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Introduction: Definitions
Everything takes place in a Hilbert space V :

• V is finite-dimensional.
• V is a vector space over the real numbers.
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Introduction: Definitions
Definition (cones).

A cone is a set K such that λK ⊆ K for all λ ≥ 0.

A closed convex cone is a cone that is closed and
convex as a set.

A proper cone is a closed convex cone that has
interior and contains no lines.
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Introduction: Definitions
Definition (dual cone).

The dual cone K∗ of a set K is

K∗ := {y ∈ V | 〈y, x〉 ≥ 0 for all x ∈ K} ,

The dual cone is always a closed convex cone.

If K is a proper cone, then K∗ is too.
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Introduction: Definitions
Definition (positive operator).

The linear operator L is positive on K if

L (K) ⊆ K.

The set of all positive operators on K is π (K).

Example. Nonnegative matrices are π (Rn
+).
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Introduction: Definitions
Definition (complementarity set).

The complementarity set of a cone K is,

C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0} .

Michael Orlitzky UMBC



Introduction: Definitions
Definition (Z-operator).

The linear operator L is a Z-operator on K if

〈L (x), s〉 ≤ 0 for all (x, s) ∈ C (K) .

The set of all Z-operators on K is Z (K).
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Introduction: Definitions
Definition (Lyapunov-like operator).

The linear operator L is Lyapunov-like on K if

〈L (x), s〉 = 0 for all (x, s) ∈ C (K) ,

The set of all Lyapunov-like operators on K is

LL (K) = −Z (K) ∩ Z (K).
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Introduction: Definitions
Definition (Lyapunov rank).

The Lyapunov rank of K is

β (K) = dim (LL (K)) .
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Introduction: Definitions
Motivation.

A cone complementarity problem is to

find (x, f (x)) ∈ C (K) .

This condition gives us β (K) equations.
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Results: Positive & Z-operators
Theorem (Tam, 1977).

If K is a proper cone, then

π (K)∗ = cone (Ext (K∗)⊗ Ext (K)) .

Theorem (Orlitzky, 201X).

If K = cone (G1) and if K∗ = cone (G2), then

π (K)∗ = cone ({s⊗ x | (x, s) ∈ G1 ×G2}) .
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Results: Positive & Z-operators
The algorithm is available in SageMath:

sage: K = Cone([ (1,0), (0,1) ])
sage: K.positive_operators_gens()
[
[1 0] [0 1] [0 0] [0 0]
[0 0], [0 0], [1 0], [0 1]
]
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Results: Positive & Z-operators
Theorem (Schneider & Vidyasagar, 1970).

If K is a proper cone, then π (K) is too.

Theorem (Orlitzky, 201X).

If K is a closed convex cone, then K is proper if
and only if π (K) is proper.
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Results: Positive & Z-operators
Theorem (Tam, 1977).

If K is a proper cone, then K is polyhedral if and
only if π (K) is polyhedral.

Theorem (Orlitzky, 201X).

If K is a closed convex cone, then K is
polyhedral if and only if π (K) is polyhedral.
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Results: Positive & Z-operators
Theorem (Orlitzky, 201X).

If K = cone (G1) and if K∗ = cone (G2), then
Z (K)∗ is the conic hull of

{−s⊗ x | (x, s) ∈ G1 ×G2 and 〈x, s〉 = 0} .

This suggests an algorithm to find Z (K).
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Results: Positive & Z-operators
The algorithm is available in SageMath:

sage: K = Cone([ (1,0), (0,1) ])
sage: K.Z_operators_gens()
[
[ 0 -1] [ 0 0] [-1 0]
[ 0 0], [-1 0], [ 0 0],

[ 1 0] [ 0 0] [ 0 0]
[ 0 0], [ 0 -1], [ 0 1]
]
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Results: Positive & Z-operators
Theorem (Orlitzky, 201X).

If K is a closed convex cone, then K is
polyhedral if and only if Z (K) is polyhedral.

Corollary.

If K is a closed convex cone, then π (K) is
polyhedral if and only if Z (K) is polyhedral.
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Results: Positive & Z-operators
Theorem (Orlitzky, 201X).

