
Solving linear games with cone programs

Michael Orlitzky

Michael Orlitzky UMBC

Part 1, Section 1

Matrix games: Introduction

Michael Orlitzky UMBC

Matrix games: Introduction
A two-person game involves two players:

1. Alice
2. Bob

Both players make a move, and then some rule is
applied to determine the winner.

The winner gets a prize.

Michael Orlitzky UMBC

Matrix games: Introduction
Example (rock-paper-scissors).

The players choose either rock, paper, or scissors.

• Rock beats scissors
• Scissors beats paper
• Paper beats rock

The loser pays the winner one dollar.

Michael Orlitzky UMBC

Matrix games: Introduction
The legal moves and payoffs for this game can be
described by a table (Bob pays Alice):

Alice
rock paper scissors

B
ob

rock 0 1 -1
paper -1 0 1

scissors 1 -1 0

Michael Orlitzky UMBC

Matrix games: Introduction
When Alice loses a dollar, we think of it instead
as winning −1 dollars. The winnings of the two
players therefore always sum to zero.

Any game where the winnings of all the players
sum to zero is called a zero-sum game.

Michael Orlitzky UMBC

Matrix games: Introduction
These games were introduced and studied by

1. von Neumann and Morgenstern (1944)
2. Kaplansky (1945)
3. Karlin (1959)
4. Dantzig (1963)

(among others)

Michael Orlitzky UMBC

Matrix games: Introduction
Problem.

There is no “best” choice in rock-paper-scissors.

If you play rock every time (a pure strategy), I
can beat you.

Michael Orlitzky UMBC

Matrix games: Introduction
Solution.

Allow mixed strategies.

A mixed strategy assigns probabilities to the
available moves.

Michael Orlitzky UMBC

Matrix games: Introduction
Example.

Alice plays rock 50% of the time, and paper 50%
of the time.

Bob always plays paper.

Alice’s strategy is mixed. Bob’s strategy is pure.

Michael Orlitzky UMBC

Matrix games: Introduction
The expected payoff (to Alice) in this case is

rock/paper︷ ︸︸ ︷
1
2 · 1 · (−1) +

paper/paper︷ ︸︸ ︷
1
2 · 1 · 0 = −1

2 .

This is nothing but the probability of each
outcome times the payoff for that outcome.

Michael Orlitzky UMBC

Matrix games: Introduction
Probability interpretation of mixed strategies:

1. Players assign probabilities to the moves
2. Each player chooses a move randomly
3. Afterwards, we compute the expected payoff

Michael Orlitzky UMBC

Matrix games: Introduction
von Neumann proved that there are always
optimal mixed strategies.

“Optimal” means you would be no better off
doing something else (on average).

Michael Orlitzky UMBC

Matrix games: Introduction
von Neumann’s argument is elementary [3], based
on the existence of a min/max on compact sets.

More generally, optimal strategies are guaranteed
by the famous Nash existence theorem.

Michael Orlitzky UMBC

Matrix games: Introduction
Problem.

Probabilities and expectations are gross.

Solution.

Use linear algebra instead.

Michael Orlitzky UMBC

Matrix games: Introduction
Recall our table for rock-paper-scissors:

Alice
rock paper scissors

B
ob

rock 0 1 -1
paper -1 0 1

scissors 1 -1 0

Michael Orlitzky UMBC

Matrix games: Introduction
Clearly we can represent the payoffs by a matrix,

L :=

0 1 −1
−1 0 1

1 −1 0

 .

Problem.

How to find the payoff from the players’ moves?

Michael Orlitzky UMBC

Matrix games: Introduction
Solution.

Identify the moves with standard basis vectors,

rock ∼= e1 := (1, 0, 0)T

paper ∼= e2 := (0, 1, 0)T

scissors ∼= e3 := (0, 0, 1)T . . .

Michael Orlitzky UMBC

Matrix games: Introduction
and use a payoff function

p (x, y) = yTLx

that picks out rows/columns of L:

p (ej, ei) = eTi Lej = Lij.

Michael Orlitzky UMBC

Matrix games: Introduction
Example.

If Alice plays paper ∼= e2 and Bob plays
rock ∼= e1, then

p (e2, e1) = eT1Le2 = L12 = 1

is the amount that Alice wins.

