{n} is the $n^{\text {th }}$ Chebychev polynomial.
It can be shown that the $n^{\text {th }}$ Chebychev polynomial is equivalent to $\cos (n \cdot \arccos (t))$, for $n \geq 0$.

Computing $e_{r}^{*}(x)$

Example. T_{n} for small values of n.

Computing $e_{r}^{*}(x)$

Example. T_{n} for small values of n.

Computing $e_{r}^{*}(x)$

Example. T_{n} for small values of n.

Computing $e_{r}^{*}(x)$

Example. T_{n} for small values of n.

Computing $e_{r}^{*}(x)$

Example. T_{n} for small values of n.

Computing $e_{r}^{*}(x)$

Using this formula, we can compute the roots of U_{r} easily. They are,

$$
t=\cos \left(\frac{k \pi}{r+1}\right), k=0 \ldots r+1,
$$

and we define,

$$
\xi_{k}=\cos \left(\frac{(r+1-k) \pi}{r+1}\right), k=0 \ldots r+1
$$

so that the roots ξ_{k} occur in increasing order.

Computing $e_{r}^{*}(x)$

If we evaluate U_{r} at $t=-1+\epsilon$, we find that,

$$
\operatorname{sign}\left[U_{r}(t)\right]=(-1)^{r}, t \in\left(\xi_{0}, \xi_{1}\right)
$$

By the characterization theorem, U_{r} must change sign at every root. We know the roots, and therefore, we know $\operatorname{sign}\left[U_{r}(t)\right]$ on all of $[-1,1]$!

$$
\operatorname{sign}\left[U_{r}(t)\right]=(-1)^{r+i}, t \in\left(\xi_{i}, \xi_{i+1}\right)
$$

Computing $e_{r}^{*}(x)$

Now we just integrate.
For $x \in\left[-1, \xi_{1}\right]$,

$$
r!\cdot e_{r}^{*}(x)=(-1-x)^{r}
$$

And for $x \in\left[\xi_{i}, \xi_{i+1}\right]$,

$$
\begin{aligned}
r!\cdot e_{r}^{*}(x) & =\sum_{k=0}^{i-1}(-1)^{r+k-1}\left[\left(x-\xi_{k+1}\right)^{r}-\left(x-\xi_{k}\right)^{r}\right] \\
& +(-1)^{i}\left(\xi_{i}-x\right)^{r}
\end{aligned}
$$

Computing $e_{r}^{*}(x)$

Computing $e_{r}^{*}(x)$

Computing $e_{r}^{*}(x)$

Boyanov's Spline

Boyanov discovered the "best" spline on W^{r}; that is, the spline $S(f ; x)$ (capital 'S') such that,

$$
e_{r}(S ; x)=e_{r}^{*}(x), x \in[-1,1] .
$$

So, $S(f ; x)$ has the best worst-case error at every point on our interval. However, the resulting formula is not so nice.

But it can still be expressed in our general form,

$$
S(f ; x)=\sum_{k=0}^{n} A_{k}(x) \cdot f^{(k)}(a)+B_{k}(x) \cdot f^{(k)}(b) .
$$

Boyanov's Spline

We can apply Boyanov's spline to $e_{r}^{*}(x)$, noting that,

$$
\left\{\frac{d^{k}}{d x^{k}} e_{r}^{*}\right\}(-1)=\left\{\frac{d^{k}}{d x^{k}} e_{r}^{*}\right\}(1)=0, k=0,1, \ldots, r-1
$$

So,

$$
S\left(e_{r}^{*} ; x\right)=\sum_{k=0}^{n} A_{k}(x) \cdot 0+B_{k}(x) \cdot 0=0 .
$$

Boyanov's spline applied to $e_{r}^{*}(x)$ is the zero function.

Boyanov's Spline

Since $S\left(e_{r}^{*} ; x\right)=0$, the error of Boyanov's spline applied to $e_{r}^{*}(x)$ is,

$$
\left|e_{r}^{*}(x)-S\left(e_{r}^{*} ; x\right)\right|=\left|e_{r}^{*}(x)-0\right|=e_{r}^{*}(x)
$$

Recall that this is the maximal error that Boyanov's spline can achieve. Since e_{r}^{*} itself induces this error, it is the worst function for Boyanov's spline.