If K is a closed convex cone, then

dim (π (K)) = dim (Z (K)) .

“Obvious” for proper K, but not in general.
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Results: Positive & Z-operators
Theorem (Schneider & Vidyasagar, 1970).

If K is proper in Rn and if A ∈ Rn×n, then

A ∈ Z (K) ⇐⇒ e−tA ∈ π (K) for all t ≥ 0.

Theorem (Orlitzky, 201X).

If K is a closed convex cone and L is linear, then

L ∈ Z (K) ⇐⇒ e−tL ∈ π (K) for all t ≥ 0.

Michael Orlitzky Thesis pages 49–52 UMBC
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Results: Improper cone rank
Lemma (Rudolf et al., 2011).

If K is a proper cone, then

L is Lyapunov-like on K

⇐⇒
〈L (x), s〉 = 0 for all x ∈ Ext (K)
and s ∈ Ext (K∗) with 〈x, s〉 = 0.
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Results: Improper cone rank
Lemma (Orlitzky, 2017).

If K = cone (G1) and if K∗ = cone (G2), then

L is Lyapunov-like on K

⇐⇒
〈L (x), s〉 = 0 for all x ∈ G1

and s ∈ G2 with 〈x, s〉 = 0.

We can check a polyhedral cone in finite time.
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Results: Improper cone rank
Most basic results go through to the general case,
but the following (surprisingly) does not.

Proposition (Rudolf et al., 2011).

If K and H are proper cones, then

β (K ×H) = β (K) + β (H) .
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Results: Improper cone rank
Theorem (Orlitzky, 2017).

If K is a closed convex cone in V , then

β (K) = β (KSP ) + lin (K) dim (K)
+ codim (K) dim (V ) .

where KSP is a proper subcone of K in an
appropriate subspace.
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Results: Improper cone rank
The previous theorem provides a shortcut for
computing the Lyapunov rank of improper cones.

Input: A cone K
Output: The Lyapunov rank of K

β ← 0
n← dim (V )
m← dim (K)
l← lin (K)

Michael Orlitzky Thesis page 49 UMBC



Results: Improper cone rank
if m < n then

K ← restrict (K, span (K))
β ← β + (n−m)n

end if

if l > 0 then
K ← restrict (K, span (K∗))
β ← β + lm

end if

return β + card (ll (K)) . K is proper here
Michael Orlitzky Thesis page 49 UMBC



Results: Improper cone rank
And when K is polyhedral, we can run it.

sage: K = random_cone(); K
12-d cone in 34-d lattice N
sage: timeit(’K.lyapunov_like_basis()’)
5 loops, best of 3: 10.8 s per loop
sage: timeit(’K.lyapunov_rank()’)
5 loops, best of 3: 289 ms per loop
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Results: Improper cone rank
Theorem (Gowda and Tao, 2014).

If K is a proper polyhedral cone in Rn, then

1 ≤ β (K) ≤ n and β (K) 6= n− 1.

Theorem (Orlitzky, 2017).

If K is a polyhedral cone in V , then

β (K) 6= dim (V )− 1.
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Results: Improper cone rank
Theorem (Gowda and Tao, 2014).

If K is a proper cone and if L is linear, then the
following are equivalent:

• L is Lyapunov-like on K.
• etL ∈ Aut (K) for all t ∈ R.
• L ∈ Lie (Aut (K)).
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Results: Improper cone rank
Theorem (Orlitzky, 2017).

If K is a closed convex cone and if L is linear,
then the following are equivalent:

• L is Lyapunov-like on K.
• etL ∈ Aut (K) for all t ∈ R.
• L ∈ Lie (Aut (K)).
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Results: Lyapunov rank bound
Theorem (Gowda and Tao, 2014).

If K is a proper cone in an n-dimensional space,
then β (K) ≤ n2 − n.

Michael Orlitzky Thesis page 54 UMBC



Results: Lyapunov rank bound
Theorem (Orlitzky and Gowda, 2016).

If K is a proper cone in an n-dimensional space,
then β (K) ≤ (n− 1)2.

The proof involves constructing an additional
n− 1 elements of LL (K)⊥, beyond the n that
Gowda and Tao constructed.

