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Polynomial Splines

Definition. A spline is a piecewise-defined polynomial.
Example.

s(x) =

{
(x+ 1)2 − 1, x ∈ [−1, 0]

−(1− x)2 + 1, x ∈ [0, 1]
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Polynomial Splines

Splines are used to approximate other functions. Usually, a
spline is defined in terms of the values and derivatives of the
function it approximates.

Example. If we’re given the values and first derivatives of a
function f at two points, a and b, then the spline s(f ;x)
interpolates f and f ′ at those points.

4 · s(f ;x) = (x3 − 3x+ 2) · f(a)

+ (x3 − x2 − x+ 1) · f ′(a)

+ (−x3 + 3x+ 2) · f(b)

+ (x3 + x2 − x− 1) · f ′(b)
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Polynomial Splines

If we let a = −π, b = π and substitute f(x) = sin(x) into this
formula, we get a decent approximation of sin(x) on [−π, π].

−π π

−1

1
f(x) =sin(x)
s(f;x)
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Polynomial Splines

More generally, we can write a spline as,

s(f ;x) =
n
Σ
k=0

Ak(x) · f (k)(a) +Bk(x) · f (k)(b),

where Ak(x) and Bk(x) are piecewise polynomials and f (k)

denotes the kth derivative of f .

Note. This formula doesn’t make much sense unless the kth

derivative of f exists. We can formalize this requirement.
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Optimality

Definition. We denote by W r the space of all functions f
defined over [−1, 1] such that f (r−1) is continuous, f (r) is
piecewise continuous, and ‖f (r)‖∞ ≤ 1.

Intuitively, this means that f cannot change too fast.

• Our choice of [−1, 1] here is merely for convenience.

• So is the bound on ‖f (r)‖∞.

If we restrict ourselves to the class W r, it becomes possible to
define an optimal spline.
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Optimality

Example. The function f(x) = sin(x) is in W 1 because sin(x)
is continuous, and f ′(x) = cos(x) is continuous and bounded
absolutely by 1.

−1 1

1

f(x) =sin(x)
f (x) =cos(x)
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Optimality

Definition. The error of a spline s(f ;x) at a point x is
|f(x)− s(f ;x)|; i.e. the difference between the value of the
spline and the value of the function it approximates.

Here, we depict the interpolation by cubic polynomial of sin(x)
along with the error, in green.
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f(x) =sin(x)
s(f;x)
|f(x)−s(f;x)|
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Optimality

Definition. The maximal error achieved by the spline s(f ;x)
at x for any function in W r is given by,

er(s;x) = sup
f∈W r

|f(x)− s(f ;x)|.

In other words, at each point x, there is a function f for which
the approximation s(f ;x) is worse than for all other functions
in W r.

−1 1

e2(cubic,x)
y=1
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Optimality

Definition. The error at x of the best spline for the worst
function f in the class W r is given by,

e∗r(x) = inf
s

[er(s;x)].

If we’re considering the entire class of functions rather than a
particular function, e∗r(x) is the best possible error any spline
can achieve at x.

−1 1

e2(cubic,x)
e ∗2 (x)
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Optimality

Definition. We say that a spline s(f ;x) is optimal on W r if,

er(s;x) ≤ sup
x∈[−1,1]

e∗r(x), x ∈ [−1, 1].

In the previous example,

• sup
x∈[−1,1]

e∗2(x) = e∗2(0) = 1
4

• e2(cubic, x) ≤ 1
4 , x ∈ [−1, 1]

Therefore, the cubic is optimal on W 2.
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Optimality

Example. e2(s;x) for some optimal splines.

−1 1

e ∗2 (x)
cubic
quasi−quadratic
double quadratic
e ∗2 (0) =1
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Optimality

Our goal: determine whether or not a given spline is optimal.

It turns out, the maximum error of the best spline is always
achieved at the midpoint. That is,

sup
x∈[−1,1]

e∗r(x) = e∗r(0).

So, the spline s(f ;x) is optimal if,

er(s;x) ≤ e∗r(0).

Therefore, we would like to know e∗r(0).
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Computing e∗r(x)

Boyanov [1] gives us e∗r(x):

e∗r(x) =

x∫
−1

(x− t)r−1 sign[Ur(t)] dt,

where Ur(t) is the polynomial of the form tr + a1t
r−1 + · · ·+ ar

that differs least from zero in the interval [−1, 1] with respect to
the L1 norm.

However, we would prefer a closed form. To compute
sign[Ur(t)], we need to know the roots of Ur.

Michael Orlitzky Towson University



Computing e∗r(x)

From Powell [2], we know that the polynomial of the form
xn+1 + a1x

n + . . . am differing least from zero in the interval
[−1, 1] is,

T ′n+2(t)/[2
n+1(n+ 2)],

where Tn is the nth Chebychev polynomial.

