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Matrix games: Introduction
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Matrix games: Introduction
A two-person game involves two players:

1. Alice
2. Bob

Both players make a move, and then some rule is
applied to determine the winner.

The winner gets a prize.
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Matrix games: Introduction
Example (rock-paper-scissors).

The players choose either rock, paper, or scissors.

• Rock beats scissors
• Scissors beats paper
• Paper beats rock

The loser pays the winner one dollar.
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Matrix games: Introduction
The legal moves and payoffs for this game can be
described by a table (Bob pays Alice):

Alice
rock paper scissors

B
ob

rock 0 1 -1
paper -1 0 1

scissors 1 -1 0
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Matrix games: Introduction
When Alice loses a dollar, we think of it instead
as winning −1 dollars. The winnings of the two
players therefore always sum to zero.

Any game where the winnings of all the players
sum to zero is called a zero-sum game.
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Matrix games: Introduction
These games were introduced and studied by

1. von Neumann and Morgenstern (1944)
2. Kaplansky (1945)
3. Karlin (1959)
4. Dantzig (1963)

(among others)
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Matrix games: Introduction
Problem.

There is no “best” choice in rock-paper-scissors.

If you play rock every time (a pure strategy), I
can beat you.
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Matrix games: Introduction
Solution.

Allow mixed strategies.

A mixed strategy assigns probabilities to the
available moves.

Michael Orlitzky UMBC



Matrix games: Introduction
Example.

Alice plays rock 50% of the time, and paper 50%
of the time.

Bob always plays paper.

Alice’s strategy is mixed. Bob’s strategy is pure.

Michael Orlitzky UMBC



Matrix games: Introduction
The expected payoff (to Alice) in this case is

rock/paper︷ ︸︸ ︷
1
2 · 1 · (−1) +

paper/paper︷ ︸︸ ︷
1
2 · 1 · 0 = −1

2 .

This is nothing but the probability of each
outcome times the payoff for that outcome.
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Matrix games: Introduction
Probability interpretation of mixed strategies:

1. Players assign probabilities to the moves
2. Each player chooses a move randomly
3. Afterwards, we compute the expected payoff

Michael Orlitzky UMBC



Matrix games: Introduction
von Neumann proved that there are always
optimal mixed strategies.

“Optimal” means you would be no better off
doing something else (on average).
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Matrix games: Introduction
von Neumann’s argument is elementary [3], based
on the existence of a min/max on compact sets.

More generally, optimal strategies are guaranteed
by the famous Nash existence theorem.
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Matrix games: Introduction
Problem.

Probabilities and expectations are gross.

Solution.

Use linear algebra instead.
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Matrix games: Introduction
Recall our table for rock-paper-scissors:

Alice
rock paper scissors

B
ob

rock 0 1 -1
paper -1 0 1

scissors 1 -1 0
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Matrix games: Introduction
Clearly we can represent the payoffs by a matrix,

L :=


0 1 −1
−1 0 1

1 −1 0

 .

Problem.

How to find the payoff from the players’ moves?

Michael Orlitzky UMBC



Matrix games: Introduction
Solution.

Identify the moves with standard basis vectors,

rock ∼= e1 := (1, 0, 0)T

paper ∼= e2 := (0, 1, 0)T

scissors ∼= e3 := (0, 0, 1)T . . .
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Matrix games: Introduction
and use a payoff function

p (x, y) = yTLx

that picks out rows/columns of L:

p (ej, ei) = eTi Lej = Lij.
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Matrix games: Introduction
Example.

If Alice plays paper ∼= e2 and Bob plays
rock ∼= e1, then

p (e2, e1) = eT1Le2 = L12 = 1

is the amount that Alice wins.

Michael Orlitzky UMBC



Matrix games: Introduction
So that works for pure strategies.

What about mixed strategies?

Probabilities are simply nonnegative weights
summing to one. Can we assign similar weights
to the basis vectors in our geometric model?
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Matrix games: Introduction
Suppose

x = α1e1 + α2e2 + α3e3

where
αi ≥ 0 and

∑
αi = 1.

Then
x = (α1, α2, α3)T

and x belongs to the convex hull of {e1, e2, e3}.
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Matrix games: Introduction
The scalars αi are the probabilities that Alice
assigns to rock, paper, and scissors, respectively.

