The S-lemma

Michael Orlitzky

MICHAEL ORLITZKY UMBC



NOTATION

By 8" we denote the set of real symmetric n x n
matrices. Within this set, we have the cone S of
positive semidefinite matrices.

The nonnegative orthant in R" is R”.

The set of all nonnegative linear combinations of
elements of X is written cone (X).
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NOTATION

Cone inequality is indicated by a subscript. For
example, z > vy indicates that z — y € K. We
write x >k y when x — y is in the interior of K.

The interior of K is abbreviated int (K).

If K is a cone, then K* represents its dual.
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NOTATION

If L is a linear map, then L* is its adjoint.

We use the usual inner product on R" and the
trace inner product (X, Y) = trace (XY ) on
matrix spaces.

We make extraordinary use of the fact that
trace (XYZ) = trace (YZX) = trace (ZXY) for
any conceivable argument to the trace function.
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INTRODUCTION

The S-lemma is a quadratic programming result.

The question it answers is,

When is one quadratic inequality a
consequence of some other quadratic
inequalities?
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INTRODUCTION

This question arises in the constrained problem,

minimize 2’ Bz
subject to zT A;z > 0

fort=1,2,...,m.

Its optimal value is either —oo or zero, since we
can scale any solution by a positive value.
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INTRODUCTION
But which is it, negative infinity or zero?
Is there a feasible point z such that 27 Bx < 07?

Or does the system z7 A;z > 0 imply that
zT Bx > 0 for all z?
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INTRODUCTION

In the linear case,

minimize zTh
subject to  zTa; > 0
fort=1,2,...,m,

we have Farkas’s lemma:;:

2'h>0 <= INERL: b= \a
1=1
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INTRODUCTION

In the quadratic case, we're not so lucky.

The S-lemma for quadratic inequalities is
analogous to Farkas’s lemma for linear ones. But,
the S-lemma only applies when there is exactly
one constraint,

minimize z’ Bz
subject to zT A;z > 0.
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CONIC DUALITY

To prove the S-lemma, we need the concept of
strong duality for conic programs. The primal
form of a conic program is

minimize (b, z)
subject to L (z) >k, ¢
T ZKl O,

where K, Ky are cones and L is linear.
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CONIC DUALITY

The dual of this conic program is

maximize (c, 41
subject to L* (u) <gr b
M ZKQ* 07

where L* is the adjoint of L, and K7, K; are dual
to Kl, KQ.
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CONIC DUALITY

Conic duality is more subtle than linear duality.
Theorem (conic duality theorem).

If the primal conic programming problem is
bounded below and strictly feasible then the dual
problem is solvable with the same optimal value.
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CONIC DUALITY

Even the definition of strictly feasible is tricky.
Definition.

The primal form of a conic programming problem
is said to be strictly feasible if there exists a
feasible point z such that

T € int (Kl) , if Ky = {0}
L(z) — ¢ € int (K3), otherwise .
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CONIC DUALITY

Choosing K> = {0} lets us have equality
constraints. The associated problem is,

minimize (b, )
subject to L (x) = ¢
z € K.

This is the form we’ll need later.
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TECHNICAL LEMMA

We also need a technical lemma that we’ll prove.

Lemma. Let P, Q) € 8" with trace (P) > 0 and
trace (@) < 0.

Then, there exists a single vector z € R" such
that both z7 Pz > 0 and 27 Qz < 0.
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TECHNICAL LEMMA
Proof.
Begin by diagonalizing Q = UAUT.

One way to make z” Qz < 0 is to take z = U¢
where £ € R" has entries £&; = £1. Then,

2T Qz = €T AE = trace (A) = trace (Q) .

And by assumption, trace (() < 0.
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TECHNICAL LEMMA

Now the problem is to choose £ so that
TPy =¢"UTPUE > 0.

The trouble is that U7 PU is not diagonal, so we
don’t know what to make & to collapse this down
to something involving trace (P) > 0.
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TECHNICAL LEMMA

Ben-Tal and Nemirovski employ a clever trick:
suppose £ is a random vector whose entries &;
take the value +1 each with probability 1/2.

The expectation [E of any particular &; is zero,
but for a product,

i
]E(&fj)_{ e

0 otherwise .
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TECHNICAL LEMMA

We now ask, what is the expectation of z” Pz, or
E (f’T (UTPU) f)? Expanding, this is

E (zgigT (the ith row of UTPU)) .
=1

And since E (§;¢;) = &, we have £;¢7 = el where
e; is the 7th standard basis vector.
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TECHNICAL LEMMA
Thus,

E (zTPz) = Zn:eiT (the ith row of UTPU)
i=1

n

= 3" the ith diagonal of U7 PU

i=1
= trace (U" PU) = trace (P) > 0.

The expectation is nonnegative, so there must be
some concrete & making z7 Pz > 0. Use that. [

MICHAEL ORLITZKY UMBC



S-LEMMA

Theorem (S-lemma).