Michael Orlitzky UMBC

Matrix games: Introduction
So that works for pure strategies.

What about mixed strategies?

Probabilities are simply nonnegative weights
summing to one. Can we assign similar weights
to the basis vectors in our geometric model?

Michael Orlitzky UMBC

Matrix games: Introduction
Suppose

x = α1e1 + α2e2 + α3e3

where
αi ≥ 0 and

∑
αi = 1.

Then
x = (α1, α2, α3)T

and x belongs to the convex hull of {e1, e2, e3}.

Michael Orlitzky UMBC

Matrix games: Introduction
The scalars αi are the probabilities that Alice
assigns to rock, paper, and scissors, respectively.

Do the same thing for Bob:

y = β1e1 + β2e2 + β3e3 = (β1, β2, β3)T .

Michael Orlitzky UMBC

Matrix games: Introduction
Using the bilinearity of our payoff function,

p (x, y) = yTLx

=
3∑
i=1

3∑
j=1

αjβie
T
i Lej

=
3∑
i=1

3∑
j=1

αjβi · p (ej, ei)

is precisely the expected payoff.

Michael Orlitzky UMBC

Matrix games: Introduction
Why? If Alice plays ej with probability αj and
Bob plays ei with probability βi, then the term

αjβi · p (ej, ei)

is the payoff p (ej, ei) for that outcome times the
probability αjβi that it occurs.

Michael Orlitzky UMBC

Matrix games: Introduction
Moral: our geometric model works for mixed
strategies, too.

Example.

Alice plays rock 50% of the time, and paper 50%
of the time.

Bob always plays paper.

Michael Orlitzky UMBC

Matrix games: Introduction
We represent Alice’s strategy as

x = 1
2e1 + 1

2e2 =
(1

2 ,
1
2 , 0

)T
,

or “halfway between rock and paper.”

Michael Orlitzky UMBC

Matrix games: Introduction
Similarly, Bob’s strategy is y = (0, 1, 0)T . The
associated payoff is

p (x, y) = yTLx

=
[
0 1 0

]
0 1 −1
−1 0 1

1 −1 0

1/2
1/2

0

=
[
−1 0 1

]
1/2
1/2

0

 = −1
2 .

Michael Orlitzky UMBC

Matrix games: Introduction
This is the same expected payoff that we
computed previously.

It says that “Bob wins half the time.”

Michael Orlitzky UMBC

Matrix games: Introduction
Geometric interpretation of mixed strategies:

1. Both players choose a vector from the convex
hull of the standard basis vectors.

2. We compute the payoff (x, y) 7→ yTLx.

It is equivalent to the probability interpretation.

Michael Orlitzky UMBC

Part 1, Section 2

Matrix games: Formality

Michael Orlitzky UMBC

Matrix games: Formality
Definition.

The convex hull of a nonempty subset X of V is

conv (X) :=

m∑
i=1

αixi

∣∣∣∣∣∣∣∣∣
xi ∈ X, αi ≥ 0

m ∈ N,
m∑
i=1

αi = 1

 .

The convex hull of X is also the set of all convex
combinations of elements of X.

Michael Orlitzky UMBC

Matrix games: Formality
Example. If X =

{
(1, 1)T , (1, 3)T , (2, 2)T

}
,

then the convex hull of X is

(1, 1)

(1, 3)

(2, 2)

Michael Orlitzky UMBC

Matrix games: Formality
Definition.

The unit simplex in Rn is the convex hull of the
standard basis,

∆ := conv ({e1, e2, . . . , en}) .

Michael Orlitzky UMBC

Matrix games: Formality
The unit simplex in R2:

(0, 1)

(1, 0)

Michael Orlitzky UMBC

Matrix games: Formality
The unit simplex in R3:

x y

z

1 1

1

2 2

2

Michael Orlitzky UMBC

Matrix games: Formality
Another way to think of the unit simplex is

∆ = {x ∈ Rn
+ | 〈x, e〉 = 1}

where Rn
+ is the nonnegative orthant and

e := (1, 1, . . . , 1)T ,
〈x, e〉 = x1 + x2 + · · ·+ xn.

Michael Orlitzky UMBC

Matrix games: Formality
A two-person zero-sum matrix game consists of,

• A matrix L ∈ Rn×n,
• The unit simplex ∆ ⊆ Rn,
• The payoff function (x, y) 7→ yTLx.

