The Lyapunov rank of an improper cone
Part I - Algorithms

Michael Orlitzky

Introduction

The study of Lyapunov rank was initiated by
Rudolf et al. when they introduced the concept of the bilinearity rank [1] of a cone.

The Lyapunov rank measures how many independent equations $\left\langle L_{i}(x), s\right\rangle=0$ one can obtain from the single equation $\langle x, s\rangle=0$ when x, s belong to dual cones.

Introduction

The greater the Lyapunov rank, the more likely it is that we can split the equation $\langle x, s\rangle=0$ into a solvable system.

For example, the nonnegative orthant in \mathbb{R}^{n} has Lyapunov rank n. When both x and s are nonnegative, we can split $\langle x, s\rangle=0$ into n equations $x_{1} s_{1}=0, x_{2} s_{2}=0$, etc.

Introduction

For computing the Lyapunov rank, Rudolf et al. provide the following.

1. The Lyapunov-like property need only be checked for extreme vectors x, s. This can reduce the problem to a finite computation.
2. In \mathbb{R}^{n}, the orthogonal complement of the space of all Lyapunov-like transformations can be constructed from the matrices $s x^{T}$.

Introduction

The setting for all of this work is a
finite-dimensional real inner-product space V containing a cone K.

Existing work focuses on proper cones: closed convex cones that are both pointed and solid. Our goal is to extend some results for proper cones and to compute the Lyapunov ranks of closed convex cones.

Notation

Definition (conic hull).

Given a nonempty subset X of V, the conic hull of X is

$$
\text { cone }(X):=\left\{\sum \alpha_{i} x_{i} \mid x_{i} \in X, \alpha_{i} \geq 0\right\}
$$

When X is finite, the set cone (X) is a closed convex cone in V.

Notation

Definition (generators).

We say that a set G generates the cone K if cone $(G)=K$. If G generates K, then the elements of G are called generators of K.

Example. The set $G=\left\{(1,0)^{T},(-1,0)^{T}\right\}$ generates the x-axis in \mathbb{R}^{2}.

Notation

Caveat: unlike extreme vectors, generators can be redundant. For example, the set

$$
G=\left\{(1,0)^{T},(26,0)^{T},(-1,0)^{T}\right\}
$$

also generates the x-axis in \mathbb{R}^{2}.

Notation

A generating set specifies a closed convex cone.

```
sage: K = Cone( [(1,0), (-1,0), (0,1)] )
sage: K
2-d cone in 2-d lattice N
sage: K.rays()
N( 0, 1),
N( 1, 0),
N(-1, 0)
in 2-d lattice N
```


Notation

Definition (dimension, lineality).

Let K be a closed convex cone.
The dimension of K is dim $(\operatorname{span}(K))$.
The lineality of K is the dimension of the largest subspace contained within K. It is written
$\operatorname{lin}(K):=\operatorname{dim}(K \cap-K)$.

Notation

Definition (cone-space pair).

A cone-space pair (K, V) is a closed convex cone K paired with a finite-dimensional real inner-product space V containing K.

If W is an inner-product space, we write K_{W} to mean [2] the cone-space pair $(K \cap W, W)$.

Notation

Why? Suppose K is contained in a subspace W of V, and we want to take the dual of K within W. How do we write that?

We need the subscript operation anyway, so we repurpose it as a bookkeeping tool. The subscript acts as an annotation to remind the reader where the cone lives.

Notation

We can now formally define familiar concepts.
Definition. The dual cone-space pair of K_{V} is

$$
K_{V}^{*}:=(\{y \in V \mid \forall x \in K,\langle x, y\rangle \geq 0\}, V)
$$

Definition. The function $\phi: V \rightarrow W$ acts by

$$
\phi\left(K_{V}\right)=\phi(K)_{W} .
$$

Notation

Definition (pointed,solid,proper). The cone-space pair K_{V} is pointed if $\operatorname{lin}\left(K_{V}\right)=0$ and solid if $\operatorname{span}(K)=V$. A proper cone-space pair is both pointed and solid.

```
sage: K = Cone([(1,0)])
sage: K.lineality()
0
sage: K.is_proper()
False
```


Notation

Any operation on a closed convex cone K can be extended to K_{V} in an obvious way:

1. Think of K as living in V.
2. Perform the operation.
3. If necessary, pair the result with the appropriate space.

Notation

For example, the next result is well-known.
Proposition. The cone-space pair K_{V} is pointed if and only if K_{V}^{*} is solid. Moreover, $\operatorname{lin}\left(K_{V}\right)=\operatorname{codim}\left(K_{V}^{*}\right)$.

