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Notation
By Sn we denote the set of real symmetric n × n
matrices. Within this set, we have the cone Sn

+ of
positive semidefinite matrices.

The nonnegative orthant in Rn is Rn
+.

The set of all nonnegative linear combinations of
elements of X is written cone (X).
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Notation
Cone inequality is indicated by a subscript. For
example, x ≥K y indicates that x − y ∈ K . We
write x >K y when x − y is in the interior of K .

The interior of K is abbreviated int (K ).

If K is a cone, then K ∗ represents its dual.

Michael Orlitzky UMBC



Notation
If L is a linear map, then L∗ is its adjoint.

We use the usual inner product on Rn and the
trace inner product 〈X ,Y 〉 = trace

(
XY T

)
on

matrix spaces.

We make extraordinary use of the fact that
trace (XYZ ) = trace (YZX) = trace (ZXY ) for
any conceivable argument to the trace function.
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Introduction
The S-lemma is a quadratic programming result.

The question it answers is,

When is one quadratic inequality a
consequence of some other quadratic
inequalities?
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Introduction
This question arises in the constrained problem,

minimize xTBx
subject to xTAix ≥ 0
for i = 1, 2, . . . ,m.

Its optimal value is either −∞ or zero, since we
can scale any solution by a positive value.
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Introduction
But which is it, negative infinity or zero?

Is there a feasible point x such that xTBx < 0?

Or does the system xTAix ≥ 0 imply that
xTBx ≥ 0 for all x?
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Introduction
In the linear case,

minimize xTb
subject to xTai ≥ 0
for i = 1, 2,. . . ,m,

we have Farkas’s lemma:

xTb ≥ 0 ⇐⇒ ∃λ ∈ Rn
+ : b =

m∑
i=1
λiai
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Introduction
In the quadratic case, we’re not so lucky.

The S-lemma for quadratic inequalities is
analogous to Farkas’s lemma for linear ones. But,
the S-lemma only applies when there is exactly
one constraint,

minimize xTBx
subject to xTA1x ≥ 0.
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Conic duality
To prove the S-lemma, we need the concept of
strong duality for conic programs. The primal
form of a conic program is

minimize 〈b, x〉
subject to L (x) ≥K2 c

x ≥K1 0,

where K1,K2 are cones and L is linear.

Michael Orlitzky UMBC



Conic duality
The dual of this conic program is

maximize 〈c, µ〉
subject to L∗ (µ) ≤K∗

1
b

µ ≥K∗
2

0,

where L∗ is the adjoint of L, and K ∗1 ,K ∗2 are dual
to K1,K2.
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Conic duality
Conic duality is more subtle than linear duality.

Theorem (conic duality theorem).

If the primal conic programming problem is
bounded below and strictly feasible then the dual
problem is solvable with the same optimal value.
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Conic duality
Even the definition of strictly feasible is tricky.

Definition.

The primal form of a conic programming problem
is said to be strictly feasible if there exists a
feasible point x such that


x ∈ int (K1) , if K2 = {0}
L (x)− c ∈ int (K2) , otherwise .
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Conic duality
Choosing K2 = {0} lets us have equality
constraints. The associated problem is,

minimize 〈b, x〉
subject to L (x) = c

x ∈ K1.

This is the form we’ll need later.
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Technical lemma
We also need a technical lemma that we’ll prove.

Lemma. Let P,Q ∈ Sn with trace (P) ≥ 0 and
trace (Q) < 0.

Then, there exists a single vector z ∈ Rn such
that both zTPz ≥ 0 and zTQz < 0.
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Technical lemma
Proof.

Begin by diagonalizing Q = UΛU T .

One way to make zTQz < 0 is to take z = U ξ
where ξ ∈ Rn has entries ξi = ±1. Then,

zTQz = ξT Λξ = trace (Λ) = trace (Q) .

And by assumption, trace (Q) < 0.
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Technical lemma
Now the problem is to choose ξ so that

zTPz = ξTU TPU ξ ≥ 0.