Do the same thing for Bob:

y = β1e1 + β2e2 + β3e3 = (β1, β2, β3)T .
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Matrix games: Introduction
Using the bilinearity of our payoff function,

p (x, y) = yTLx

=
3∑
i=1

3∑
j=1

αjβie
T
i Lej

=
3∑
i=1

3∑
j=1

αjβi · p (ej, ei)

is precisely the expected payoff.
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Matrix games: Introduction
Why? If Alice plays ej with probability αj and
Bob plays ei with probability βi, then the term

αjβi · p (ej, ei)

is the payoff p (ej, ei) for that outcome times the
probability αjβi that it occurs.
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Matrix games: Introduction
Moral: our geometric model works for mixed
strategies, too.

Example.

Alice plays rock 50% of the time, and paper 50%
of the time.

Bob always plays paper.
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Matrix games: Introduction
We represent Alice’s strategy as

x = 1
2e1 + 1

2e2 =
(1

2 ,
1
2 , 0

)T
,

or “halfway between rock and paper.”
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Matrix games: Introduction
Similarly, Bob’s strategy is y = (0, 1, 0)T . The
associated payoff is

p (x, y) = yTLx

=
[
0 1 0

] 
0 1 −1
−1 0 1

1 −1 0



1/2
1/2

0



=
[
−1 0 1

] 
1/2
1/2

0

 = −1
2 .
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Matrix games: Introduction
This is the same expected payoff that we
computed previously.

It says that “Bob wins half the time.”
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Matrix games: Introduction
Geometric interpretation of mixed strategies:

1. Both players choose a vector from the convex
hull of the standard basis vectors.

2. We compute the payoff (x, y) 7→ yTLx.

It is equivalent to the probability interpretation.
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Part 1, Section 2

Matrix games: Formality
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Matrix games: Formality
Definition.

The convex hull of a nonempty subset X of V is

conv (X) :=


m∑
i=1

αixi

∣∣∣∣∣∣∣∣∣
xi ∈ X, αi ≥ 0

m ∈ N,
m∑
i=1

αi = 1

 .

The convex hull of X is also the set of all convex
combinations of elements of X.
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Matrix games: Formality
Example. If X =

{
(1, 1)T , (1, 3)T , (2, 2)T

}
,

then the convex hull of X is

(1, 1)

(1, 3)

(2, 2)
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Matrix games: Formality
Definition.

The unit simplex in Rn is the convex hull of the
standard basis,

∆ := conv ({e1, e2, . . . , en}) .
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Matrix games: Formality
The unit simplex in R2:

(0, 1)

(1, 0)
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Matrix games: Formality
The unit simplex in R3:

x y

z

1 1

1

2 2

2
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Matrix games: Formality
Another way to think of the unit simplex is

∆ = {x ∈ Rn
+ | 〈x, e〉 = 1}

where Rn
+ is the nonnegative orthant and

e := (1, 1, . . . , 1)T ,
〈x, e〉 = x1 + x2 + · · ·+ xn.
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Matrix games: Formality
A two-person zero-sum matrix game consists of,

• A matrix L ∈ Rn×n,
• The unit simplex ∆ ⊆ Rn,
• The payoff function (x, y) 7→ yTLx.
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Matrix games: Formality
A matrix game is played as follows:

1. Alice chooses an x ∈ ∆,
2. Bob simultaneously chooses a y ∈ ∆,
3. Then, the payoff is made from Bob to Alice.
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Matrix games: Formality
Each player wants to maximize his or her payoff.

The game is zero-sum, so that goal is equivalent
to minimizing the payoff to his or her opponent.
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Matrix games: Formality
Traditionally one assumes that each player wants
to maximize his worst-case payoff.

That is, he wants to guarantee himself the largest
payoff possible.
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Matrix games: Formality
Thus Alice’s goal is to find

argmax
x∈∆

(
min
y∈∆

(
yTLx

))
,

and Bob’s goal is to find

argmin
y∈∆

(
max
x∈∆

(
yTLx

))
.
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Matrix games: Formality
Theorem (von Neumann, 1944).

There exists a pair (x̄, ȳ) of strategies that
simultaneously solves both of these problems.

Definition. The associated payoff

v (L) := ȳTLx̄

is the value of the game.
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Matrix games: Formality
Theorem (Dantzig, 1951).