Michael Orlitzky UMBC

Matrix games: Formality
A matrix game is played as follows:

1. Alice chooses an x ∈ ∆,
2. Bob simultaneously chooses a y ∈ ∆,
3. Then, the payoff is made from Bob to Alice.

Michael Orlitzky UMBC

Matrix games: Formality
Each player wants to maximize his or her payoff.

The game is zero-sum, so that goal is equivalent
to minimizing the payoff to his or her opponent.

Michael Orlitzky UMBC

Matrix games: Formality
Traditionally one assumes that each player wants
to maximize his worst-case payoff.

That is, he wants to guarantee himself the largest
payoff possible.

Michael Orlitzky UMBC

Matrix games: Formality
Thus Alice’s goal is to find

argmax
x∈∆

(
min
y∈∆

(
yTLx

))
,

and Bob’s goal is to find

argmin
y∈∆

(
max
x∈∆

(
yTLx

))
.

Michael Orlitzky UMBC

Matrix games: Formality
Theorem (von Neumann, 1944).

There exists a pair (x̄, ȳ) of strategies that
simultaneously solves both of these problems.

Definition. The associated payoff

v (L) := ȳTLx̄

is the value of the game.

Michael Orlitzky UMBC

Matrix games: Formality
Theorem (Dantzig, 1951).

Every two-person zero-sum matrix game is solved
by a linear program.

Michael Orlitzky UMBC

Matrix games: Formality
Alice wants to:

• Maximize (over x) some number ν,
• Subject to the fact that ν is a lower bound

on her payout,
• And subject to x ∈ ∆.

Michael Orlitzky UMBC

Matrix games: Formality
If we translate those goals to a constrained
convex optimization problem, we obtain:

maximize ν

subject to Lx ≥ νe

eTx = 1
x ≥ 0.

This is a linear program in nonstandard form. Its
dual turns out to be Bob’s problem.

Michael Orlitzky UMBC

Part 2, Section 3

Linear games: Symmetric

Michael Orlitzky UMBC

Linear games: Symmetric
Definition. A symmetric cone is,

• A cone
• Closed
• Convex
• Solid
• Pointed
• Self-dual
• Homogeneous

Michael Orlitzky UMBC

Linear games: Symmetric
Definition.

Suppose that K is a cone and B ⊆ K does not
contain the origin. If any nonzero x ∈ K can be
uniquely represented x = λb where λ > 0 and
b ∈ B, then B is a base of K.

In English: a base is a cross-section of the cone.

Michael Orlitzky UMBC

Linear games: Symmetric
Observations:

• The strategy set ∆ in the classical case forms
a base for the cone Rn

+.
• The cone Rn

+ is symmetric.

Michael Orlitzky UMBC

Linear games: Symmetric
Idea (Gowda and Ravindran[1], 2015).

Why don’t we replace Rn
+ with some other

symmetric cone K, and ∆ with a base of K?

Instead of a matrix, we’ll have a linear operator
L, and the payoff function (x, y) 7→ 〈L (x), y〉.

A lot of stuff still works.

Michael Orlitzky UMBC

Linear games: Symmetric
If K is a symmetric cone and e ∈ int (K), then

∆ := {x ∈ K | 〈x, e〉 = 1}

still forms a compact base for K.

Michael Orlitzky UMBC

Linear games: Symmetric
As a result, von Neumann’s proof still works.

Theorem.

There exists a pair (x̄, ȳ) ∈ ∆×∆ such that

〈L (x), ȳ〉 ≤ 〈L (x̄), ȳ〉 ≤ 〈L (x̄), y〉

for all (x, y) ∈ ∆×∆.

Michael Orlitzky UMBC

Linear games: Symmetric
Ok, but why bother?

In the classical case, Raghavan [2] derived results
for games whose payoff matrix is an M-matrix—a
family related to the Z-matrices and nonnegative
matrices.

Michael Orlitzky UMBC

Linear games: Symmetric
Those matrix families have been generalized to
linear operators on closed convex cones, and we
are interested in their properties.

Existing game theory results may provide insight.

In fact, many results survive the generalization.

