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Motivation

Our primary interest in topological groups is to

study Lie groups (which are topological groups).

The Lie group that we are familiar with is

Aut (K), the automorphism group of a cone

K ⊆ Rn.

Every Lie group has an associated Lie algebra,

and the dimension of the Lie algebra associated

with Aut (K) is the Lyapunov rank [1] of K.
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Motivation

Definition. A topological group is a tuple

(G, µ, ι, e, T ) where (G, µ, ι, e) is a group, (G, T )

is a topological space, and µ, ι are continuous.

So we should begin by introducing groups and

topological spaces.
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Groups

Definition. A group is a tuple (G, µ, ι, e) where

G is a set, µ is associative “multiplication,”

µ : G×G→ G

µ (a, b) = ab

and ι is “inverse” on the set:

ι : G→ G

ι (a) = a−1
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Groups

The element e is called the identity element of

the group, and satisfies µ (a, e) = µ (e, a) = a for

all a in G.

The explicit function application of µ and ι is

laborious in group theory, but makes things

clearer when we begin talking about continuity

and function composition.
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Groups

Example. The set of real numbers under

addition:

G = R
µ = plus, (a, b) 7→ a+ b

ι = negate, a 7→ −a
e = 0
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Groups

Example. The set of nonzero real numbers

under multiplication:

G = R \ {0}
µ = times, (a, b) 7→ a · b

ι = reciprocal, a 7→ 1

a
e = 1
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Groups

Example. The real general linear group

GLn (R) in n dimensions,

G =
{
A ∈ Rn×n, det (A) 6= 0

}
µ = matrix multiplication, (A,B) 7→ AB

ι = matrix inverse, a 7→ A−1

e = I
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Continuity

In a metric space, we have the epsilon-delta

notion of continuity:

f : X → Y is continuous at x ∈ X
m

∀Bε (f (x)) , ∃Bδ (x) ⊆ f−1 (Bε (f (x)))
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Continuity
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Continuity

We also have the equivalence: f : X → Y is

(epsilon-delta) continuous at x if and only if

f−1 (N) is a neighborhood of x for every

neighborhood N of f (x).

Definition. A neighborhood N of x is any set

containing an open set A 3 x. That is, any set N

where {x} ⊆ A ⊆ N and A is open. They’re used

like ε-balls, but they can be weirdly-shaped.
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Continuity
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Continuity

This characterization extends to functions

continuous on X. Since there is no mention of

the underlying metric, this gives us a definition of

continuity that works in a more general space:

Definition. A function f : X → Y is said to be

continuous if f−1 (A) is open in X for every

subset A ⊆ Y open in Y .
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Topology

Definition. A topology T on X is a collection of

subsets of X, which we call “open” by convention.

The members of T must satisfy three criteria:

1. X, ∅ ∈ T

2. If S ⊆ T , then

(
∪
A∈S

A

)
∈ T

3. If S ⊆ T is finite, then

(
∩
A∈S

A

)
∈ T
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Topology

Remark. To show off at parties, point out that

the first criterion is technically redundant. The

empty set is a (finite) subset of any set, and

T 3 ∪
A∈∅

A = ∅

T 3 ∩
A∈∅

A = X

gives X, ∅ ∈ T from criteria #2 and #3.
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Topology

Definition. A topological space is a pair (X, T )

where X is a set and T is a topology on X.

Any metric space gives rise to a topological

space: let T be the collection of open sets in the

metric space (unions of open ε-balls).

The reverse is not true.
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Topology

Example (indiscrete topology).

X = any set

T = {X, ∅}

There’s only one possible union and intersection

we can form from members of T , and they’re

both back in T .

There is no associated metric space.
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Topology

Example (discrete topology).

X = any set

T = 2X

Clearly everything we need to be in T from

criteria #1, #2, and #3 is in there, because

everything is in T .
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Topology

Example. The set of real numbers with the

usual open sets:

X = R
T = unions of open intervals

Our three criteria in this case follow from basic

properties of open intervals in R.
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Topology

Example. The set of nonzero real numbers:

X = R \ {0}
T = ∪

i∈I
[(ai, bi) \ {0}]

This is an example of a subspace topology; our X

here is a subset of R (with zero removed), and T
consists of the same sets as in the previous

example, except with {0} removed from each

open interval.

