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Introduction
The study of Lyapunov rank was initiated by
Rudolf et al. when they introduced the concept
of the bilinearity rank [1] of a cone.

The Lyapunov rank measures how many
independent equations 〈Li (x), s〉 = 0 one can
obtain from the single equation 〈x , s〉 = 0 when
x , s belong to dual cones.
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Introduction
The greater the Lyapunov rank, the more likely it
is that we can split the equation 〈x , s〉 = 0 into a
solvable system.

For example, the nonnegative orthant in Rn has
Lyapunov rank n. When both x and s are
nonnegative, we can split 〈x , s〉 = 0 into n
equations x1s1 = 0, x2s2 = 0, etc.
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Introduction
For computing the Lyapunov rank, Rudolf et al.
provide the following.

1. The Lyapunov-like property need only be
checked for extreme vectors x , s. This can
reduce the problem to a finite computation.

2. In Rn, the orthogonal complement of the
space of all Lyapunov-like transformations
can be constructed from the matrices sxT .

Michael Orlitzky UMBC



Introduction
The setting for all of this work is a
finite-dimensional real inner-product space V
containing a cone K .

Existing work focuses on proper cones: closed
convex cones that are both pointed and solid.
Our goal is to extend some results for proper
cones and to compute the Lyapunov ranks of
closed convex cones.
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Notation
Definition (conic hull).

Given a nonempty subset X of V , the conic hull
of X is

cone (X) :=
{∑

αixi
∣∣∣ xi ∈ X , αi ≥ 0

}
.

When X is finite, the set cone (X) is a closed
convex cone in V .
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Notation
Definition (generators).

We say that a set G generates the cone K if
cone (G) = K . If G generates K , then the
elements of G are called generators of K .

Example. The set G =
{
(1, 0)T , (−1, 0)T

}
generates the x-axis in R2.
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Notation
Caveat: unlike extreme vectors, generators can be
redundant. For example, the set

G =
{
(1, 0)T , (26, 0)T , (−1, 0)T

}

also generates the x-axis in R2.
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Notation
A generating set specifies a closed convex cone.

sage: K = Cone( [(1,0), (-1,0), (0,1)] )
sage: K
2-d cone in 2-d lattice N
sage: K.rays()
N( 0, 1),
N( 1, 0),
N(-1, 0)
in 2-d lattice N
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Notation
Definition (dimension, lineality).

Let K be a closed convex cone.

The dimension of K is dim (span (K )).

The lineality of K is the dimension of the largest
subspace contained within K . It is written
lin (K ) := dim (K ∩ −K ).
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Notation
Definition (cone-space pair).

A cone-space pair (K ,V ) is a closed convex cone
K paired with a finite-dimensional real
inner-product space V containing K .

If W is an inner-product space, we write KW to
mean [2] the cone-space pair (K ∩W ,W ).
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Notation
Why? Suppose K is contained in a subspace W
of V , and we want to take the dual of K within
W . How do we write that?

We need the subscript operation anyway, so we
repurpose it as a bookkeeping tool. The subscript
acts as an annotation to remind the reader where
the cone lives.
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Notation
We can now formally define familiar concepts.

Definition. The dual cone-space pair of KV is

K ∗V := ({y ∈ V | ∀x ∈ K , 〈x , y〉 ≥ 0},V ) .

Definition. The function φ : V →W acts by

φ (KV ) = φ (K )W .
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Notation
Definition (pointed,solid,proper). The
cone-space pair KV is pointed if lin (KV ) = 0 and
solid if span (K ) = V . A proper cone-space pair is
both pointed and solid.

sage: K = Cone([(1,0)])
sage: K.lineality()
0
sage: K.is_proper()
False
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Notation
Any operation on a closed convex cone K can be
extended to KV in an obvious way:

1. Think of K as living in V .
2. Perform the operation.
3. If necessary, pair the result with the

appropriate space.
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Notation
For example, the next result is well-known.

Proposition. The cone-space pair KV is
pointed if and only if K ∗V is solid. Moreover,
lin (KV ) = codim (K ∗V ).

The operations on KV are nothing but the usual
ones on K in the space V .

Michael Orlitzky UMBC



Notation
Definition (complementarity set).

The complementarity set of KV is

C (KV ) := {(x , s) | x ∈ KV , s ∈ K ∗V , x ⊥ s} .

There’s nothing new except that we use x ∈ KV
to mean that x is in the “cone part” of KV .
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Notation
Definition (lyapunov-like).

By B (V ) we denote the space of all linear
transformations on V . The map L ∈ B (V ) is
Lyapunov-like on KV if

〈L (x), s〉 = 0 for all (x , s) ∈ C (KV ) .
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Notation
Definition (lyapunov rank).

