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Abstract
Let K be a closed convex cone with dual K∗ in a finite-dimensional

real Hilbert space V . If L is a linear operator on V , then one definition
says that L is a Z-operator on K if

〈L (x), s〉 ≤ 0 for all (x, s) ∈ K ×K∗ such that 〈x, s〉 = 0.

The Z-operators generalize matrices whose off-diagonal elements are non-
positive, and they arise in many applications. It is known that −L is
exponentially-positive on K if and only if L is a Z-operator on K. The
outward normal cone to K at a point x on its boundary is

NK (x) := {v ∈ V | 〈v, y − x〉 ≤ 0 for all y ∈ K} ,

and we say that z ∈ V is subtangential to K at x if −z ∈ NK (x)∗. It
is also known that −L is exponentially-positive on K if and only if L (x)
is subtangential to K at every point x on its boundary. The concept of
subtangentiality is thus apparently connected to that of a Z-operator. We
show that the connection can be be made explicit, providing an intuitive
geometric interpretation for our definition of a Z-operator. This connects
the Z-operators to several viability theorems in dynamical systems and
elucidates a connection with Lie theory.

1 Introduction
A Z-matrix is a real square matrix whose off-diagonal entries are nonpositive.
The Z-matrices are an important class of matrices in optimization; for exam-
ple, there are existence results for linear complementarity problems involving a
Z-matrix [6]. The Z-matrices thus have applications in game theory and linear
programming, as well as the other fields that fall under the umbrella of comple-
mentarity. Any matrix of the form λI−N where λ ∈ R and N has nonnegative
entries is a Z-matrix. When λ dominates the spectral radius of N , we call
λI − N an M-matrix. The M-matrices are thus a subclass of the Z-matrices.
Berman and Plemmons [2] devote an entire chapter to nonsingular M-matrices,
connecting Z-matrices to many more areas.

The main question we are concerned with is how to generalize a Z- or M-
matrix to cones other than Rn

+. The existence results for complementarity
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problems are predicated on the fact that the feasible region for a complemen-
tarity problem involving a Z-matrix forms a meet semi-sublattice that will have
a “least” element. One idea is to extend the properties of a Z-matrix from Rn to
a more general vector lattice [4, 7]. While this approach is historically relevant
(and has merits that our approach does not), we don’t pursue it further here.

Going forward, we adopt a generalization due collectively to Schneider and
Vidyasagar [23], Stern and Tsatsomeros [25, 26], and Gowda and Tao [11]: if
K∗ represents the dual of a closed convex cone K, then L is a Z-operator on K
and we write L ∈ Z (K) if 〈L (x), s〉 ≤ 0 for all x ∈ K and s ∈ K∗ such that
〈x, s〉 = 0. Schneider and Vidyasagar worked with this same set of operators,
defined on a proper cone and modulo a negative sign, in the context of the
exponential-positivity that characterizes them. Later, Gowda and Tao consid-
ered them as explicit generalizations of Z-matrices (again on proper cones), and
that definition was extended directly to closed convex cones. In the meantime
Stern and Tsatsomeros worked with the concept of subtangentiality that, in the
right setting, is equivalent to exponential-positivity and thus the property that
defines a Z-operator. Simultaneously, Hilgert and Hofmann [13] were studying
invariant wedges in relation to Lie theory and derived many of the same results.

Ultimately, our goal is to show that the recent definition of and results for
Z-operators on closed convex cones can be recovered from the subtangentiality
condition used by Stern and Tsatsomeros [25, 26]. This has the benefit of
being immediately applicable to non-proper closed convex cones, and provides
an intuitive geometric reason for why Z-operators on closed convex cones are
exponentially-positive. The concept of subtangentiality can be traced back to
several viability theorems in dynamical systems, so-named because they govern
whether or not the evolution of a system is viable (satisfies some constraints)
at any given time. In our case, the constraint is that the trajectory remains
inside of a closed convex cone if it starts there. These viability theorems are the
common ancestor between the linear algebraic (optimization) and Lie theoretic
approaches. The background to this story is provided in more detail in Section 3
after we introduce the necessary notation.