The operations on K_{V} are nothing but the usual ones on K in the space V.

Notation

Definition (complementarity set).

The complementarity set of K_{V} is

$$
C\left(K_{V}\right):=\left\{(x, s) \mid x \in K_{V}, s \in K_{V}^{*}, x \perp s\right\} .
$$

There's nothing new except that we use $x \in K_{V}$ to mean that x is in the "cone part" of K_{V}.

Notation

Definition (lyapunov-like).

By $\mathcal{B}(V)$ we denote the space of all linear transformations on V. The map $L \in \mathcal{B}(V)$ is Lyapunov-like on K_{V} if

$$
\langle L(x), s\rangle=0 \text { for all }(x, s) \in C\left(K_{V}\right) .
$$

Notation

Definition (lyapunov rank).

By $\mathbf{L L}\left(K_{V}\right)$ we denote the space of all
Lyapunov-like transformations on K_{V}. The
Lyapunov rank of K_{V} is defined to be the dimension of this space and is abbreviated

$$
\beta\left(K_{V}\right):=\operatorname{dim}\left(\mathbf{L L}\left(K_{V}\right)\right) .
$$

BASIC THEORY

Proposition. L is Lyapunov-like on K_{V} if and only if it satisfies the Lyapunov-like property on two generating sets G_{1} of K_{V} and G_{2} of K_{V}^{*}.

Proof.
Clearly, if $L \in \mathbf{L L}\left(K_{V}\right)$, then L satisfies the Lyapunov-like property on the generating sets (since the generators belong to the cone).

BASIC THEORY

Proof (continued).

Suppose that G_{1} generates K_{V}, that G_{2} generates K_{V}^{*}, and that L has the Lyapunov-like property on orthogonal pairs in $G_{1} \times G_{2}$. For any $(x, s) \in C\left(K_{V}\right)$ we can write

$$
\begin{aligned}
x & =\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{\ell} x_{\ell} \\
s & =\gamma_{1} s_{1}+\gamma_{2} s_{2}+\cdots+\gamma_{m} s_{m}
\end{aligned}
$$

where each $x_{i} \in G_{1}, s_{j} \in G_{2}$, and $\alpha_{i}, \gamma_{j} \geq 0$.

BASIC THEORY

Proof (continued).

Because $(x, s) \in C\left(K_{V}\right)$, we have

$$
\langle x, s\rangle=0 \Longleftrightarrow \sum_{i=1}^{\ell} \sum_{j=1}^{m}\left\langle\alpha_{i} x_{i}, \gamma_{j} s_{j}\right\rangle=0 .
$$

Notice that $\alpha_{i} x_{i} \in K_{V}$ and $\gamma_{j} s_{j} \in K_{V}^{*}$, so each term in this sum is zero.

BASIC THEORY

Proof (continued).

But $\left\langle\alpha_{i} x_{i}, \gamma_{j} s_{j}\right\rangle=0$ means that $\left(\alpha_{i} x_{i}, \gamma_{j} s_{j}\right)$ are pairs of orthogonal generators, and we assumed that L is Lyapunov-like on those pairs. By linearity,

$$
\langle L(x), s\rangle=\sum_{i=1}^{\ell} \sum_{j=1}^{m}\left\langle L\left(\alpha_{i} x_{i}\right), \gamma_{j} s_{j}\right\rangle=0
$$

BASIC THEORY

This proposition will sometimes allow us to compute the Lyapunov rank.

Example. Let K be the $x y$-plane in $V=\mathbb{R}^{3}$. Then K_{V}^{*} is the z-axis in V, and they have the respective generating sets

$$
\begin{aligned}
& G_{1}=\left\{(\pm 1,0,0)^{T},(0, \pm 1,0)^{T}\right\} \\
& G_{2}=\left\{(0,0, \pm 1)^{T}\right\}
\end{aligned}
$$

BASIC THEORY

Example (continued).