Michael Orlitzky Thesis pages 55–58 UMBC



Results: Lyapunov rank bound
The theorem relies on a Lemma:

Lemma (Orlitzky and Gowda, 2016).

If K is a proper cone and if its boundary is
contained in a finite union of hyperplanes, then
K is polyhedral.

Michael Orlitzky Thesis pages 55–58 UMBC
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Results: Game theory
A two-person zero-sum matrix game involves

• Two players,
• Two strategies x, y in the unit simplex ∆,
• A matrix to determine the payoff.

The payoff function with respect to A ∈ Rn×n is,

(x, y) 7→ 〈Ax, y〉 .

Michael Orlitzky Thesis page 62 UMBC



Results: Game theory
The first player wants to maximize 〈Ax, y〉, and
the second player wants to minimize it.

The set ∆ is compact and 〈A·, ·〉 is bilinear, so

min
y∈∆

max
x∈∆
〈Ax, y〉

exists, as von Neumann showed.
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Results: Game theory
Matrix games. . .

1. Can be solved by linear programs (von
Neumann, 1944).

2. And conversely (Dantzig in the 1960s).
3. Conversely, really (Adler in 2013).

Michael Orlitzky Thesis page 62 UMBC



Results: Game theory
Thus game theory can provide insight into
optimization problems.

So motivated, Gowda and Ravindran generalized
matrix games to linear games.
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Results: Game theory
A linear game has two players choosing x and y

from a compact base of a self-dual cone K,

x, y ∈ ∆ := {z ∈ K | 〈z, e〉 = 1} .

Here, e ∈ int (K) ensures that ∆ is compact.

The payoff is with respect to a linear operator L:

(x, y) 7→ 〈L (x), y〉 .
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Results: Game theory
Gowda and Ravindran (2015) connect linear
games to cone complementarity problems.

In particular,

• If L is Lyapunov-like on K, or
• If L is Z-operator on K,

then the game’s value has nice properties.

Michael Orlitzky Thesis pages 75–76 UMBC



Results: Game theory
Orlitzky (201X) extends things to K 6= K∗.

The single strategy set ∆ is replaced by ∆1 and
∆2—one set for each player—defined in terms of
e ∈ int (K) and e∗ ∈ int (K∗).

Most results of Gowda and Ravindran generalize.
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Results: Game theory
Theorem (Orlitzky, 201X).

If,

• the value of a linear game is zero, and
• ȳ ∈ int (K∗) for every optimal pair (x̄, ȳ),

then the optimal pair is unique and x̄ ∈ int (K).
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Results: Game theory
Why generalize?

By one of our theorems, player one wants to

maximize ν

subject to x ∈ K
〈x, e∗〉 = 1

ν ∈ R
L (x)− νe ∈ K

Michael Orlitzky Thesis page 65 UMBC



Results: Game theory
Definition.

The primal cone program in standard form is,

minimize 〈b, z〉
subject to M (z)− c ∈ K2

z ∈ K1

where K1 and K2 are closed convex cones.
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Results: Game theory
Theorem (Orlitzky, 201X).

Player one is trying to solve a cone program, and
player two is trying to solve its dual.

(Proof by clever substitution)
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Results: Game theory
We can’t solve cone programs in general.

But we can solve some symmetric cone programs.

Corollary.

If K is a symmetric cone, then the associated
game is solved by a symmetric cone program.

Michael Orlitzky Thesis page 82 UMBC



Results: Game theory
This brings us back to the setting of Gowda and
Ravindran, albeit with two strategy sets ∆1 and
∆2 instead of just ∆.

But it lets us solve linear games numerically.
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Results: Game theory
For example, rock-paper-scissors. . .

>>> L = [ [ 0, 1,-1],
... [-1, 0, 1],
... [ 1,-1, 0] ]
>>> K = NonnegativeOrthant(3)
>>> e2 = e1 = [1,1,1]
>>> G = SymmetricLinearGame(L,K,e1,e2)
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Results: Game theory

>>> print(G.solution())
Game value: 0.0000000
Player 1 optimal:

[0.3333333]
[0.3333333]
[0.3333333]

Player 2 optimal:
[0.3333333]
[0.3333333]
[0.3333333]
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