By LL (KV ) we denote the space of all
Lyapunov-like transformations on KV . The
Lyapunov rank of KV is defined to be the
dimension of this space and is abbreviated

β (KV ) := dim (LL (KV )) .
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Basic theory
Proposition. L is Lyapunov-like on KV if and
only if it satisfies the Lyapunov-like property on
two generating sets G1 of KV and G2 of K ∗V .

Proof.

Clearly, if L ∈ LL (KV ), then L satisfies the
Lyapunov-like property on the generating sets
(since the generators belong to the cone).
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Basic theory
Proof (continued).

Suppose that G1 generates KV , that G2 generates
K ∗V , and that L has the Lyapunov-like property
on orthogonal pairs in G1 ×G2. For any
(x , s) ∈ C (KV ) we can write

x = α1x1 + α2x2 + · · ·+ α`x`

s = γ1s1 + γ2s2 + · · ·+ γmsm

where each xi ∈ G1, sj ∈ G2, and αi , γj ≥ 0.
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Basic theory
Proof (continued).

Because (x , s) ∈ C (KV ), we have

〈x , s〉 = 0 ⇐⇒
∑̀
i=1

m∑
j=1
〈αixi , γjsj〉 = 0.

Notice that αixi ∈ KV and γjsj ∈ K ∗V , so each
term in this sum is zero.
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Basic theory
Proof (continued).

But 〈αixi , γjsj〉 = 0 means that (αixi , γjsj) are
pairs of orthogonal generators, and we assumed
that L is Lyapunov-like on those pairs. By
linearity,

〈L (x), s〉 =
∑̀
i=1

m∑
j=1
〈L (αixi), γjsj〉 = 0.
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Basic theory
This proposition will sometimes allow us to
compute the Lyapunov rank.

Example. Let K be the xy-plane in V = R3.
Then K ∗V is the z-axis in V , and they have the
respective generating sets

G1 =
{
(±1, 0, 0)T , (0,±1, 0)T

}
G2 =

{
(0, 0,±1)T

}
.
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Basic theory
Example (continued).

Let Eij = (δij) for i, j = 1, 2, 3 be the standard
basis elements in R3×3.

By testing pairs of generators, one can verify that
neither E31 nor E32 is Lyapunov-like on K but
that the remaining seven Eij are. Thus,
β (KV ) = 7.
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Basic theory
Example. Let K = V = Rn.

Then K ∗V = {0}V and C (KV ) = K × {0}, so
every L ∈ B (V ) is Lyapunov-like on KV :

〈L (x), 0〉 = 0 for all (x , 0) ∈ C (KV ) .

Therefore, β (KV ) = dim (B (V )) = n2.
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Basic theory
Two more results for proper cones carry over.
Their proofs do not become any more interesting
when considering cone-space pairs.

Proposition. β (KV ) = β (K ∗V ).

Proposition. β (KV ) = β (A (KV )) for any
invertible A ∈ B (V ,W ).
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Basic theory
Theorem (codimension formula).

Let G1 and G2 generate KV and K ∗V . Then the
Lyapunov rank of KV is

codim (span ({s ⊗ x | (x , s) ∈ C (KV )})) ,

and in fact we need only consider pairs of
generators, (x , s) ∈ C (KV ) ∩ (G1 ×G2).
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Basic theory
Proof.

Think of s ⊗ x as sxT in Rn×n; the following are
all equivalent by properties of the trace:

• 〈L (x), s〉 = 0.
• 〈x ⊗ s,L∗〉B(V ) = 0.
• 〈s ⊗ x ,L〉B(V ) = 0.
• L ∈ span ({s ⊗ x})⊥.
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Basic theory
From this equivalence, we can compute LL (KV ).
Let vec (A) = x and mat (x) = A be the inverse
operations taking a matrix A ∈ Rn×n to the
vector x ∈ Rn2 and vice-versa.

If we are given matrix representations of L and
s ⊗ x , we can write them both as long vectors.
The computation of LL (KV ) then reduces to
finding an orthogonal complement.
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Basic theory

Input: A cone-space pair KV .
Output: A basis for LL (KV ).

G1 ← a generating set for KV
G2 ← a generating set for K ∗V
C ← {(x , s) | x ∈ G1, s ∈ G2, 〈x , s〉 = 0}
W ← {vec (s ⊗ x) | (x , s) ∈ C}
B ← a basis for W⊥

return {mat (b) | b ∈ B}
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Basic theory
When KV is polyhedral, we can actually run this.

sage: K=Cone([(1,1,0),(1,-1,1),(-1,0,0)])
sage: K.LL()
[
[1 0 0] [ 0 1 0] [ 0 0 1]
[0 1 0] [ 0 1 2] [ 0 0 -1]
[0 0 1], [ 0 0 -1], [ 0 0 1]
]
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Basic theory
This gives the Lyapunov rank, albeit slowly. The
product formula [1] suggests an improvement.