Michael Orlitzky UMBC

Part 2, Section 4

Linear games: Asymmetric

Michael Orlitzky UMBC

Linear games: Asymmetric
We can go further!

• The cone doesn’t have to be symmetric.
• The players can have different strategy sets.

Question. But why?

Michael Orlitzky UMBC

Linear games: Asymmetric
Answer. Because why not?

The operator families that we are interested in
are defined for any closed convex cone.

And most things done by Gowda and Ravindran
generalize with little additional work.

Michael Orlitzky UMBC

Linear games: Asymmetric
In these games we will consider a proper cone K
with dual K∗. Take two points e1 ∈ int (K) and
e2 ∈ int (K∗), and define the strategy sets,

∆1 := {x ∈ K | 〈x, e2〉 = 1}
∆2 := {y ∈ K∗ | 〈y, e1〉 = 1} .

These are compact bases for their cones.

Michael Orlitzky UMBC

Linear games: Asymmetric
This game is played in a familiar manner:

1. Alice chooses an x ∈ ∆1.
2. At the same time, Bob chooses a y ∈ ∆2.
3. Bob pays Alice 〈L (x), y〉.

Once more, we are promised optimal strategies.

Michael Orlitzky UMBC

Linear games: Asymmetric
So we have the data:

1. A linear operator L.
2. A proper cone K.
3. A point e1 ∈ int (K).
4. A point e2 ∈ int (K∗).

Michael Orlitzky UMBC

Linear games: Asymmetric
And Alice wants to find

argmax
x∈∆1

(
min
y∈∆2

(〈L (x), y〉)
)

and Bob wants to find

argmin
y∈∆2

(
max
x∈∆1

(〈L (x), y〉)
)
.

Michael Orlitzky UMBC

Linear games: Asymmetric
That’s all good, but how do we solve them?

Theorem.

In our game,

νe2 − L∗ (ȳ) ∈ K∗ and L (x̄)− νe1 ∈ K

for ν ∈ R if and only if ν is the value of the game
and (x̄, ȳ) is optimal for it.

Michael Orlitzky UMBC

Linear games: Asymmetric
From that theorem, Alice’s goal is to

maximize ν

subject to x ∈ K
〈x, e2〉 = 1

ν ∈ R
L (x)− νe1 ∈ K

Michael Orlitzky UMBC

Linear games: Asymmetric
Definition.

The primal cone program in standard form is,

minimize 〈b, ξ〉
subject to Λ (ξ)− c ∈ K2

ξ ∈ K1

where K1 and K2 are closed convex cones.

Michael Orlitzky UMBC

Linear games: Asymmetric
Theorem.

Alice is trying to solve the primal cone program,
and Bob is trying to solve its dual.

Proof.

Make clever substitutions and then check that
everything works.

Michael Orlitzky UMBC

Linear games: Asymmetric
Problem.

We don’t know how to solve cone programs,
either.

We do however know how to solve a few
symmetric cone programs.

Michael Orlitzky UMBC

Linear games: Asymmetric
Corollary.

If K is a symmetric cone, then the associated
game is solved by a symmetric cone program.

This brings us back to the setting of Gowda and
Ravindran, albeit with two strategy sets ∆1 and
∆2 instead of just ∆.

Michael Orlitzky UMBC

Part 3, Section 5

Dunshire: CVXOPT

Michael Orlitzky UMBC

Dunshire: CVXOPT
CVXOPT is a free software package for convex
optimization in the Python language.

It uses interior point methods to solve cone
programs.

The solvers are described in The CVXOPT linear
and quadratic cone program solvers, by Lieven
Vandenberghe (2010).

Michael Orlitzky UMBC

Dunshire: CVXOPT
The CVXOPT conelp solver can solve a cone
program over a cartesian product of,

• The nonnegative orthant.
• The Lorentz ice-cream cone.
• The symmetric positive semidefinite cone.

Michael Orlitzky UMBC

Dunshire: CVXOPT
Problem.

CVXOPT expects this primal problem:

minimize cTx
subject to Gx+ s = h

Ax = b

s ∈ C.

Michael Orlitzky UMBC

Dunshire: CVXOPT
Solution. Divine inspiration: let,

C = K ×K
x = (ν, p)T

b = 1, h = 0
c = (−1, 0)T

A =
[
0 eT2

]
G =

 0 −I
e1 −L

 .