Optimal Error Bound

Using the formula we derived for $e_{r}^{*}(x)$, we can compute the optimal error bound which occurs at the midpoint.

We make a convenient definition,

$$
g(r)=\left[1+(-1)^{r+1}\right] / 2= \begin{cases}0, & r \text { even } \\ 1, & r \text { odd }\end{cases}
$$

so that,

$$
0 \in\left[\xi_{\frac{r-g(r)}{2}}, \xi_{\frac{r-g(r)+2}{2}}\right], r \geq 0
$$

Optimal Error Bound

Now we can simply substitute this interval into the general piecewise formula. First, $e_{1}^{*}(0)=-1$. Then for $r>1$,

$$
\begin{aligned}
r!\cdot e_{r}^{*}(0) & =\sum_{k=0}^{\frac{r-g(r)}{2}-1}(-1)^{k+1}\left[\left(\xi_{k+1}\right)^{r}-\left(\xi_{k}\right)^{r}\right] \\
& +(-1)^{\frac{r-g(r)}{2}}\left(\xi_{\frac{r-g(r)}{2}}\right)^{r}
\end{aligned}
$$

If the maximal error $e_{r}(s ; x)$ of a spline $s(f ; x)$ is less than (the norm of) this value, s is optimal on W^{r}.

Optimal Error Bound

Table: $\left|e_{r}^{*}(0)\right|$ for certain values of r.

r	$\left\|e_{r}^{*}(0)\right\|$
1	1
2	$\frac{1}{4}$
3	$\frac{2-\sqrt{2}}{12}$
4	$\frac{3 \sqrt{5}+8}{192}$
5	$\frac{17-9 \sqrt{3}}{1920}$

Deriving a Bound on the Approximation Error

The exact Taylor expansion of a function f about a is,

$$
\sum_{k=0}^{\mu-1} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\frac{1}{(\mu-1)!} \int_{a}^{x} f^{(\mu)}(t)(x-t)^{\mu-1} d t
$$

This can be understood as,

$$
(\text { some polynomial })+(\text { a remainder })
$$

and is exactly equal to the function f.

Deriving a Bound on the Approximation Error

The barycentric coordinates of x with respect to -1 and 1 respectively are,

$$
\begin{aligned}
& b_{0}(x)=\frac{1-x}{2} \\
& b_{1}(x)=\frac{x+1}{2}
\end{aligned}
$$

It follows from this definition that $b_{0}(x)+b_{1}(x)=1$ for all x.

Deriving a Bound on the Approximation Error

Now, assume that we have a spline method which reproduces polynomials of degree μ.

We start by taking the exact Taylor expansion of f about both endpoints. Call them $f_{a}(x)$ and $f_{b}(x)$. These two expansions are equal!

Next, we multiply $f_{a}(x)$ by $b_{0}(x)$ and $f_{b}(x)$ by $b_{1}(x)$. We do this to raise their degree by one. We want them to have degree μ.

Since $f_{a}(x)=f_{b}(x)$,

$$
\begin{aligned}
& b_{0}(x) \cdot f_{a}(x)+b_{1}(x) \cdot f_{b}(x) \\
& =\left[b_{0}(x)+b_{1}(x)\right] f_{a}(x) \\
& =f(x)
\end{aligned}
$$

Deriving a Bound on the Approximation Error

Since they're equal, we can instead apply our spline to the Taylor expansions. They are now of the form, some polynomial of degree $\mu+$ remainder

Since our spline reproduces polynomials of degree μ, it will reproduce the polynomial part exactly. We are left with,

$$
\begin{aligned}
f(x)-s(f ; x) & =\text { remainder } 1+\text { remainder } 2 \\
& -s(\text { remainder } 1, x)-s(\text { remainder } 2, x)
\end{aligned}
$$

Deriving a Bound on the Approximation Error

And it turns out, this can be expressed as,

$$
\int_{-1}^{1} f^{(\mu)}(t) e\left[E_{\mu}(t, x) ; x\right] d t
$$

where,

$$
e(f ; x)=f(x)-s(f ; x)
$$

and,

$$
E_{p}(t, x)= \begin{cases}0, & t \notin[-1,1] \\ b_{0}(x) \frac{(x-t)^{p-1}}{(p-1)!}, & t \in[-1, x] \\ -b_{1}(x) \frac{(x-t)^{p-1}}{(p-1)!}, & t \in[x, 1]\end{cases}
$$

Deriving a Bound on the Approximation Error

Definition. Let,

$$
Q_{p}(t, x)=e\left[E_{p}(t, x) ; x\right]
$$

Now we,

- Notice that the polynomial terms in E_{p} are reproduced for $p \leq \mu$.
- Replace those polynomial terms with their approximations.
- Do lots of algebra.