Proposition. Let KV and JW be proper
cone-space pairs. Then

β (KV × JW ) = β (KV ) + β (JW ) .
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Basic theory
But the product formula doesn’t hold in general!

sage: K = Cone([(1,0)])
sage: len( K.LL() )
3
sage: len( K.cartesian_product(K).LL() )
10

This motivates the search for another formula.
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Reduction formula
The trick is to write a non-solid cone as the
product of a solid cone and a trivial cone.

Proposition. Let KV be a cone-space pair and
let W be a subspace of V containing K . Then
V ∼= W ×W⊥ and KV ∼= KW × {0}W ⊥.
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Reduction formula
Lemma 1. Let KV be a cone-space pair and
S = span (K ). Then KS is solid and

β (KV ) = β (KS) + codim (KV ) · dim (V ) .

Proof. Through isomorphism,

β (KV ) = β (KW × {0}W ⊥) .
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Reduction formula
Proof (continued).

Elements of KW × {0}W ⊥ look like (x , 0), so its
complementarity set is easy to describe:(

(x , 0)T , (s, t)T
)
∈ C (KS × {0}S⊥)

m
(x , s) ∈ C (KS) .
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Reduction formula
Proof (continued).

Knowing the complementarity set makes it easy
to describe Lyapunov-like transformations:

LL (KS × {0}S⊥) =

A B

0 D


A ∈ LL (KS)
B = whatever
D = whatever
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Reduction formula
Proof (continued).

Adding up the dimensions of their respective
spaces, we have

β (KV ) =
A︷ ︸︸ ︷

β (KS) +
B︷ ︸︸ ︷

dim
(
S⊥

)
dim (S)

+ dim2 (S⊥)︸ ︷︷ ︸
D

.

Michael Orlitzky UMBC



Reduction formula
What about cones that aren’t pointed? Just
apply the lemma to the dual!

Lemma 2. Let KV be a cone-space pair and
P = span (K ∗V ). Then KP is pointed and

β (KV ) = β (KP) + lin (KV ) · dim (V ) .
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Reduction formula
Proof.

Apply Lemma 1 to K ∗V then substitute β (KV ) for
β (K ∗V ) and β (KP) for β (K ∗P).
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Reduction formula
If we combine lemmas, we reduce the Lyapunov
rank computation to that of a proper cone.

Theorem 3. Let KV be a cone-space pair,
S = span (K ), and P = span (K ∗S). Then KSP is
proper and

β (KV ) = β (KSP) + lin (K ) · dim (K )
+ codim (KV ) · dim (V ) .
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Reduction formula
Proof.

Apply Lemma 1 to KV , and then apply Lemma 2
to the resulting KS . Note that the lineality of KS
and dimension of S are the same as those of K .

Since KS was solid, the cone-space pair KSP is
solid too. Thus it is proper.
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Reduction formula
Beware: KSP may be trivial with β (KSP) = 0.

Example 4. Suppose K = Rm in V = Rn.

Then KSP is trivial, lin (K ) = dim (K ) = m, and
codim (KV ) = n −m. Theorem 3 gives

β (KV ) = n2 −m (n −m) .
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Reduction formula
Example 5. Suppose K = R+ in Rn.

Then we have lin (K ) = 0, dim (K ) = 1, and
codim (KV ) = n − 1. The proper cone-space pair
KSP that we obtain is (R+,R), so by Theorem 3,

β (KV ) = n2 − n + 1.
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Reduction formula
Example 6. Suppose that KV is proper.

Then S = P = V , so KSP = KV and both
lin (K ) = codim (KV ) = 0.

Theorem 3 simply reduces to

β (KV ) = β (KSP) .
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Reduction formula
Theorem 3 provides a shortcut for computing the
Lyapunov rank of an improper cone.

Input: A cone-space pair KV .
Output: The Lyapunov rank of KV .

β ← 0
n ← dim (V )
m ← dim (K )
l ← lin (K )
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Reduction formula
if m < n then

KV ← restrict (KV , span (KV ))
β ← β + (n −m) n . Lemma 1

end if

if l > 0 then
KV ← restrict (KV , span (K ∗V ))
β ← β + lm . Lemma 2

end if

return β + |ll (KV )| . KV is proper here
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Reduction formula
And when KV is polyhedral, we can run it.

sage: K = random_cone()
sage: K
12-d cone in 34-d lattice N
sage: timeit(’len(K.LL())’)
5 loops, best of 3: 10.8 s per loop
sage: timeit(’K.lyapunov_rank()’)
5 loops, best of 3: 289 ms per loop
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Reduction formula
The reduction formula can be viewed from
another perspective.

Theorem. Let KW be a cone-space pair and
dim (V ) > dim (W ). Then KV is perfect.

Proof. By construction codim (KV ) ≥ 1, so
Theorem 3 gives β (KV ) ≥ dim (V ).
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Reduction formula
Corollary.

Adding a slack variable to an optimization
problem makes the underlying cone perfect.

(but uselessly so)
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