Let A, B € 8" and suppose that z7 Az > 0 for
some T € R". Then the following are equivalent:

1. The inequality 27 Az > 0 implies 27 Bz > 0.

2. There exists a A > 0 such that B >sr AA.
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S-LEMMA

Proof. The second item easily implies the first.
If (B—AA) e S}, then

T Br > MxT Az for all z € R™

Now if z7 Az > 0, then 27 Bz > 0 too, so the
implication in the first item holds.
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S-LEMMA

Next suppose that the first item holds, so that
zT Az > 0 implies 7 Bz > 0. Then the solution

to the optimization problem

min {xTBx ‘ 2T Az > 0}
zeR™

exists and has nonnegative objective value.
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S-LEMMA

No generality is lost by requiring ||z|| = 1. Any
solution to the original problem can be scaled to
unit norm without violating the constraint.

Thus the solution to
min {z" Bz | 2" Az > 0, ||z]| =1}
z€R”

exists and has nonnegative objective value.
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S-LEMMA

Using the fact that
zT Br = trace (:UTB:C) = trace (BmT) :

we can rewrite the problem

min {(B, ") | (4,22") > 0,
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S-LEMMA

The semidefinite relaxation of this problem is

)1(2%1&{(3,)() | (A, X) >0, trace (X) =n}.

This should be easier to solve, since not every
X € 8% is of the form X = zxT.

The trace (X) = n constraint comes from
considering the identity matrix.
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S-LEMMA

In the statement of the S-lemma, we required
that 27 Az > 0 for some z € R". Here’s why.

Let X = zz”. By scaling this appropriately, we
can make trace (X) = n. Now,

<A, )_(> = trace (Aii:T) = trace (a_:TAi“) > 0.
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S-LEMMA

So X € S is feasible and interior to the
half-space {X | (4, X) > 0}, which we call Hy.

From X, we can move a small distance along the
hyperplane {X | trace (X) = n} into the interior
of §%. In this manner, we can find a feasible Y
such that Y € int (8" N Hy).
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S-LEMMA

Also note that the problem

min {(B, X) | (A, X) >0, trace (X) = n}
XeSt
is bounded below. The constraint trace (X) = n
forms a hyperplane that intersects the cone S in
a compact base. Thus the feasible set is compact.
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S-LEMMA

Recall:
Theorem (conic duality theorem).

If the primal conic programming problem is
bounded below and strictly feasible then the dual
problem is solvable with the same optimal value.
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S-LEMMA

To apply the duality theorem, we need to put our
problem in standard form:

minimize (B, X)
subject to L(X) >k, ¢
X >x, 0.

From the conic duality theorem, we guess that

K =87 NHy and Ky == {0}.
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S-LEMMA

By taking L (X) = trace (X) and ¢ := n, we
obtain the desired problem in standard form:

minimize (B, X)
subject to trace (X) =n
X € S_Z N Hy.

In this formulation, the Y € int (8" N H,) that
we found a moment ago shows strict feasibility.
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S-LEMMA

For the dual problem, we need the dual cones of
Kj and Ks. The dual of Ky = {0} is the entire
space R. The dual of K is known to be

K = (S! N Hy = (8))" + Hj.

The cone S is self-dual, and the dual of a
half-space is the ray that defines it. So,

K =S8 + cone ({A}).
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S-LEMMA

We also need the adjoint of L, defined by
(X, L* () = (L(X), 1) = potrace (X)

for all X € §" and p € R. By inspection,
L* (p) = pl will work:

(X, L* () = p (I, X) = ptrace (X)
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S-LEMMA

Substituting, we have the dual problem:

maximize (c, j1)
SUbjeCt to L* (M) SSﬁ—i—cone({A}) B
we R.

Fortunately, this can be simplified a bit. First,
(c, ) is just npu.

MICHAEL ORLITZKY UMBC



S-LEMMA
Next, the cone constraint says
B — pul € 8} + cone ({4}).
If AA is the component in cone ({A}), then
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S-LEMMA

Thus the dual problem simplifies to

maximize nu € R
subject to B >gn AA + pul
A> 0.
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S-LEMMA

Remember: we were trying to prove that there
exists a A > 0 such that B >sr AA.

We've just discovered that

If ;4 > 0 here, then B =57 AA as desired.
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S-LEMMA

By the conic duality theorem, this problem shares
its optimal solution with the primal problem.

Let nu be the optimal solution to the dual:

maximize nu € R
subject to B >gn AA + pul
A> 0.
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S-LEMMA

Then np is optimal for the primal as well:

minimize (B, X)
subject to (A, X) >0
trace (X) =n
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S-LEMMA

Suppose, on the contrary, that <B, 7(> =nu <0
is the optimal value of the primal, achieved by X.

Since X € ST, it factors into X = DDT. Now

<B, )N(> = trace (BDDT)
= trace (DTBD) = nji
<A, )N(> =trace (DTAD) > 0.
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S-LEMMA
If nji < 0, we let P = DTAD and Q = DTBD.
Recall:

Lemma. There exists a single vector z € R"
such that both 2" Pz > 0 and 27 Qz < 0.
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S-LEMMA

Suppose 2z (DTAD) z > 0 and 2 (D'BD) z < 0.
If we let z = Dz, then z7 Az > 0 while 2" Bz < 0.

This contradicts item one from the S-lemma:
1. The inequality 27 Az > 0 implies 27 Bx > 0.

Therefore, u > 0.
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S-LEMMA

Now since the optimal p is nonnegative in

maximize npu € R
subject to B >gn AA + pul
A >0,

we have B >gn AA.

This was the desired second item from the
S-lemma, and we are done. ]
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