It can be shown that the nth Chebychev polynomial is
equivalent to cos(n · arccos(t)), for n ≥ 0.
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Computing e∗r(x)

Example. Tn for small values of n.

−1.0 −0.5 0.5 1.0

0.5

1.0

T0(t)
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Computing e∗r(x)

Example. Tn for small values of n.
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Computing e∗r(x)

Example. Tn for small values of n.
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−1.0

−0.5

0.5

1.0
T2(t)

Michael Orlitzky Towson University



Computing e∗r(x)

Example. Tn for small values of n.
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Computing e∗r(x)

Example. Tn for small values of n.

−1.0 −0.5 0.5 1.0
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Computing e∗r(x)

Using this formula, we can compute the roots of Ur easily. They
are,

t = cos

(
kπ

r + 1

)
, k = 0 . . . r + 1,

and we define,

ξk = cos

(
(r + 1− k)π

r + 1

)
, k = 0 . . . r + 1,

so that the roots ξk occur in increasing order.
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Computing e∗r(x)

If we evaluate Ur at t = −1 + ε, we find that,

sign[Ur(t)] = (−1)r, t ∈ (ξ0, ξ1).

By the characterization theorem, Ur must change sign at every
root. We know the roots, and therefore, we know sign[Ur(t)] on
all of [−1, 1]!

sign[Ur(t)] = (−1)r+i, t ∈ (ξi, ξi+1).
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Computing e∗r(x)

Now we just integrate.

For x ∈ [−1, ξ1],

r! · e∗r (x) = (−1− x)r

And for x ∈ [ξi, ξi+1],

r! · e∗r (x) =
i−1
Σ
k=0

(−1)r+k−1 [(x− ξk+1)
r − (x− ξk)r]

+ (−1)i (ξi − x)r
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Computing e∗r(x)

−1 −1
2

1
2

1

1
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1
e ∗1 (x)
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Computing e∗r(x)

−1 −1
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Computing e∗r(x)

−1 −1
2

1
2

1

0.0001

0.0002
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0.0004
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0.0006

0.0007e ∗5 (x)

Michael Orlitzky Towson University



Boyanov’s Spline

Boyanov discovered the “best” spline on W r; that is, the spline
S(f ;x) (capital ’S’) such that,

er(S;x) = e∗r(x), x ∈ [−1, 1].

So, S(f ;x) has the best worst-case error at every point on our
interval. However, the resulting formula is not so nice.

But it can still be expressed in our general form,

S(f ;x) =
n
Σ
k=0

Ak(x) · f (k)(a) +Bk(x) · f (k)(b).
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Boyanov’s Spline

We can apply Boyanov’s spline to e∗r(x), noting that,{
dk

dxk
e∗r

}
(−1) =

{
dk

dxk
e∗r

}
(1) = 0, k = 0, 1, . . . , r − 1.

So,

S(e∗r ;x) =
n
Σ
k=0

Ak(x) · 0 +Bk(x) · 0 = 0.

Boyanov’s spline applied to e∗r(x) is the zero function.
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Boyanov’s Spline

Since S(e∗r ;x) = 0, the error of Boyanov’s spline applied to
e∗r(x) is,

|e∗r(x)− S(e∗r ;x)| = |e∗r(x)− 0| = e∗r(x)

Recall that this is the maximal error that Boyanov’s spline can
achieve. Since e∗r itself induces this error, it is the worst
function for Boyanov’s spline.
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Optimal Error Bound

Using the formula we derived for e∗r(x), we can compute the
optimal error bound which occurs at the midpoint.

We make a convenient definition,

g (r) =
[
1 + (−1)r+1

]
/2 =

{
0, r even,

1, r odd
,

so that,

0 ∈
[
ξ r−g(r)

2

, ξ r−g(r)+2
2

]
, r ≥ 0.
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Optimal Error Bound

Now we can simply substitute this interval into the general
piecewise formula. First, e∗1 (0) = −1. Then for r > 1,

r! · e∗r (0) =

r−g(r)
2
−1

Σ
k=0

(−1)k+1 [(ξk+1)
r − (ξk)

r]

+ (−1)
r−g(r)

2

(
ξ r−g(r)

2

)r
If the maximal error er(s;x) of a spline s(f ;x) is less than (the
norm of) this value, s is optimal on W r.
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Optimal Error Bound

Table: |e∗r (0) | for certain values of r.

r |e∗r(0) |

1 1

2 1
4

3 2−
√
2

12

4 3
√
5+8

192

5 17−9
√
3

1920
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Deriving a Bound on the Approximation Error

The exact Taylor expansion of a function f about a is,

µ−1
Σ
k=0

f (k) (a)

k!
(x− a)k +

1

(µ− 1)!

x∫
a

f (µ) (t) (x− t)µ−1 dt

This can be understood as,

(some polynomial) + (a remainder)

and is exactly equal to the function f .
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Deriving a Bound on the Approximation Error

The barycentric coordinates of x with respect to −1 and 1
respectively are,

b0 (x) =
1− x

2

b1 (x) =
x+ 1

2

It follows from this definition that b0 (x) + b1 (x) = 1 for all x.
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Deriving a Bound on the Approximation Error

Now, assume that we have a spline method which reproduces
polynomials of degree µ.