Let $E_{i j}=\left(\delta_{i j}\right)$ for $i, j=1,2,3$ be the standard basis elements in $\mathbb{R}^{3 \times 3}$.

By testing pairs of generators, one can verify that neither E_{31} nor E_{32} is Lyapunov-like on K but that the remaining seven $E_{i j}$ are. Thus, $\beta\left(K_{V}\right)=7$.

BASIC THEORY

Example. Let $K=V=\mathbb{R}^{n}$.
Then $K_{V}^{*}=\{0\}_{V}$ and $C\left(K_{V}\right)=K \times\{0\}$, so every $L \in \mathcal{B}(V)$ is Lyapunov-like on K_{V} :

$$
\langle L(x), 0\rangle=0 \text { for all }(x, 0) \in C\left(K_{V}\right) .
$$

Therefore, $\beta\left(K_{V}\right)=\operatorname{dim}(\mathcal{B}(V))=n^{2}$.

BASIC THEORY

Two more results for proper cones carry over.
Their proofs do not become any more interesting when considering cone-space pairs.

Proposition. $\beta\left(K_{V}\right)=\beta\left(K_{V}^{*}\right)$.
Proposition. $\beta\left(K_{V}\right)=\beta\left(A\left(K_{V}\right)\right)$ for any invertible $A \in \mathcal{B}(V, W)$.

BASIC THEORY

Theorem (codimension formula).

Let G_{1} and G_{2} generate K_{V} and K_{V}^{*}. Then the Lyapunov rank of K_{V} is

$$
\operatorname{codim}\left(\operatorname{span}\left(\left\{s \otimes x \mid(x, s) \in C\left(K_{V}\right)\right\}\right)\right),
$$

and in fact we need only consider pairs of generators, $(x, s) \in C\left(K_{V}\right) \cap\left(G_{1} \times G_{2}\right)$.

BASIC THEORY

Proof.

Think of $s \otimes x$ as $s x^{T}$ in $\mathbb{R}^{n \times n}$; the following are all equivalent by properties of the trace:

- $\langle L(x), s\rangle=0$.
- $\left\langle x \otimes s, L^{*}\right\rangle_{\mathcal{B}(V)}=0$.
- $\langle s \otimes x, L\rangle_{\mathcal{B}(V)}=0$.
- $L \in \operatorname{span}(\{s \otimes x\})^{\perp}$.

BASIC THEORY

From this equivalence, we can compute $\mathbf{L L}\left(K_{V}\right)$. Let $\operatorname{vec}(A)=x$ and $\operatorname{mat}(x)=A$ be the inverse operations taking a matrix $A \in \mathbb{R}^{n \times n}$ to the vector $x \in \mathbb{R}^{n^{2}}$ and vice-versa.

If we are given matrix representations of L and $s \otimes x$, we can write them both as long vectors. The computation of $\mathbf{L L}\left(K_{V}\right)$ then reduces to finding an orthogonal complement.

BASIC THEORY

Input: A cone-space pair K_{V}.
Output: A basis for $\mathbf{L L}\left(K_{V}\right)$.
$G_{1} \leftarrow$ a generating set for K_{V}
$G_{2} \leftarrow$ a generating set for K_{V}^{*}
$C \leftarrow\left\{(x, s) \mid x \in G_{1}, s \in G_{2},\langle x, s\rangle=0\right\}$
$W \leftarrow\{\operatorname{vec}(s \otimes x) \mid(x, s) \in C\}$
$B \leftarrow$ a basis for W^{\perp}
return $\{\operatorname{mat}(b) \mid b \in B\}$

BASIC THEORY

When K_{V} is polyhedral, we can actually run this.

$$
\begin{aligned}
& \text { sage: } K=\operatorname{Cone}([(1,1,0),(1,-1,1),(-1,0,0)]) \\
& \text { sage: K.LL() } \\
& \text { [} \\
& {\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & -1
\end{array}\right]} \\
& \left.\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & -1
\end{array}\right] \text {, [} \begin{array}{lll}
0 & 0 & 1
\end{array}\right] \\
& \text {] }
\end{aligned}
$$

BASIC THEORY

This gives the Lyapunov rank, albeit slowly. The product formula [1] suggests an improvement.