Every two-person zero-sum matrix game is solved
by a linear program.
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Matrix games: Formality
Alice wants to:

• Maximize (over x) some number ν,
• Subject to the fact that ν is a lower bound

on her payout,
• And subject to x ∈ ∆.
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Matrix games: Formality
If we translate those goals to a constrained
convex optimization problem, we obtain:

maximize ν

subject to Lx ≥ νe

eTx = 1
x ≥ 0.

This is a linear program in nonstandard form. Its
dual turns out to be Bob’s problem.
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Part 2, Section 3

Linear games: Symmetric
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Linear games: Symmetric
Definition. A symmetric cone is,

• A cone
• Closed
• Convex
• Solid
• Pointed
• Self-dual
• Homogeneous
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Linear games: Symmetric
Definition.

Suppose that K is a cone and B ⊆ K does not
contain the origin. If any nonzero x ∈ K can be
uniquely represented x = λb where λ > 0 and
b ∈ B, then B is a base of K.

In English: a base is a cross-section of the cone.
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Linear games: Symmetric
Observations:

• The strategy set ∆ in the classical case forms
a base for the cone Rn

+.
• The cone Rn

+ is symmetric.
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Linear games: Symmetric
Idea (Gowda and Ravindran[1], 2015).

Why don’t we replace Rn
+ with some other

symmetric cone K, and ∆ with a base of K?

Instead of a matrix, we’ll have a linear operator
L, and the payoff function (x, y) 7→ 〈L (x), y〉.

A lot of stuff still works.
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Linear games: Symmetric
If K is a symmetric cone and e ∈ int (K), then

∆ := {x ∈ K | 〈x, e〉 = 1}

still forms a compact base for K.
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Linear games: Symmetric
As a result, von Neumann’s proof still works.

Theorem.

There exists a pair (x̄, ȳ) ∈ ∆×∆ such that

〈L (x), ȳ〉 ≤ 〈L (x̄), ȳ〉 ≤ 〈L (x̄), y〉

for all (x, y) ∈ ∆×∆.
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Linear games: Symmetric
Ok, but why bother?

In the classical case, Raghavan [2] derived results
for games whose payoff matrix is an M-matrix—a
family related to the Z-matrices and nonnegative
matrices.
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Linear games: Symmetric
Those matrix families have been generalized to
linear operators on closed convex cones, and we
are interested in their properties.

Existing game theory results may provide insight.

In fact, many results survive the generalization.
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Part 2, Section 4

Linear games: Asymmetric
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Linear games: Asymmetric
We can go further!

• The cone doesn’t have to be symmetric.
• The players can have different strategy sets.

Question. But why?

Michael Orlitzky UMBC



Linear games: Asymmetric
Answer. Because why not?

The operator families that we are interested in
are defined for any closed convex cone.

And most things done by Gowda and Ravindran
generalize with little additional work.
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Linear games: Asymmetric
In these games we will consider a proper cone K
with dual K∗. Take two points e1 ∈ int (K) and
e2 ∈ int (K∗), and define the strategy sets,

∆1 := {x ∈ K | 〈x, e2〉 = 1}
∆2 := {y ∈ K∗ | 〈y, e1〉 = 1} .

These are compact bases for their cones.
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Linear games: Asymmetric
This game is played in a familiar manner:

1. Alice chooses an x ∈ ∆1.
2. At the same time, Bob chooses a y ∈ ∆2.
3. Bob pays Alice 〈L (x), y〉.

Once more, we are promised optimal strategies.
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Linear games: Asymmetric
So we have the data:

1. A linear operator L.
2. A proper cone K.
3. A point e1 ∈ int (K).
4. A point e2 ∈ int (K∗).
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Linear games: Asymmetric
And Alice wants to find

argmax
x∈∆1

(
min
y∈∆2

(〈L (x), y〉)
)

and Bob wants to find

argmin
y∈∆2

(
max
x∈∆1

(〈L (x), y〉)
)
.
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Linear games: Asymmetric
That’s all good, but how do we solve them?

Theorem.