Michael Orlitzky UMBC



Topology

Example. The real general linear group

GLn (R) in n dimensions,

X =
{
A ∈ Rn×n, det (A) 6= 0

}
T = the ‖·‖ − open sets in GLn (R)

We have a norm (also a metric) for matrices.

(GLn (R) , ‖·‖) is thus a metric subspace of

(Mn (R) , ‖·‖), and we can use the collection of

open sets from the metric space as our T .
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Topology

The open-cover definition of compactness uses

only the notion of open sets; therefore we have:

Definition. A set if compact in a topological

space if it is open-cover compact. That is, if every

open cover of the given set has a finite subcover.

Beware, some properties of compact sets in

metric spaces do not translate!

Michael Orlitzky UMBC



Topology

Example (a set which is compact but not

closed).

X = {a, b, c}
T = {∅, {a} , {a, b} , {a, c} , X}

The set {a} is compact: all open covers are finite.

But it is not closed: {b, c} /∈ T .
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Topology

There are a few special types of topological

spaces; they have properties that prevent them

from being “too weird.” The first is,

Definition (T1 space). A topological space is

said to be T1 if every singleton set is closed in it.

In our previous example, {a} was not closed so

the space is not T1.
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Topology

Definition (Hausdorff space). A topological

space is said to be “Hausdorff” (or T2) if it is T1
and every x 6= y in the space can be covered by

open sets U 3 x and V 3 y that do not intersect;

i.e. U ∩ V = ∅.

The space previous example was not T1, so it is

not Hausdorff. Note that all metric spaces are

Hausdorff. This property is what is required for

compact sets to be closed.
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Topology

To see this, let A ⊆ X be compact and fix

y ∈ Ac. For each pair {(x, y) : x ∈ A} pair we can

find sets Ux 3 y and Vx 3 x. The Vx cover A, so

they have a finite subcover. Keep the

corresponding Ux which are finite in number.

Now if we take the (finite!) intersection of the Ux,

we get an open set containing y that is disjoint

from A. Do this for all y ∈ Ac, and take the

union to show that Ac is open. Thus A is closed.
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Topology

Definition (Regular space). A topological

space is said to be “regular” (or T3) if it is T1 and

every x /∈ Y (where Y is a closed set) in the space

can be covered by open sets U 3 x and V ⊇ Y

that do not intersect; i.e. U ∩ V = ∅.

This is similar to a Hausdorff space, except the

singleton set (point) {y} has been replaced with a

closed set Y .
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Topological Groups

By now this definition should make more sense:

Definition. A topological group is a tuple

(G, µ, ι, e, T ) where (G, µ, ι, e) is a group and

(G, T ) is a topological space.

Furthermore, the group multiplication µ and the

group inverse ι are continuous with respect to the

topology T on G.
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Topological Groups

By definition, the map x 7→ µ (g, x) = gx is

continuous. The composition of two continuous

maps is again continuous, so,

x 7→ µ (ι (g) , x) = g−1x

is also continuous. Thus, multiplication on the

left/right is a homeomorphism. Inversion is also

obviously a homeomorphism.
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Topological Groups

Homeomorphisms preserve open and closed sets,

therefore we have,

Corollary.

H ⊆ G is open ⇐⇒ gH is open

⇐⇒ Hg is open

⇐⇒ H−1 is open.
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Topological Groups

All of our group examples can be thought of as

topological groups, since they derive a topology

from their metrics:

• R, plus, negate

• R \ {0} , times, reciprocal

• GLn (R) ,matrix multiplication, inverse
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Topological Groups

Example. Any group (G, µ, ι, e) can be made

into a topological group (G, µ, ι, e, T ) via the

discrete topology, T = 2G.

This is cheating, but µ and ι are automatically

continuous because everything is in T when you

consider their preimages.
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Topological Groups

Example. A Lie group is a group (G, µ, ι, e)

where G is a differentiable manifold and µ, ι are

compatible with the differential structure on G.

In particular µ and ι are smooth operations, and

are thus continuous. So every Lie group is a

topological group.