Proposition. Let K_{V} and J_{W} be proper cone-space pairs. Then

$$
\beta\left(K_{V} \times J_{W}\right)=\beta\left(K_{V}\right)+\beta\left(J_{W}\right) .
$$

BASIC THEORY

But the product formula doesn't hold in general!

```
sage: K = Cone([(1,0)])
sage: len( K.LL() )
3
sage: len( K.cartesian_product(K).LL() )
1 0
```

This motivates the search for another formula.

Reduction formula

The trick is to write a non-solid cone as the product of a solid cone and a trivial cone.

Proposition. Let K_{V} be a cone-space pair and let W be a subspace of V containing K. Then $V \cong W \times W^{\perp}$ and $K_{V} \cong K_{W} \times\{0\}_{W^{\perp}}$.

Reduction formula

Lemma 1. Let K_{V} be a cone-space pair and $S=\operatorname{span}(K)$. Then K_{S} is solid and

$$
\beta\left(K_{V}\right)=\beta\left(K_{S}\right)+\operatorname{codim}\left(K_{V}\right) \cdot \operatorname{dim}(V) .
$$

Proof. Through isomorphism,

$$
\beta\left(K_{V}\right)=\beta\left(K_{W} \times\{0\}_{W^{\perp}}\right) .
$$

Reduction formula

Proof (continued).

Elements of $K_{W} \times\{0\}_{W^{\perp}}$ look like $(x, 0)$, so its complementarity set is easy to describe:

$$
\begin{aligned}
\left((x, 0)^{T},(s, t)^{T}\right) & \in C\left(K_{S} \times\{0\}_{S^{\perp}}\right) \\
& \Uparrow \\
(x, s) & \in C\left(K_{S}\right) .
\end{aligned}
$$

Reduction formula

Proof (continued).

Knowing the complementarity set makes it easy to describe Lyapunov-like transformations:

$$
\begin{aligned}
\mathbf{L L}\left(K_{S} \times\{0\}_{S^{\perp}}\right) & =\left\{\left[\begin{array}{cc}
A & B \\
0 & D
\end{array}\right]\right\} \\
A & \in \mathbf{L L}\left(K_{S}\right) \\
B & =\text { whatever } \\
D & =\text { whatever }
\end{aligned}
$$

Reduction formula

Proof (continued).

Adding up the dimensions of their respective spaces, we have

$$
\begin{aligned}
\beta\left(K_{V}\right)=\overbrace{\beta\left(K_{S}\right)}^{A} & +\overbrace{\operatorname{dim}\left(S^{\perp}\right) \operatorname{dim}(S)}^{B} \\
& +\underbrace{\operatorname{dim}^{2}\left(S^{\perp}\right)}_{D} .
\end{aligned}
$$

Reduction formula

What about cones that aren't pointed? Just apply the lemma to the dual!

Lemma 2. Let K_{V} be a cone-space pair and $P=\operatorname{span}\left(K_{V}^{*}\right)$. Then K_{P} is pointed and

$$
\beta\left(K_{V}\right)=\beta\left(K_{P}\right)+\operatorname{lin}\left(K_{V}\right) \cdot \operatorname{dim}(V) .
$$

Reduction formula

Proof.

Apply Lemma 1 to K_{V}^{*} then substitute $\beta\left(K_{V}\right)$ for $\beta\left(K_{V}^{*}\right)$ and $\beta\left(K_{P}\right)$ for $\beta\left(K_{P}^{*}\right)$.

Reduction formula

If we combine lemmas, we reduce the Lyapunov rank computation to that of a proper cone.

Theorem 3. Let K_{V} be a cone-space pair, $S=\operatorname{span}(K)$, and $P=\operatorname{span}\left(K_{S}^{*}\right)$. Then $K_{S P}$ is proper and

$$
\begin{aligned}
\beta\left(K_{V}\right)=\beta\left(K_{S P}\right) & +\operatorname{lin}(K) \cdot \operatorname{dim}(K) \\
& +\operatorname{codim}\left(K_{V}\right) \cdot \operatorname{dim}(V) .
\end{aligned}
$$

Reduction formula

Proof.