Michael Orlitzky UMBC

Dunshire: CVXOPT
Then the CVXOPT problem becomes,

minimize −ν
subject to p = s1

Lp− νe1 = s2

〈e2, p〉 = 1s1
s2

 ∈
K
K

 .
This is Alice’s problem in the variable p.

Michael Orlitzky UMBC

Dunshire: CVXOPT
Since s1, s2 ∈ K are arbitrary, the constraint

p = s1

simply means that p ∈ K. The same goes for

Lp− νe1 = s2 ∈ K.

Michael Orlitzky UMBC

Dunshire: CVXOPT
Thus we have presented Alice’s goal to CVXOPT:

maximize ν

subject to p ∈ K
Lp− νe1 ∈ K
〈e2, p〉 = 1.

Its dual is Bob’s goal as we would hope.

Michael Orlitzky UMBC

Part 3, Section 6

Dunshire: The library

Michael Orlitzky UMBC

Dunshire: The library
Dunshire is a Python library for solving linear
games over symmetric cones.

It uses CVXOPT, but performs the tedious pre-
and post-processing for you.

Michael Orlitzky UMBC

Dunshire: The library
Dunshire gives you access to the symmetric cones
that CVXOPT can handle.

>>> from dunshire import *
>>> K1 = NonnegativeOrthant(5)
>>> print(K1)
Nonnegative orthant in the real 5-space
>>> K2 = IceCream(2)
>>> print(K2)
Lorentz "ice cream" cone in the real 2-space

Michael Orlitzky UMBC

Dunshire: The library

>>> K3 = SymmetricPSD(7)
>>> print(K3)
Cone of symmetric positive-semidefinite
matrices on the real 7-space

Cartesian products can be created, too:

>>> K = CartesianProduct(K1, K2, K3)

Michael Orlitzky UMBC

Dunshire: The library
Let’s solve rock-paper-scissors!

Dunshire requires four data,

• A linear operator L.
• A symmetric cone K.
• A point e1 ∈ int (K).
• A point e2 ∈ int (K) = int (K∗).

Michael Orlitzky UMBC

Dunshire: The library
First we set up the problem. . .

>>> L = [[0, 1,-1],
... [-1, 0, 1],
... [1,-1, 0]]
>>> K = NonnegativeOrthant(3)
>>> e2 = e1 = [1,1,1]
>>> G = SymmetricLinearGame(L,K,e1,e2)

Then, we solve it.

Michael Orlitzky UMBC

Dunshire: The library

>>> print(G.solution())
Game value: 0.0000000
Player 1 optimal:

[0.3333333]
[0.3333333]
[0.3333333]

Player 2 optimal:
[0.3333333]
[0.3333333]
[0.3333333]

Michael Orlitzky UMBC

Dunshire: The library
As we all know, nobody wins rock-paper-scissors
on average—the expected payoff is zero.

The optimal strategy is to choose randomly
between the options, each with probability 1

3 .

Michael Orlitzky UMBC

Dunshire: The library
Of course, solving linear programs is nothing new.
So let’s switch to the Lorentz ice-cream cone:

>>> from dunshire import *
>>> L = [[1,-1,12],[0,1,22],[-17,1,0]]
>>> K = IceCream(3)
>>> e1 = [1, 1/2, 1/4]
>>> e2 = [1, 1/4, 1/2]
>>> G = SymmetricLinearGame(L,K,e1,e2)

Michael Orlitzky UMBC

Dunshire: The library

>>> print(G.solution())
Game value: -11.4912789
Player 1 optimal:

[0.7403323]
[0.7233499]
[0.1576604]

Player 2 optimal:
[1.2547399]
[-0.9304062]
[0.8418529]

Michael Orlitzky UMBC

Dunshire: The library
Dunshire can catch common mistakes:

>>> from dunshire import *
>>> L = [[1,0],[0,1]]
>>> K = NonnegativeOrthant(2)
>>> e2 = e1 = [-1,1]
>>> G = SymmetricLinearGame(L,K,e1,e2)
Traceback (most recent call last):
...
ValueError: the point e1 must lie in the
interior of K

Michael Orlitzky UMBC

Dunshire: The library
Caveat.

The concept of “interior” is meaningless when
working with floating point numbers.