In our game,

νe2 − L∗ (ȳ) ∈ K∗ and L (x̄)− νe1 ∈ K

for ν ∈ R if and only if ν is the value of the game
and (x̄, ȳ) is optimal for it.
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Linear games: Asymmetric
From that theorem, Alice’s goal is to

maximize ν

subject to x ∈ K
〈x, e2〉 = 1

ν ∈ R
L (x)− νe1 ∈ K
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Linear games: Asymmetric
Definition.

The primal cone program in standard form is,

minimize 〈b, ξ〉
subject to Λ (ξ)− c ∈ K2

ξ ∈ K1

where K1 and K2 are closed convex cones.
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Linear games: Asymmetric
Theorem.

Alice is trying to solve the primal cone program,
and Bob is trying to solve its dual.

Proof.

Make clever substitutions and then check that
everything works.
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Linear games: Asymmetric
Problem.

We don’t know how to solve cone programs,
either.

We do however know how to solve a few
symmetric cone programs.
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Linear games: Asymmetric
Corollary.

If K is a symmetric cone, then the associated
game is solved by a symmetric cone program.

This brings us back to the setting of Gowda and
Ravindran, albeit with two strategy sets ∆1 and
∆2 instead of just ∆.

Michael Orlitzky UMBC



Part 3, Section 5

Dunshire: CVXOPT

Michael Orlitzky UMBC



Dunshire: CVXOPT
CVXOPT is a free software package for convex
optimization in the Python language.

It uses interior point methods to solve cone
programs.

The solvers are described in The CVXOPT linear
and quadratic cone program solvers, by Lieven
Vandenberghe (2010).
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Dunshire: CVXOPT
The CVXOPT conelp solver can solve a cone
program over a cartesian product of,

• The nonnegative orthant.
• The Lorentz ice-cream cone.
• The symmetric positive semidefinite cone.
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Dunshire: CVXOPT
Problem.

CVXOPT expects this primal problem:

minimize cTx
subject to Gx+ s = h

Ax = b

s ∈ C.
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Dunshire: CVXOPT
Solution. Divine inspiration: let,

C = K ×K
x = (ν, p)T

b = 1, h = 0
c = (−1, 0)T

A =
[
0 eT2

]
G =

 0 −I
e1 −L

 .
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Dunshire: CVXOPT
Then the CVXOPT problem becomes,

minimize −ν
subject to p = s1

Lp− νe1 = s2

〈e2, p〉 = 1s1
s2

 ∈
K
K

 .
This is Alice’s problem in the variable p.
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Dunshire: CVXOPT
Since s1, s2 ∈ K are arbitrary, the constraint

p = s1

simply means that p ∈ K. The same goes for

Lp− νe1 = s2 ∈ K.
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Dunshire: CVXOPT
Thus we have presented Alice’s goal to CVXOPT:

maximize ν

subject to p ∈ K
Lp− νe1 ∈ K
〈e2, p〉 = 1.

Its dual is Bob’s goal as we would hope.
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Part 3, Section 6

Dunshire: The library
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Dunshire: The library
Dunshire is a Python library for solving linear
games over symmetric cones.

It uses CVXOPT, but performs the tedious pre-
and post-processing for you.
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Dunshire: The library
Dunshire gives you access to the symmetric cones
that CVXOPT can handle.

>>> from dunshire import *
>>> K1 = NonnegativeOrthant(5)
>>> print(K1)
Nonnegative orthant in the real 5-space
>>> K2 = IceCream(2)
>>> print(K2)
Lorentz "ice cream" cone in the real 2-space
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Dunshire: The library

>>> K3 = SymmetricPSD(7)
>>> print(K3)
Cone of symmetric positive-semidefinite
matrices on the real 7-space

Cartesian products can be created, too:

>>> K = CartesianProduct(K1, K2, K3)
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Dunshire: The library
Let’s solve rock-paper-scissors!

Dunshire requires four data,

• A linear operator L.
• A symmetric cone K.
• A point e1 ∈ int (K).
• A point e2 ∈ int (K) = int (K∗).
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Dunshire: The library
First we set up the problem. . .