To find...

Deriving a Bound on the Approximation Error

$$
Q_{p}(t, x)= \begin{cases}\sum_{k=0}^{\sum_{-1}^{1} A_{k} \frac{(-1-t) p^{p-k-1}}{(p-k-1)!},} & t \in[-1, x] \\ \sum_{k=0}^{r-1} B_{k} \frac{(1-t)^{p-k-1}}{(p-k-1)!}, & t \in[x, 1]\end{cases}
$$

Recall:

$$
f(x)-s(f ; x)=\int_{-1}^{1} f^{(\mu)}(t) Q_{\mu}(t, x) d t
$$

Deriving a Bound on the Approximation Error

That means,

$$
\begin{aligned}
e_{r}(s ; x) & =\sup _{f \in W^{r}}|f(x)-s(f ; x)| \\
& =\sup _{f \in W^{r}}\left|\int_{-1}^{1} f^{(\mu)}(t) Q_{\mu}(t, x) d t\right|
\end{aligned}
$$

Claim.

$$
\sup _{f \in W^{r}}\left|\int_{-1}^{1} f^{(\mu)}(t) Q_{\mu}(t, x) d t\right|=\int_{-1}^{1}\left|Q_{p}(t, x)\right| d t
$$

Deriving a Bound on the Approximation Error

Proof.

Deriving a Bound on the Approximation Error

If we expand $Q_{\mu}(t, x)$ again, this gives us an expression for $e_{r}(s ; x)$. This result was already known to Drs. Sorokina and Borodachov for $\mu=r-1$. After two changes of variable,

$$
e_{r}(s ; x)=\int_{-1-x}^{0}\left|\sum_{k=0}^{r-1} A_{r-k-1}(x) \frac{z^{(\mu-r+k)}}{(\mu-r+k)!}\right| d z
$$

$$
+\int_{0}^{1-x}\left|\sum_{k=0}^{r-1} B_{r-k-1}(x) \frac{z^{(\mu-r+k)}}{(\mu-r+k)!}\right| d z
$$

Computed Error Bounds

Computed Error Bounds

Leibniz's Rule

We can also apply Leibniz's rule,

$$
\begin{aligned}
\frac{d}{d x} \int_{a(x)}^{b(x)} g(t, x) d t & =\frac{d}{d x}\{b(x)\} \cdot g(b(x), x) \\
& -\frac{d}{d x}\{a(x)\} \cdot g(a(x), x) \\
& +\int_{a(x)}^{b(x)} \frac{d}{d x} g(t, x) d t
\end{aligned}
$$

to $f(x)-s(f ; x)$ directly.

Leibniz's Rule

Since the left and right half of $Q(t, x)$ are equal at $t=x$, the,

$$
\frac{d}{d x}\left\{f^{(u)}(x)\left[Q_{\mu}^{\prime}(x, x)-Q_{\mu}^{\prime}(x, x)\right]\right\}
$$

term will cancel leaving us with,

$$
e^{\prime}(f ; x)=\int_{-1}^{1} f^{(\mu)}(t) \frac{d}{d x}\left\{Q_{\mu}(t, x)\right\}
$$

Leibniz's Rule

Unfortunately, we can't rely on this generally:

Leibniz's Rule

The maximal error is not necessarily increasing on $[-1,0]$.

Leibniz's Rule

And $e_{r}^{*}(0)$ can be achieved at points other than the midpoint.

References

[1] Boyanov, B. D. Best Methods of Interpolation for Certain Classes of Differentiable Functions. Mathematical Notes, volume 17, issue 4, pp. 301-309. MAIK Nauka/Interperiodica, 1975.
[2] Powell, M. J. D. Approximation Theory and Methods. Cambridge University Press, Cambridge, 1981.