If the distance between x ∈ K and bdy (K) is
10−12, does x lie in the interior of K?

Both answers lead to contradictions.

Michael Orlitzky UMBC

Part 3, Section 7

Dunshire: Starting points

Michael Orlitzky UMBC

Dunshire: Starting points
Most optimization algorithms need a starting
point, where the search begins.

In our case, we have access to a decent starting
point given to us in the problem data.

Michael Orlitzky UMBC

Dunshire: Starting points
Recall Alice’s problem:

maximize ν

subject to x ∈ K
〈x, e2〉 = 1

ν ∈ R
L (x)− νe1 ∈ K

We need a feasible ν and x for this problem.

Michael Orlitzky UMBC

Dunshire: Starting points
All we need is for ν, x to satisfy

x ∈ K
〈x, e2〉 = 1

L (x)− νe1 ∈ K.

But we already know that e2 ∈ K, so a multiple
of e2 is a good candidate.

Michael Orlitzky UMBC

Dunshire: Starting points
If we let x = αe2, then

〈x, e2〉 = α ‖e2‖2 = 1 =⇒ α = 1
‖e2‖2 ,

and thus
x = αe2 = e2

‖e2‖2 ∈ K.

Michael Orlitzky UMBC

Dunshire: Starting points
Now the other constraint was,

L (x)− νe1 ∈ K.

Assume that ν > 0 and divide,

L (x)− νe1 ∈ K
m

L (e2)
ν ‖e2‖2 − e1 ∈ K.

Michael Orlitzky UMBC

Dunshire: Starting points
Let d (e1, K

c) be the distance from e1 to the
outside of K. Since e1 ∈ int (K),

L (e2)
ν ‖e2‖2 − e1 ∈ K

can be satisfied if we make∥∥∥∥∥∥ L (e2)
ν ‖e2‖2

∥∥∥∥∥∥ ≤ d (e1, K
c) .

Michael Orlitzky UMBC

Dunshire: Starting points
If we arrange the scalar factors just right, then∥∥∥∥∥∥L

 e2

‖e2‖

∥∥∥∥∥∥ ≤ ‖L‖2 .

Rearranging, we find,

ν ≥ ‖L‖2
d (e1, Kc) ‖e2‖

.

Michael Orlitzky UMBC

Dunshire: Starting points
But isn’t computing d (e1, K

c) difficult?

In general, yes, but not for us!

Michael Orlitzky UMBC

Dunshire: Starting points
Example. When K = Rn

+, we just need the
smallest coordinate of e1:

e1 = (2, 1)

d (e1, K
c) = 1

Michael Orlitzky UMBC

Dunshire: Starting points
For safety, we throw in another factor of two:

>>> from dunshire import *
>>> from cvxopt import matrix
>>> e1 = matrix([2,1])
>>> K = NonnegativeOrthant(2)
>>> K.ball_radius(e1)
0.5

Michael Orlitzky UMBC

Dunshire: Starting points
Example. The ice-cream cone falls to basic
trigonometry:

e 1
=
(1

2
,
3

2
)

h = 3
2 −

1
2 = 1

d (e1, K
c) = h · cos

(
π
4
)

Michael Orlitzky UMBC

Dunshire: Starting points
Rather than involve cos

(
π
4
)

=
√

2
2 , we multiply h

by 1
2 <

√
2

2 instead to get a safe distance:

>>> from dunshire import *
>>> from cvxopt import matrix
>>> e1 = matrix([3/2, 1/2])
>>> K = IceCream(2)
>>> K.ball_radius(e1)
0.5

Michael Orlitzky UMBC

Dunshire: Starting points
Proposition (Sossa, 2014).

Let V be an EJA with scaling factor θ := 〈e,e〉
trace(e) ,

and let Ω = λ−1 (Q) be a spectral set. Then for
all x ∈ V ,

1√
θ
d (x,Ω) = inf

u∈Q
‖λ (x)− u‖2 .

Applied to x ∈ K and Ω = bdy (K), this means
we just need to find the smallest eigenvalue of x.

Michael Orlitzky UMBC

Part 3, Section 8

Dunshire: The future

Michael Orlitzky UMBC

Dunshire: The future
Missing: the Symmetric PSD cone.

Not hard, but requires a different representation
than the other two cones.