The trouble is that U TPU is not diagonal, so we
don’t know what to make ξ to collapse this down
to something involving trace (P) ≥ 0.
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Technical lemma
Ben-Tal and Nemirovski employ a clever trick:
suppose ξ is a random vector whose entries ξi
take the value ±1 each with probability 1/2.

The expectation E of any particular ξi is zero,
but for a product,

E (ξiξj) =


1 if i = j,
0 otherwise .
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Technical lemma
We now ask, what is the expectation of zTPz , or
E
(
ξT

(
U TPU

)
ξ
)
? Expanding, this is

E
 n∑

i=1
ξiξ

T (
the ith row of U TPU

) .
And since E (ξiξj) = δij , we have ξiξ

T = eT
i where

ei is the ith standard basis vector.
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Technical lemma
Thus,

E
(
zTPz

)
=

n∑
i=1

eT
i
(
the ith row of U TPU

)

=
n∑

i=1
the ith diagonal of U TPU

= trace
(
U TPU

)
= trace (P) ≥ 0.

The expectation is nonnegative, so there must be
some concrete ξ making zTPz ≥ 0. Use that.

Michael Orlitzky UMBC



S-lemma
Theorem (S-lemma).

Let A,B ∈ Sn and suppose that x̄TAx̄ > 0 for
some x̄ ∈ Rn. Then the following are equivalent:

1. The inequality xTAx ≥ 0 implies xTBx ≥ 0.

2. There exists a λ ≥ 0 such that B ≥Sn
+ λA.
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S-lemma
Proof. The second item easily implies the first.
If (B − λA) ∈ Sn

+, then

xTBx ≥ λxTAx for all x ∈ Rn.

Now if xTAx ≥ 0, then xTBx ≥ 0 too, so the
implication in the first item holds.
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S-lemma
Next suppose that the first item holds, so that
xTAx ≥ 0 implies xTBx ≥ 0. Then the solution
to the optimization problem

min
x∈Rn

{
xTBx

∣∣∣ xTAx ≥ 0
}

exists and has nonnegative objective value.

Michael Orlitzky UMBC



S-lemma
No generality is lost by requiring ‖x‖ = 1. Any
solution to the original problem can be scaled to
unit norm without violating the constraint.

Thus the solution to

min
x∈Rn

{
xTBx

∣∣∣ xTAx ≥ 0, ‖x‖ = 1
}

exists and has nonnegative objective value.
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S-lemma
Using the fact that

xTBx = trace
(
xTBx

)
= trace

(
BxxT) ,

we can rewrite the problem

min
x∈Rn

{〈
B, xxT〉 ∣∣∣ 〈A, xxT〉 ≥ 0,

∥∥∥xxT ∥∥∥ = 1
}
.
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S-lemma
The semidefinite relaxation of this problem is

min
X∈Sn

+
{〈B,X〉 | 〈A,X〉 ≥ 0, trace (X) = n} .

This should be easier to solve, since not every
X ∈ Sn

+ is of the form X = xxT .

The trace (X) = n constraint comes from
considering the identity matrix.
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S-lemma
In the statement of the S-lemma, we required
that x̄TAx̄ > 0 for some x̄ ∈ Rn. Here’s why.

Let X̄ = x̄ x̄T . By scaling this appropriately, we
can make trace

(
X̄
)

= n. Now,
〈
A, X̄

〉
= trace

(
Ax̄x̄T) = trace

(
x̄TAx̄

)
> 0.

Michael Orlitzky UMBC



S-lemma
So X̄ ∈ Sn

+ is feasible and interior to the
half-space {X | 〈A,X〉 ≥ 0}, which we call HA.

From X̄ , we can move a small distance along the
hyperplane {X | trace (X) = n} into the interior
of Sn

+. In this manner, we can find a feasible Ȳ
such that Ȳ ∈ int (Sn

+ ∩ HA).
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S-lemma
Also note that the problem

min
X∈Sn

+
{〈B,X〉 | 〈A,X〉 ≥ 0, trace (X) = n}

is bounded below. The constraint trace (X) = n
forms a hyperplane that intersects the cone Sn

+ in
a compact base. Thus the feasible set is compact.
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S-lemma
Recall:

Theorem (conic duality theorem).