>>> L = [ [ 0, 1,-1],
... [-1, 0, 1],
... [ 1,-1, 0] ]
>>> K = NonnegativeOrthant(3)
>>> e2 = e1 = [1,1,1]
>>> G = SymmetricLinearGame(L,K,e1,e2)

Then, we solve it.
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Dunshire: The library

>>> print(G.solution())
Game value: 0.0000000
Player 1 optimal:

[0.3333333]
[0.3333333]
[0.3333333]

Player 2 optimal:
[0.3333333]
[0.3333333]
[0.3333333]
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Dunshire: The library
As we all know, nobody wins rock-paper-scissors
on average—the expected payoff is zero.

The optimal strategy is to choose randomly
between the options, each with probability 1

3 .
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Dunshire: The library
Of course, solving linear programs is nothing new.
So let’s switch to the Lorentz ice-cream cone:

>>> from dunshire import *
>>> L = [[1,-1,12],[0,1,22],[-17,1,0]]
>>> K = IceCream(3)
>>> e1 = [1, 1/2, 1/4]
>>> e2 = [1, 1/4, 1/2]
>>> G = SymmetricLinearGame(L,K,e1,e2)
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Dunshire: The library

>>> print(G.solution())
Game value: -11.4912789
Player 1 optimal:

[0.7403323]
[0.7233499]
[0.1576604]

Player 2 optimal:
[ 1.2547399]
[-0.9304062]
[ 0.8418529]
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Dunshire: The library
Dunshire can catch common mistakes:

>>> from dunshire import *
>>> L = [[1,0],[0,1]]
>>> K = NonnegativeOrthant(2)
>>> e2 = e1 = [-1,1]
>>> G = SymmetricLinearGame(L,K,e1,e2)
Traceback (most recent call last):
...
ValueError: the point e1 must lie in the
interior of K
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Dunshire: The library
Caveat.

The concept of “interior” is meaningless when
working with floating point numbers.

If the distance between x ∈ K and bdy (K) is
10−12, does x lie in the interior of K?

Both answers lead to contradictions.
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Part 3, Section 7

Dunshire: Starting points
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Dunshire: Starting points
Most optimization algorithms need a starting
point, where the search begins.

In our case, we have access to a decent starting
point given to us in the problem data.
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Dunshire: Starting points
Recall Alice’s problem:

maximize ν

subject to x ∈ K
〈x, e2〉 = 1

ν ∈ R
L (x)− νe1 ∈ K

We need a feasible ν and x for this problem.
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Dunshire: Starting points
All we need is for ν, x to satisfy

x ∈ K
〈x, e2〉 = 1

L (x)− νe1 ∈ K.

But we already know that e2 ∈ K, so a multiple
of e2 is a good candidate.
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Dunshire: Starting points
If we let x = αe2, then

〈x, e2〉 = α ‖e2‖2 = 1 =⇒ α = 1
‖e2‖2 ,

and thus
x = αe2 = e2

‖e2‖2 ∈ K.
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Dunshire: Starting points
Now the other constraint was,

L (x)− νe1 ∈ K.

Assume that ν > 0 and divide,

L (x)− νe1 ∈ K
m

L (e2)
ν ‖e2‖2 − e1 ∈ K.
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Dunshire: Starting points
Let d (e1, K

c) be the distance from e1 to the
outside of K. Since e1 ∈ int (K),

L (e2)
ν ‖e2‖2 − e1 ∈ K

can be satisfied if we make∥∥∥∥∥∥ L (e2)
ν ‖e2‖2

∥∥∥∥∥∥ ≤ d (e1, K
c) .
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Dunshire: Starting points
If we arrange the scalar factors just right, then∥∥∥∥∥∥L

 e2

‖e2‖

∥∥∥∥∥∥ ≤ ‖L‖2 .

Rearranging, we find,

ν ≥ ‖L‖2
d (e1, Kc) ‖e2‖

.

Michael Orlitzky UMBC



Dunshire: Starting points
But isn’t computing d (e1, K

c) difficult?

In general, yes, but not for us!
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Dunshire: Starting points
Example. When K = Rn

+, we just need the
smallest coordinate of e1:

e1 = (2, 1)

d (e1, K
c) = 1
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Dunshire: Starting points
For safety, we throw in another factor of two:

>>> from dunshire import *
>>> from cvxopt import matrix
>>> e1 = matrix([2,1])
>>> K = NonnegativeOrthant(2)
>>> K.ball_radius(e1)
0.5
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Dunshire: Starting points
Example. The ice-cream cone falls to basic
trigonometry:

e 1
=
( 1

2
,
3

2
)

h = 3
2 −

1
2 = 1

d (e1, K
c) = h · cos

(
π
4
)
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Dunshire: Starting points
Rather than involve cos

(
π
4
)

=
√

2
2 , we multiply h

by 1
2 <

√
2

2 instead to get a safe distance:

>>> from dunshire import *
>>> from cvxopt import matrix
>>> e1 = matrix([3/2, 1/2])
>>> K = IceCream(2)
>>> K.ball_radius(e1)
0.5
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Dunshire: Starting points
Proposition (Sossa, 2014).