Example. Aut (K), the automorphism group of

a proper cone K, is a topological group (a

subgroup of GLn (R)).
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Topological Groups

Proposition. Every neighborhood H of e

contains a neighborhood N of e such that

N = N−1 and NN ⊆ H.

To understand the proof, think of G = R \ {0}
and let 1± δ be a given δ-ball. Can you find an

ε-ball B = 1± ε around 1 such that

BB = 1± 2ε± ε2 is contained within 1± δ? Sure,

easy. The idea is the same.
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Topological Groups
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Topological Groups

Proof.

Without loss of generality let H be open

(otherwise, take its interior). Then µ−1 (H) is

open by continuity of µ, and gives us two open

neighborhoods N1 and N2 of e such that

µ (N1, N2) ⊆ H. Intersect the two to get N3 which

is another (smaller) neighborhood of e. Finally

take N = N3 ∩N−13 to make it symmetric.
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Topological Groups

Proposition. Any open subgroup H of G is

closed as well.

Proof.

Any coset xH of H is open by continuity, but the

cosets of H partition G. So the complement of H

in G is just the union of the non-H cosets, and

they’re all open, too. Therefore, Hc is open and

H is closed.
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Topological Groups
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Topological Groups

Proposition. If H is a subgroup of G, then H̄

is also a subgroup of G.

Proof.

Let gh ∈ H̄; we will show that every open

neighborhood N of gh contains an element of H.

By continuity, µ−1 (N) = N1 ×N2 are open

neighborhoods of g, h. But g, h ∈ H̄ so N1 and N2

contain other points x, y ∈ H respectively. Since

H is a group, we have xy ∈ N and xy ∈ H.
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Topological Groups
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Topological Groups

Let H ⊆ G be a subgroup of G. From group

theory, we know we can define a quotient G/H

with

p : G→ G/H

p (g) = [g]

as its projection map. The function p takes an

element g ∈ G to its equivalence class in G/H.
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Topological Groups

We can define a topology Q on the quotient G/H

in a natural way.

Definition. The quotient topology Q is the

natural topology defined on G/H where

X ⊆ G/H is open if and only if p−1 (X) is open

in G.

In other words, X ∈ Q ⇐⇒ p−1 (X) ∈ T .
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Topological Groups

Note: we can construct the quotient topology

even when H is not normal; i.e. when G/H is not

a group!

The quotient topology is “natural” because it

makes the projection map p continuous by

definition. It also happens to be an open map.
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Topological Groups

Proof.

Let X ⊆ G be open; then p (X) is open in G/H if

p−1 (p (X)) is open in G by definition. But,

p−1 (p (X)) = {x ∈ G : p (x) ∈ p (X)}
= {xH : x ∈ X}
= XH

= ∪
h∈H

Xh

where each Xh is open.
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Topological Groups

If H is compact, then p is also a closed map.

Proof.

The proof is identical, except that when we reach

the product XH = ∪h∈HXh, the union is not

necessarily closed. But it can be shown to be

closed when H (or X, in general) is compact.
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Topological Groups

Proposition. If H is normal, then G/H is a

topological group

Proof. This is “obvious,” but we need to show

that multiplication and inverse are continuous in

G/H. To do this, note that p is an open map and

both µ (g, ·) and ι are continuous. Moreover, H is

normal, so (gx)H = gxHx−1xH = (gH) (xH).
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Topological Groups

Proof (continued). Therefore, the following

diagrams commute:

G
µ(g,·)−−−→ Gyp yp

G/H
µ(p(g),·)−−−−→ G/H

G
ι−−→ Gyp yp

G/H
ι′−−→ G/H
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Topological Groups

These ideas extend to Lie groups.

Theorem (Hilgert & Neeb, 9.3.7). Let

(G, µ, ι, e) be a Lie group, and let H ⊆ G be a

closed subgroup of G. Then H is a Lie group.

Theorem (Hilgert & Neeb, 11.1.5). If in

addition H is normal, then G/H is a Lie group.
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Topological Groups

Definition. A topological space (X, T ) is called

locally compact if every point x ∈ X has a

compact neighborhood N 3 x.

Lemma. If (X, T ) is locally-compact and

Hausdorff, then it is also regular, and any

neighborhood of x ∈ X contains a compact

neighborhood of x.