Michael Orlitzky UMBC

Dunshire: The future
Missing: Cartesian products in the default order.

CVXOPT supports cartesian products, but only
in a particular order. Once Sn+ is implemented,
this should be easy.

Michael Orlitzky UMBC

Dunshire: The future
Missing: Cartesian products in arbitrary order.

We can reorder any Cartesian product with
isomorphisms, but then we need to pre- and
post-process the data/solution.

Michael Orlitzky UMBC

Part 4, Section 9

Applications: Confirm theory

Michael Orlitzky UMBC

Applications: Confirm theory
Theorem. Every game has a solution.

>>> from test.randomgen import *
>>> G = random_orthant_game()
>>> G.solution().game_value()
-0.03335527701955072
>>> G = random_icecream_game()
>>> G.solution().game_value()
3.5685813042518917

Michael Orlitzky UMBC

Applications: Confirm theory
Proposition. The value of the game for αL is
α ≥ 0 times the value of the game for L.

>>> from test.randomgen import *
>>> G = random_game()
>>> (alpha, H) = random_nn_scaling(G)
>>> val1 = alpha*G.solution().game_value()
>>> val2 = H.solution().game_value()
>>> val1 - val2
6.155475018587708e-10

Michael Orlitzky UMBC

Applications: Confirm theory
Proposition. The value for L+ α (e1 ⊗ e2) is α
plus the value for L.

>>> from test.randomgen import *
>>> G = random_game()
>>> (alpha, H) = random_translation(G)
>>> val1 = alpha + G.solution().game_value()
>>> val2 = H.solution().game_value()
>>> val1 - val2
7.506487015307428e-09

Michael Orlitzky UMBC

Applications: Confirm theory
Proposition. The value of (L,K, e1, e2) is
negative the value of (−L∗, K, e2, e1).

>>> from test.randomgen import *
>>> G = random_game()
>>> H = SymmetricLinearGame(-G.L(), G.K(),
... G.e2(), G.e1())
>>> val1 = G.solution().game_value()
>>> val2 = H.solution().game_value()
>>> val1 + val2
1.7701395904623496e-12

Michael Orlitzky UMBC

Applications: Confirm theory
Proposition. The value of a Lyapunov game
(L is Lyapunov-like) is the same as its dual.

>>> from test.randomgen import *
>>> G = random_ll_game()
>>> H = G.dual()
>>> val1 = G.solution().game_value()
>>> val2 = H.solution().game_value()
>>> val1 - val2
-2.942365862068641e-08

Michael Orlitzky UMBC

Part 4, Section 10

Applications: Find S-operators

Michael Orlitzky UMBC

Applications: Find S-operators
Definition.

L is an S-operator on K if there is a d ∈ int (K)
such that L (d) ∈ int (K).

S-operators are important for complementarity
problems, but we don’t know how to find them.

Michael Orlitzky UMBC

Applications: Find S-operators
Proposition.

L is an S-operator on K if and only if the value
of the game (L,K, e1, e2) is positive.

Michael Orlitzky UMBC

Applications: Find S-operators
Example.

The matrix
L :=

 1 2
−3 4

is an S-operator on the ice-cream cone in R2.

Michael Orlitzky UMBC

Applications: Find S-operators
Proof.

>>> from dunshire import *
>>> L = [[1, 2], [-3, 4]]
>>> K = IceCream(2)
>>> e1 = [1, 1/2]
>>> e2 = e1
>>> G = SymmetricLinearGame(L, K, e1, e2)
>>> G.solution().game_value()
1.777777803973679

Michael Orlitzky UMBC

References
[1] M. S. Gowda and G. Ravindran.

On the game-theoretic value of a linear transformation relative to
a self-dual cone.
Linear Algebra and its Applications, 469:440–463, 2015.

[2] T. Raghavan.
Completely mixed games and M-matrices.
Linear Algebra and its Applications, 21:35–45, 1978.

[3] J. von Neumann and O. Morgenstern.
Theory of Games and Economic Behavior.
Princeton University Press, 1944.

Michael Orlitzky UMBC

	Matrix games
	Introduction
	Formality

	Linear games
	Symmetric
	Asymmetric

	Dunshire
	CVXOPT
	The library
	Starting points
	The future

	Applications
	Confirm theory
	Find S-operators