Let V be an EJA with scaling factor θ := 〈e,e〉
trace(e) ,

and let Ω = λ−1 (Q) be a spectral set. Then for
all x ∈ V ,

1√
θ
d (x,Ω) = inf

u∈Q
‖λ (x)− u‖2 .

Applied to x ∈ K and Ω = bdy (K), this means
we just need to find the smallest eigenvalue of x.
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Part 3, Section 8

Dunshire: The future
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Dunshire: The future
Missing: the Symmetric PSD cone.

Not hard, but requires a different representation
than the other two cones.
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Dunshire: The future
Missing: Cartesian products in the default order.

CVXOPT supports cartesian products, but only
in a particular order. Once Sn+ is implemented,
this should be easy.
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Dunshire: The future
Missing: Cartesian products in arbitrary order.

We can reorder any Cartesian product with
isomorphisms, but then we need to pre- and
post-process the data/solution.
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Part 4, Section 9

Applications: Confirm theory
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Applications: Confirm theory
Theorem. Every game has a solution.

>>> from test.randomgen import *
>>> G = random_orthant_game()
>>> G.solution().game_value()
-0.03335527701955072
>>> G = random_icecream_game()
>>> G.solution().game_value()
3.5685813042518917
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Applications: Confirm theory
Proposition. The value of the game for αL is
α ≥ 0 times the value of the game for L.

>>> from test.randomgen import *
>>> G = random_game()
>>> (alpha, H) = random_nn_scaling(G)
>>> val1 = alpha*G.solution().game_value()
>>> val2 = H.solution().game_value()
>>> val1 - val2
6.155475018587708e-10
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Applications: Confirm theory
Proposition. The value for L+ α (e1 ⊗ e2) is α
plus the value for L.

>>> from test.randomgen import *
>>> G = random_game()
>>> (alpha, H) = random_translation(G)
>>> val1 = alpha + G.solution().game_value()
>>> val2 = H.solution().game_value()
>>> val1 - val2
7.506487015307428e-09
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Applications: Confirm theory
Proposition. The value of (L,K, e1, e2) is
negative the value of (−L∗, K, e2, e1).

>>> from test.randomgen import *
>>> G = random_game()
>>> H = SymmetricLinearGame(-G.L(), G.K(),
... G.e2(), G.e1())
>>> val1 = G.solution().game_value()
>>> val2 = H.solution().game_value()
>>> val1 + val2
1.7701395904623496e-12
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Applications: Confirm theory
Proposition. The value of a Lyapunov game
(L is Lyapunov-like) is the same as its dual.

>>> from test.randomgen import *
>>> G = random_ll_game()
>>> H = G.dual()
>>> val1 = G.solution().game_value()
>>> val2 = H.solution().game_value()
>>> val1 - val2
-2.942365862068641e-08
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Part 4, Section 10

Applications: Find S-operators
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Applications: Find S-operators
Definition.

L is an S-operator on K if there is a d ∈ int (K)
such that L (d) ∈ int (K).

S-operators are important for complementarity
problems, but we don’t know how to find them.

Michael Orlitzky UMBC



Applications: Find S-operators
Proposition.

L is an S-operator on K if and only if the value
of the game (L,K, e1, e2) is positive.
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Applications: Find S-operators
Example.

The matrix
L :=

 1 2
−3 4


is an S-operator on the ice-cream cone in R2.
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Applications: Find S-operators
Proof.

>>> from dunshire import *
>>> L = [[1, 2], [-3, 4]]
>>> K = IceCream(2)
>>> e1 = [1, 1/2]
>>> e2 = e1
>>> G = SymmetricLinearGame(L, K, e1, e2)
>>> G.solution().game_value()
1.777777803973679
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