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Recap
In Part I, we generalized existing results for
proper cones to the class of closed convex cones.

Closed convex cones are specified in terms of
generators rather than extreme vectors (which a
closed convex cone may not have).
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Recap
To perform operations in subspaces, we tag a
cone K with its ambient space V and write KV .

The result is called a cone-space pair. All
operations on closed convex cones can be defined
on cone-space pairs in an obvious way.
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Recap
One cone-space pair KS will appear frequently.
We define

S := span (KV )

so that KS is “K restricted to its own span.”
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Recap
If G1 generates KV and G2 generates its dual,
then the Lyapunov-like property,

〈L (x), s〉 = 0 for all (x , s) ∈ C (KV )

need only be checked on x ∈ G1 and s ∈ G2.

Michael Orlitzky UMBC



Recap
The codimension formula describes the space of
all Lyapunov-like transformations on KV :

LL (KV ) = span ({s ⊗ x | (x , s) ∈ C (KV )})⊥ .

We need only consider generators above, thus we
can compute LL (KV ) when KV is polyhedral.
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Recap
The pointed/solid duality reduces the Lyapunov
rank computation to that of a proper cone:

Theorem.

β (KV ) = β (KSP)
+ lin (K ) · dim (K )
+ codim (KV ) · dim (V ) .
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Recap
The proof of this theorem uses the fact that KV
is isomorphic to KS × {0}S⊥. And,

LL (KS × {0}S⊥) =

A B

0 D


A ∈ LL (KS)
B = whatever
D = whatever.
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The problem
An interesting connection [2] for proper cones:

Theorem (Gowda/Tao).

The following are equivalent when KV is proper.

• L is Lyapunov-like on KV .
• etL ∈ Aut (KV ) for all t ∈ R.
• L ∈ Lie (Aut (KV )).
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The problem
So what do we need to prove for cone-space pairs?

L is Lyapunov-like on KV

m
etL ∈ Aut (KV ) for all t ∈ R.

One implication requires no modification.
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The problem
Proposition.

Let KV be a cone-space pair. If etL ∈ Aut (KV )
for all t ∈ R, then L is Lyapunov-like on KV .

Proof.

Let etL ∈ Aut (KV ) for all t ∈ R. We will see that
〈L (x), s〉 = 0 for any (x , s) ∈ C (KV ).
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The problem
Proof (continued). Since etL (x) ∈ K ,

〈
etL (x), s

〉
=
〈[

etL − I
]
(x), s

〉
≥ 0.

We can divide by 1/t > 0:
〈 1

t
[
etL − I

]
︸ ︷︷ ︸

looks derivativy

(x), s
〉
≥ 0 for all t > 0.
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The problem
Proof (continued). Take the limit to turn
this into a derivative evaluation,

L = lim
t→0

{1
t
[
etL − I

]}
= d

dt etL
∣∣∣∣∣t=0

Thus 〈L (x), s〉 ≥ 0.

The same trick with −L gives 〈L (x), s〉 ≤ 0.
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The problem
We still need implication in the other direction:

L ∈ LL (KV ) =⇒ etL ∈ Aut (KV ) .

How might we prove something like this for
closed convex cones?
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Proper cones
The proof for proper cones centers on a
theorem [5] of Schneider and Vidyasagar.

Theorem.

Let K be a proper cone in Rn and let A be a
matrix in Rn×n. Then A ∈ Σ (K ) if and only if
etA (K ) ⊆ K for all t ≥ 0.
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Proper cones
Note that Σ (K ) is nothing but −Z (K ). If we
stick a negative sign in front of A, we get:

Theorem.

Let K be a proper cone in Rn and let A be a
matrix in Rn×n. Then −A ∈ Σ (K ) if and only if
etA (K ) ⊆ K for all t ≤ 0.
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Proper cones
Now if both A and −A are in Σ (K ), then they’re
both in Z (K ), and thus A ∈ LL (K ). So,

A ∈ LL (K )
m

etA (K ) ⊆ K for all t ∈ R.
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Proper cones
We recognize that

(
etA

)−1 = e−tA, and clearly,

e−tA (K ) ⊆ K for all t ∈ R
m

etA (K ) ⊆ K for all t ∈ R.

Combining the two, etA ∈ Aut (K ) for all t ∈ R.

This is equivalent [1] to A ∈ Lie (Aut (K )).
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Proper cones
As a result, we have the Gowda/Tao equivalence:

• L is Lyapunov-like on KV .
• etL ∈ Aut (KV ) for all t ∈ R.
• L ∈ Lie (Aut (KV )).
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Proper cones
If Schneider’s result extends to closed convex
cones, the Lie algebra connection will too.

Schneider’s proof begins, “Let A ∈ Σ (C ). Then
by Theorem 2 and Lemma 6. . . ”

So we work backwards.
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Proper cones
Lemma 6 states:

Let C be a proper cone in Rn. Then in
Rn×n, the closure of Σ+ (C ) is Σ (C ).