2 Definitions and notation
Throughout this section, V will be a finite-dimensional real Hilbert space. The
set of all linear operators on V is B (V ), and every L ∈ B (V ) has an adjoint L∗ ∈
B (V ) such that 〈L (x), y〉 = 〈x, L∗ (y)〉 for all x, y ∈ V . If L ∈ B (V ) is invertible
and if L (X) = X, then L is an automorphism of X ⊆ V and we write L ∈
Aut (X). The space Rn has the usual inner product and nonnegative orthant
Rn

+ := {x ∈ Rn | xi ≥ 0 for all i}. The real identity matrix of the appropriate
size is denoted by I. The topological boundary of a set X is bdy (X), and the
topological closure of X is cl (X).

Definition 1. A nonempty subset K of V is a cone if λK ⊆ K for all λ ≥ 0.
A closed convex cone is a cone that is closed and convex as a subset of V .
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Definition 2. A convex cone K in V is solid if dim (span (K)) = dim (V ). The
lineality space of a convex cone K is linspace (K) := −K ∩K and K is pointed
if dim (linspace (K)) = 0. A pointed, solid, and closed convex cone is proper.

Definition 3. If K is a subset of V , then the dual cone of K is

K∗ := {y ∈ V | 〈x, y〉 ≥ 0 for all x ∈ K} .

Definition 4. An operator L ∈ B (V ) is a positive operator on K ⊆ V if
L (K) ⊆ K. The set of all such operators is denoted by π (K). We say that L
is exponentially-positive on K if etL ∈ π (K) for all t ≥ 0.

Note that some authors use the (perhaps more accurate) term exponential-
nonnegativity to refer to the same concept. For better or worse, we will consis-
tently use “exponential-positivity,” which arises in the following manner.

Example 1. Let x′ (t) = L (x (t)) be the dynamical system whose solution is
x (t) = etL (x (0)). If L is exponentially-positive on a closed convex cone K and
if x (0) ∈ K, then x (t) ∈ K for all t ≥ 0.

Definition 5. The complementarity set of K is

C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0} .

Definition 6. If K is a closed convex set and if x ∈ bdy (K), then the outward
normal cone to K at x is

NK (x) := {v ∈ V | 〈v, y − x〉 ≤ 0 for all y ∈ K} .

If v 6= 0 belongs to NK (x), then v is an outward-pointing (with respect to K)
normal vector to some hyperplane that supports K.

Definition 7. If K is a closed convex set in V and if x ∈ bdy (K), then we say
that z ∈ V is subtangential to K at x if z ∈ −NK (x)∗.

The relevance of the previous two definitions is that—intuitively—if z is sub-
tangential to K at x, then the direction z “points into K” from x.

Definition 8. An operator L ∈ B (V ) is a Z-operator on K ⊆ V if

〈L (x), s〉 ≤ 0 for all (x, s) ∈ C (K) . (1)

By Z (K) we denote the set of all Z-operators on K. A Z-matrix is an element
of Z

(
Rn

+
)
.

By considering pairs (x, s) of distinct standard basis vectors in (1), one easily
sees that Z

(
Rn

+
)

is precisely the set of real n × n matrices with nonpositive
off-diagonal elements. Any Z-matrix can thus be written as λI − N where
N ∈ π

(
Rn

+
)
, or equivalently where N has nonnegative entries.

Definition 9. A real square matrix A is an M-matrix if there exist N ∈ π
(
Rn

+
)

with spectral radius ρ (N) and λ ≥ ρ (N) such that A = λI −N .
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Thus, all M-matrices are Z-matrices. The set Z (K) is a closed convex cone
and it contains the subspace of Lyapunov-like operators.

Definition 10. An operator L ∈ B (V ) is Lyapunov-like on K ⊆ V if

〈L (x), s〉 = 0 for all (x, s) ∈ C (K) .

By LL (K) we denote the set of all Lyapunov-like operators on K.

The set LL (K) is a vector space and LL (K) = linspace (Z (K)). It is interesting
to note that LL (K) is the Lie algebra of the automorphism group of K [16].

3 Timeline
1937 Ostrowski [18] introduces the concept of an “M-determinant,” named

after Minkowski. An M-determinant corresponds implicitly to an M-
matrix, and this is considered by Friedland, Hershkowitz, and Schnei-
der [9] to be the first appearance of M-matrices. Ostrowski notes that an
M-determinant corresponds to the determinant of a matrix of the form
λI −N , where N is nonnegative.

1942 Nagumo [15] publishes a viability theorem under very general conditions.

1956 Ostrowski [19] uses the term M-matrix, perhaps for the first time, in
reference to a matrix having an M-determinant.