We start by taking the exact Taylor expansion of f about both
endpoints. Call them fa(x) and fb(x). These two expansions
are equal!

Next, we multiply fa(x) by b0(x) and fb(x) by b1(x). We do this
to raise their degree by one. We want them to have degree µ.

Since fa(x) = fb(x),

b0(x) · fa(x) + b1(x) · fb(x)

= [b0(x) + b1(x)] fa(x)

= f(x)
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Deriving a Bound on the Approximation Error

Since they’re equal, we can instead apply our spline to the
Taylor expansions. They are now of the form,

some polynomial of degree µ+ remainder

Since our spline reproduces polynomials of degree µ, it will
reproduce the polynomial part exactly. We are left with,

f(x)− s(f ;x) = remainder1 + remainder2

− s(remainder1, x)− s(remainder2, x)
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Deriving a Bound on the Approximation Error

And it turns out, this can be expressed as,

1∫
−1

f (µ) (t) e [Eµ (t, x) ;x] dt,

where,

e (f ;x) = f (x)− s (f ;x)

and,

Ep (t, x) =


0, t /∈ [−1, 1] ,

b0 (x) (x−t)p−1

(p−1)! , t ∈ [−1, x] ,

−b1 (x) (x−t)p−1

(p−1)! , t ∈ [x, 1] .
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Deriving a Bound on the Approximation Error

Definition. Let,

Qp (t, x) = e [Ep (t, x) ;x]

Now we,

• Notice that the polynomial terms in Ep are reproduced for
p ≤ µ.

• Replace those polynomial terms with their approximations.

• Do lots of algebra.

To find. . .
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Deriving a Bound on the Approximation Error

Qp (t, x) =


r−1
Σ
k=0

Ak
(−1−t)p−k−1

(p−k−1)! , t ∈ [−1, x]

−
r−1
Σ
k=0

Bk
(1−t)p−k−1

(p−k−1)! , t ∈ [x, 1]

Recall:

f(x)− s(f ;x) =

1∫
−1

f (µ) (t)Qµ (t, x) dt
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Deriving a Bound on the Approximation Error

That means,

er(s;x) = sup
f∈W r

|f(x)− s(f ;x)|

= sup
f∈W r

∣∣∣∣∣∣
1∫
−1

f (µ) (t)Qµ (t, x) dt

∣∣∣∣∣∣
Claim.

sup
f∈W r

∣∣∣∣∣∣
1∫
−1

f (µ) (t)Qµ (t, x) dt

∣∣∣∣∣∣ =

1∫
−1

|Qp (t, x)| dt
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Deriving a Bound on the Approximation Error

Proof.

−1 1

−1

1

Qµ(t,x)

f(µ) (t)
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Deriving a Bound on the Approximation Error

If we expand Qµ(t, x) again, this gives us an expression for
er(s;x). This result was already known to Drs. Sorokina and
Borodachov for µ = r − 1. After two changes of variable,

er(s;x) =

0∫
−1−x

∣∣∣∣∣r−1Σ
k=0

Ar−k−1(x)
z(µ−r+k)

(µ− r + k)!

∣∣∣∣∣ dz

+

1−x∫
0

∣∣∣∣∣r−1Σ
k=0

Br−k−1(x)
z(µ−r+k)

(µ− r + k)!

∣∣∣∣∣ dz
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Computed Error Bounds
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Computed Error Bounds
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Leibniz’s Rule

We can also apply Leibniz’s rule,

d

dx

b(x)∫
a(x)

g (t, x) dt =
d

dx
{b (x)} · g (b (x) , x)

− d

dx
{a (x)} · g (a (x) , x)

+

b(x)∫
a(x)

d

dx
g (t, x) dt

to f(x)− s(f ;x) directly.
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Leibniz’s Rule

Since the left and right half of Q(t, x) are equal at t = x, the,

d

dx

{
f (u) (x)

[
Q′µ (x, x)−Q′µ (x, x)

]}
term will cancel leaving us with,

e′ (f ;x) =

1∫
−1

f (µ) (t)
d

dx
{Qµ (t, x)}

Michael Orlitzky Towson University



Leibniz’s Rule

Unfortunately, we can’t rely on this generally:

−1.0 −0.5 0.5 1.0
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Leibniz’s Rule

The maximal error is not necessarily increasing on [−1, 0].
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Leibniz’s Rule

And e∗r(0) can be achieved at points other than the midpoint.
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