So what’s Σ+ (C )? It’s the set of all strictly
cross-positive matrices on C , of course.
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Proper cones
Definition.

Let C be a cone in Rn. An A ∈ Rn×n is called
strictly cross-positive on C if for all 0 6= y ∈ C ,
0 6= z ∈ C ∗ with y ⊥ z we have 〈Ay, z〉 > 0.

Uh oh. Since both y and −y belong to a
subspace, Lemma 6 cannot hold for subspaces.
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Automorphisms
What can we do (grasping at straws)?

If we work with the convenient form of a
non-solid cone, we can actually compute its
automorphism group. Suppose

L :=
A B
C D

 ∈ Aut (KS × {0}S⊥) .
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Automorphisms
Well, C ≡ 0, otherwise there’s some x ∈ KS with
C (x) 6= 0 and thus,

A B
C D

 x
0

 =
A (x)
C (x)

 /∈
 KS
{0}S⊥


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Automorphisms
Now B and D can be almost anything, since,

A B
0 D

 KS
0

 =
A (KS)

0


But we want L−1 to exist, so D−1 must.

And we see that we will need A ∈ Aut (KS).
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Automorphisms
This is also a sufficient condition for membership
in Aut (KS × {0}S⊥). Thus,

Aut (KS × {0}S⊥) =

A B

0 D


A ∈ Aut (KS)
B = whatever
D ∈ Aut

(
S⊥

)
.
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Automorphisms
This looks a lot like our description of

LL (KS × {0}S⊥) =

A B

0 D


A ∈ LL (KS)
B = whatever
D = whatever . . .

but it’s not clear how that helps.
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Automorphisms
Suppose we could get the result for KS × {0}S⊥.
Could we extend it to KV ?

Proposition. Let KV ∼= JW be isomorphic
cone-space pairs with KV = ψ (JW ). Then,

• Aut (JW ) = ψAut (KV )ψ−1.
• LL (JW ) = ψLL (KV )ψ−1.
• eψLψ−1 = ψeLψ−1.
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Automorphisms
Proof. The first two proofs are similar.

L ∈ LL (KV )
⇐⇒ 〈L (x), s〉 = 0 for all (x , s) ∈ C (KV )
⇐⇒

〈
L
(
ψ−1y

)
, ψ−1t

〉
= 0 for all (y, t) ∈ C (JW )

⇐⇒
〈
ψLψ−1 (y), t

〉
= 0 for all (y, t) ∈ C (JW )

⇐⇒ ψLψ−1 ∈ LL (JW )

Michael Orlitzky UMBC



Automorphisms
Proof (continued).

For the exponential, we realize that eψLψ−1 is a
sum of powers of ψLψ−1. But,

(
ψLψ−1)n = ψL

I︷ ︸︸ ︷
ψ−1ψLψ−1 · · ·ψLψ−1︸ ︷︷ ︸

n times

,

so the ψ all cancel except at the ends.
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Automorphisms
Now a result for KS × {0}S⊥ becomes one for KV .

Proposition.

LL (KS × {0}S⊥) = Lie (Aut (KS × {0}S⊥))
m

LL (KV ) = Lie (Aut (KV ))
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Automorphisms
Proof.

Let φ (KV ) = KS × {0}S⊥ and L ∈ LL (KV ).
Then,

φLφ−1 ∈ LL (KS × {0}S⊥)
m

etφLφ−1 = φetLφ−1 ∈ Aut (KS × {0}S⊥)
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Automorphisms
Proof (continued).

But we can rearrange the isomorphisms:

L ∈ φ−1LL (KS × {0}S⊥)φ = LL (KV )
m m

etL ∈φ−1 Aut (KS × {0}S⊥)φ = Aut (KV )
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Automorphisms
Where we are: if we can show that

L ∈ LL (KS × {0}S⊥)
=⇒

etL ∈ Aut (KS × {0}S⊥) for all t ∈ R,

then we can use the last proposition to show the
same thing for any KV .
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Automorphisms
Great. Now all we need is some high-powered
mathematics to give us the result for KS × {0}S⊥.

Wait a minute, what was LL (KS × {0}S⊥)?

L :=
A B

0 D


A ∈ LL (KS)
B = whatever
D = whatever.
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Automorphisms
What if we just. . . exponentiate this?

etL =
∞∑

k=0

tk

k!

A B
0 D

k

.
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Automorphisms
The powers of an upper-triangular matrix are
upper-triangular!

etL =


∞∑

k=0
tk

k!A
k B̃

0
∞∑

k=0
tk

k!D
k


=
etA B̃

0 etD

 .
Ha ha!

Michael Orlitzky UMBC



Automorphisms
KS might not be proper, but if it is, this matches
our description of Aut (KS × {0}S⊥):

Aut (KS × {0}S⊥) =

A B

0 D


A ∈ Aut (KS)
B = whatever
D ∈ Aut

(
S⊥

)
.
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Automorphisms
Why?