If the primal conic programming problem is
bounded below and strictly feasible then the dual
problem is solvable with the same optimal value.
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S-lemma
To apply the duality theorem, we need to put our
problem in standard form:

minimize 〈B,X〉
subject to L (X) ≥K2 c

X ≥K1 0.

From the conic duality theorem, we guess that

K1 := Sn
+ ∩ HA and K2 := {0} .

Michael Orlitzky UMBC



S-lemma
By taking L (X) := trace (X) and c := n, we
obtain the desired problem in standard form:

minimize 〈B,X〉
subject to trace (X) = n

X ∈ Sn
+ ∩ HA.

In this formulation, the Ȳ ∈ int (Sn
+ ∩ HA) that

we found a moment ago shows strict feasibility.
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S-lemma
For the dual problem, we need the dual cones of
K1 and K2. The dual of K2 = {0} is the entire
space R. The dual of K1 is known to be

K ∗1 = (Sn
+ ∩ HA)∗ = (Sn

+)∗ + H ∗A.

The cone Sn
+ is self-dual, and the dual of a

half-space is the ray that defines it. So,

K ∗1 = Sn
+ + cone ({A}) .
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S-lemma
We also need the adjoint of L, defined by

〈X ,L∗ (µ)〉 = 〈L (X), µ〉 = µ trace (X)

for all X ∈ Sn and µ ∈ R. By inspection,
L∗ (µ) := µI will work:

〈X ,L∗ (µ)〉 = µ 〈I ,X〉 = µ trace (X) .
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S-lemma
Substituting, we have the dual problem:

maximize 〈c, µ〉
subject to L∗ (µ) ≤Sn

++cone({A}) B
µ ∈ R.

Fortunately, this can be simplified a bit. First,
〈c, µ〉 is just nµ.
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S-lemma
Next, the cone constraint says

B − µI ∈ Sn
+ + cone ({A}) .

If λA is the component in cone ({A}), then

B ≥Sn
+ λA + µI .
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S-lemma
Thus the dual problem simplifies to

maximize nµ ∈ R
subject to B ≥Sn

+ λA + µI
λ ≥ 0.
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S-lemma
Remember: we were trying to prove that there
exists a λ ≥ 0 such that B ≥Sn

+ λA.

We’ve just discovered that

B ≥Sn
+ λA + µI .

If µ ≥ 0 here, then B ≥Sn
+ λA as desired.
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S-lemma
By the conic duality theorem, this problem shares
its optimal solution with the primal problem.

Let nµ̄ be the optimal solution to the dual:

maximize nµ ∈ R
subject to B ≥Sn

+ λA + µI
λ ≥ 0.
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S-lemma
Then nµ̄ is optimal for the primal as well:

minimize 〈B,X〉
subject to 〈A,X〉 ≥ 0

trace (X) = n
X ∈ Sn

+.
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S-lemma
Suppose, on the contrary, that

〈
B, X̃

〉
= nµ̄ < 0

is the optimal value of the primal, achieved by X̃ .

Since X̃ ∈ Sn
+, it factors into X̃ = DDT . Now

〈
B, X̃

〉
= trace

(
BDDT)

= trace
(
DTBD

)
= nµ̄〈

A, X̃
〉

= trace
(
DTAD

)
≥ 0.
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S-lemma
If nµ̄ < 0, we let P = DTAD and Q = DTBD.

Recall:

Lemma. There exists a single vector z ∈ Rn

such that both zTPz ≥ 0 and zTQz < 0.
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S-lemma
Suppose zT

(
DTAD

)
z ≥ 0 and zT

(
DTBD

)
z < 0.

If we let z̄ = Dz , then z̄TAz̄ ≥ 0 while z̄TBz̄ < 0.

This contradicts item one from the S-lemma:

1. The inequality xTAx ≥ 0 implies xTBx ≥ 0.

Therefore, µ ≥ 0.
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S-lemma
Now since the optimal µ is nonnegative in

maximize nµ ∈ R
subject to B ≥Sn

+ λA + µI
λ ≥ 0,

we have B ≥Sn
+ λA.

This was the desired second item from the
S-lemma, and we are done.
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