Apply Lemma 1 to K_{V}, and then apply Lemma 2 to the resulting K_{S}. Note that the lineality of K_{S} and dimension of S are the same as those of K.

Since K_{S} was solid, the cone-space pair $K_{S P}$ is solid too. Thus it is proper.

Reduction formula

Beware: $K_{S P}$ may be trivial with $\beta\left(K_{S P}\right)=0$.
Example 4. Suppose $K=\mathbb{R}^{m}$ in $V=\mathbb{R}^{n}$.
Then $K_{S P}$ is trivial, $\operatorname{lin}(K)=\operatorname{dim}(K)=m$, and $\operatorname{codim}\left(K_{V}\right)=n-m$. Theorem 3 gives

$$
\beta\left(K_{V}\right)=n^{2}-m(n-m) .
$$

Reduction formula

Example 5. Suppose $K=\mathbb{R}^{+}$in \mathbb{R}^{n}.
Then we have $\operatorname{lin}(K)=0, \operatorname{dim}(K)=1$, and $\operatorname{codim}\left(K_{V}\right)=n-1$. The proper cone-space pair $K_{S P}$ that we obtain is $\left(\mathbb{R}^{+}, \mathbb{R}\right)$, so by Theorem 3 ,

$$
\beta\left(K_{V}\right)=n^{2}-n+1
$$

Reduction formula

Example 6. Suppose that K_{V} is proper.
Then $S=P=V$, so $K_{S P}=K_{V}$ and both $\operatorname{lin}(K)=\operatorname{codim}\left(K_{V}\right)=0$.

Theorem 3 simply reduces to

$$
\beta\left(K_{V}\right)=\beta\left(K_{S P}\right) .
$$

Reduction formula

Theorem 3 provides a shortcut for computing the Lyapunov rank of an improper cone.

Input: A cone-space pair K_{V}.
Output: The Lyapunov rank of K_{V}.

$$
\begin{aligned}
& \beta \leftarrow 0 \\
& n \leftarrow \operatorname{dim}(V) \\
& m \leftarrow \operatorname{dim}(K) \\
& l \leftarrow \operatorname{lin}(K)
\end{aligned}
$$

Reduction formula

if $m<n$ then

$$
K_{V} \leftarrow \operatorname{RESTRICT}\left(K_{V}, \operatorname{span}\left(K_{V}\right)\right)
$$

$$
\beta \leftarrow \beta+(n-m) n
$$

\triangleright Lemma 1
end if
if $l>0$ then
$K_{V} \leftarrow \operatorname{RESTRICT}\left(K_{V}, \operatorname{span}\left(K_{V}^{*}\right)\right)$
$\beta \leftarrow \beta+l m$
\triangleright Lemma 2
end if
return $\beta+\left|\operatorname{LL}\left(K_{V}\right)\right|$
$\triangleright K_{V}$ is proper here

Reduction formula

And when K_{V} is polyhedral, we can run it.

```
sage: K = random_cone()
sage: K
12-d cone in 34-d lattice N
sage: timeit('len(K.LL())')
5 loops, best of 3: 10.8 s per loop
sage: timeit('K.lyapunov_rank()')
5 loops, best of 3: 289 ms per loop
```


Reduction formula

The reduction formula can be viewed from another perspective.

Theorem. Let K_{W} be a cone-space pair and $\operatorname{dim}(V)>\operatorname{dim}(W)$. Then K_{V} is perfect.

Proof. By construction codim $\left(K_{V}\right) \geq 1$, so Theorem 3 gives $\beta\left(K_{V}\right) \geq \operatorname{dim}(V)$. \square

Reduction formula

Corollary.

Adding a slack variable to an optimization problem makes the underlying cone perfect.
(but uselessly so)

References

[1] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh. Bilinear optimality constraints for the cone of positive polynomials. Mathematical Programming, Series B, 129 (2011) 5-31.
[2] M. Orlitzky. The Lyapunov rank of an improper cone (preprint).