Proof (omitted). Purely topological.
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Topological Groups

Lemma. Let G be a Hausdorff topological

group and let H be a locally-compact subgroup

of G. Then H is closed.

Without the fact that H is a subgroup, it would

need to be globally-compact to be necessarily

closed.

Corollary. Locally-compact subgroups of

Hausdorff Lie groups are Lie groups.
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Topological Groups

Definition. A topological space (X, T ) is said

to be homogeneous if for any x, y ∈ X, there is a

homeomorphism sending x to y.

Every topological group is homogeneous, since

the map f (g) = gx−1y is a homeomorphism and

f (x) = xx−1y = y.
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Topological Groups

If two sets in a topological space are connected

by a homeomorphism, they are “essentially the

same.” This means that we can study an entire

topological group by looking at neighborhoods of

the identity.

Example. Every neighborhood in a topological

group is a translation of a neighborhood of the

identity. This is used heavily in proofs.
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Topological Groups
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Topological Groups
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Topological Groups

Lemma. A topological group homomorphism

φ : G→ H is continuous if it is continuous at the

identity.

Proof. Suppose φ is continuous at e ∈ G, and

let N 3 φ (x) ∈ H be given. By continuity, we

can find an M 3 e such that φ (M) ⊆ φ (x)−1N .

But then,

φ (x)φ (M) = φ (xM) ⊆ φ (x)φ (x)−1N = N.
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Topological Groups
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Topological Groups

Definition. A topological space (X, T ) is said

to be connected if it has no nonempty proper

clopen subsets. This is equivalent to saying that

any two nonempty open subsets A ∪B = X have

nonempty intersection.

Many familiar properties of connectedness (for

example, it is preserved under a continuous

function) transfer from metric spaces.
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Topological Groups

Definition. A maximal connected subset of X

is called a connected component.

Definition. The space (X, T ) is totally

disconnected if each singleton set is its own

connected component.
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Topological Groups

Proposition. If A is connected, then so is Ā.

Proof (contrapositive). Suppose Ā is

disconnected; i.e. Ā = B ∪Bc where B is clopen

in the topology relative to Ā. Then we can write

A as A ∩ Ā = (A ∩B) ∪ (A ∩Bc). Now both

(A ∩B) and (A ∩Bc) are clopen in the topology

relative to A, and at least one is nonempty, so A

is disconnected.
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Topological Groups

Let G◦ represent the connected component of the

identity in G.

Lemma. G is totally disconnected if and only if

G◦ = {e}.

Lemma. Every connected component in G is of

the form xG◦ for some x ∈ G.

Proof. Homogeneity.
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Topological Groups

Lemma. G◦ is a closed, normal subgroup of G.

Proof.

If g ∈ G◦, then by continuity, g−1G◦, (G◦)−1, and

xG◦x−1 are all connected and each contains the

identity. G◦ is the largest such set, so all three

must be contained in G◦. Therefore G◦ is a group

and it is normal. Connected components are

always closed.
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Topological Groups

Lemma. Connected matrix Lie groups such as

Aut (K)◦ are path-connected.

Proof.

Lie groups are smooth manifolds, and are

therefore locally path-connected. If the entire

group is connected, a global path can be

constructed by stitching together local ones.
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Topological Groups

An example of a theorem involving this concept

can be found in Analysis on Symmetric Cones [2]:

Theorem (Faraut & Korányi, III.2.1). Let

K be the cone of squares in a Euclidean Jordan

algebra V , and let V × be the set of units

(invertible elements) in V . Then int (K) is the

connected component of the identity in V ×.
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Symmetric Cones. Oxford University Press,

New York, 1994.

[3] J. Hilgert and K-H. Neeb. Structure and

Geometry of Lie Groups. Springer, 2012.

Michael Orlitzky UMBC



References II
[4] G. McCarty. Topology: An Introduction with

Application to Topological Groups. Dover,

1988.

[5] R. Vinroot. Topological Groups. Retrieved

from http://www.math.wm.edu/~vinroot/

PadicGroups/topgroups.pdf.

Michael Orlitzky UMBC

http://www.math.wm.edu/~vinroot/PadicGroups/topgroups.pdf
http://www.math.wm.edu/~vinroot/PadicGroups/topgroups.pdf