• If KS is proper, then etA ∈ Aut (KS) by the
Gowda/Tao result.

• The exponential etD is always invertible.
• Whatever B̃ is, it doesn’t matter.

Michael Orlitzky UMBC



Automorphisms
How can we make KS proper?

Lemma. Suppose KV is pointed. Then the
following are equivalent.

• L is Lyapunov-like on KV .
• etL ∈ Aut (KV ) for all t ∈ R.
• L ∈ Lie (Aut (KV )).

Proof. Just exponentiate.
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Automorphisms
Can we get rid of the pointed requirement?

Proposition. For any cone-space pair KV ,

• Aut (K ∗V ) = {A∗ | A ∈ Aut (KV )}.
• LL (K ∗V ) = {L∗ | L ∈ LL (KV )}.
• et(L∗) =

(
etL

)∗.
(These proofs are trivial.)
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Automorphisms
We can reuse our trick from Part I.

Lemma. Suppose KV is solid. Then the
following are equivalent.

• L is Lyapunov-like on KV .
• etL ∈ Aut (KV ) for all t ∈ R.
• L ∈ Lie (Aut (KV )).
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Automorphisms
Proof.

K ∗V is pointed, so

L∗ ∈ LL (K ∗V ) ⇐⇒ L ∈ LL (KV )
m m

etL∗ ∈Aut (K ∗V ) ⇐⇒ etL ∈ Aut (KV )
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Automorphisms
Where we are:

We started by assuming that KV was
pointed. . . so that KS would be proper. . . so that
we could apply the Gowda/Tao theorem.

But we just found a version of the Gowda/Tao
theorem that requires only a solid cone.
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Automorphisms
Theorem. Let KV be a cone-space pair. The
following are equivalent.

• L is Lyapunov-like on KV .
• etL ∈ Aut (KV ) for all t ∈ R.
• L ∈ Lie (Aut (KV )).

Proof. Go back and prove everything without
pointedness (KS is already solid).
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Automorphisms
Example. Let K = V = Rn.

Then Aut (KV ) = GLn (R), and we know [1] that,

Lie (GLn (R)) = Mn (R) ,

the set of n × n real matrices. And of course,

GLn (R) = exp (Mn (R)) .
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Miscellaneous results
Theorem.

Suppose KV is a polyhedral cone-space pair with
finite generating set G.

1. If every element of G is an eigenvector of L,
then L ∈ LL (KV ).

2. If L ∈ LL (KV ), then every extreme vector of
KV is an eigenvector of L.
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Miscellaneous results
Proof.

Suppose every x ∈ G is an eigenvector of L. To
verify the Lyapunov-like property on generators,

〈L (x), s〉 = 〈αx , s〉 = α 〈x , s〉 = 0,

because (x , s) ∈ C (KV ).
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Miscellaneous results
Proof (continued).

Suppose L ∈ LL (KV ). Gowda and Tao use
etL ∈ Aut (KV ) to prove that every Ext (KV ) is
an eigenvector of L when KV is proper.

The same argument works using the new result
that etL ∈ Aut (KV ) for cone-space pairs.
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Miscellaneous results

Everything should be made
as simple as possible, but
not simpler.

— Albert Einstein
(maybe)
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Miscellaneous results
Theorem (incorrect).

Suppose KV is a polyhedral cone-space pair.
Then L ∈ LL (KV ) if and only if every element of
Ext (KV ) is an eigenvector of L.
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Miscellaneous results
Looks great, but is too simple.

Suppose every element of Ext (KV ) is an
eigenvector of L. Do we have L ∈ LL (KV )?

• Works for proper cones.
• Works for K = V .
• So it’s got to be true.
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Miscellaneous results
Example (counter). Let K = R2 in V = R3.

Clearly Ext (KV ) = ∅, yet not every L ∈ B (V ) is
Lyapunov-like on KV : we know that β (KV ) = 7.

Oops.
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Future work
Our Lie algebra theorem is weaker than the result
of Schneider and Vidyasagar stating that
L ∈ Σ (K ) if and only if etL (K ) ⊆ K .

The maps P satisfying P (K ) ⊆ K are called
positive maps on K , and the set of all such maps
is written π (K ).
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Future work
The techniques we’ve developed can be used to
generalize their theorem to one concerning
Z (KV ) and π (KV ) for a cone-space pair KV .

When KV is polyhedral, the set π (KV ) is a
polyhedral closed convex cone, and we should be
able to compute it.
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Future work
The positive maps are interesting in their own
right, and having an implementation may
generate some conjectures about e.g. β (π (KV )).

Moreover, Z-transformations arise in dynamical
systems, so we should be able to connect this
work to that area and extend some of the results
there to closed convex cones.
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