1960 Varga [28] formalizes the notion of a regular splitting M = A−B outside
of the context of M-matrices.

1962 Fiedler and Pták [14] use the letter Z to denote what we now call Z-
matrices. Friedland, Hershkowitz, and Schneider [9] state that this is the
origin of the name.

1965 Schneider [22] remarks that the regular splitting LL (K)− π (K) general-
izes Z-matrices on K = Rn

+.

1967 Yorke [29] rediscovers Nagumo’s viability theorem.

1969–1970 Bony [3] and Brezis [5] formulate their own viability theorems that are
essentially Nagumo and Yorke’s.

Theorem 1 (Nagumo, Yorke, Bony, Brezis). Let K be a closed subset of
a C2 manifold M . If L is a Lipschitz-continuous vector field defined on
M , then the following are equivalent:

(a) Any integral curve of L that starts in K will remain in K.
(b) 〈L (x), s〉 ≤ 0 for any exterior normal vector s to x ∈ K.
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1970 Schneider and Vidyasagar [23] introduce the class of cross-positive oper-
ators on a proper cone K. The authors prove that an operator is cross-
positive on K if and only if it is exponentially-positive on K. However,
the proof relies heavily on the fact that K is proper, and provides little
geometric intuition.
The authors also show that Z (K) is not equal to λI−π (K) in general. In
particular this shows that the earlier regular splitting of Schneider might
not be the best way to define general Z-operators.

1981 Stern [24] investigates the relationship between K-regularity, where L ∈
π (K)− λI, and exponential-positivity on K in the context of generalized
M-matrices. Considering that classical M-matrices are just Z-matrices
with an additional property, Stern is (among other things) comparing two
candidate generalizations of Z-matrices here.

1982 By specializing Theorem 1 to closed convex sets in a vector space and a
linear operator, Stern [25] shows that subtangentiality is both necessary
and sufficient for exponential-positivity.

Theorem 2. If K is a closed convex cone in a finite-dimensional real
Hilbert space V and if L ∈ B (V ), then e−tL ∈ π (K) for all t ≥ 0 if and
only if −L (x) is subtangential to K at every x ∈ bdy (K).

1986 Hilgert and Hofmann [13] specialize the results of Bony and Brezis to
obtain a general analogue of Stern’s 1982 result. The second condition
below is essentially the defining property of a Z operator; later we will see
that it is equivalent to Stern’s subtangentiality condition in Theorem 2.

Theorem 3. Let K be a closed convex cone in a finite-dimensional real
Hilbert space V . If L : V → V is a Lipschitz-continuous vector field with
associated flow Ft, then the following are equivalent:

(a) K is invariant under all Ft with t ≥ 0.
(b) 〈L (x), s〉 ≥ 0 for all x ∈ K and s ∈ K∗ ∩ span ({x})⊥.
(c) L (x) ∈ cl (K + span (x)) for all x ∈ K.

The authors then specialize this result to the linear case to derive equiva-
lent conditions similar to the ones obtained much later by Orlitzky [17].

1987 Stern and Tsatsomeros [26] continue the work that was begun by Stern [24]
and investigate the properties of generalized M-matrices. When the Z-
matrix property is replaced by K-regularity, the result is called a K-
general M -matrix. When the Z-property is replaced by exponential-
positivity, the result is called a K-extended M-matrix.

2004 Damm [8] uses exponential-positivity to show that the Lyapunov trans-
formations in dynamical systems are precisely those operators L such that
both L and −L are cross-positive (a la Schneider and Vidyasagar) on the
cone of symmetric/Hermitian positive-semidefinite matrices.
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2006 In a paper that was ultimately published in 2009, Gowda and Tao [11]
formulate our Definition 8 of a Z-operator in the special case where the
cone is proper. The authors study Z-operators whose eigenvalues are all
strictly positive, which, in the terminology of Stern and Tsatsomeros, are
invertible K-extended M-matrices.

2007 Gowda and Sznajder [10] formulate Definition 10 of Lyapunov-like opera-
tors in the special case of symmetric (self-dual and homogeneous) cones.

2011 Rudolf, Noyan, Papp, and Alizadeh [21] introduce the bilinearity rank of a
proper cone as the dimension of a space of bilinear complementarity rela-
tions. The bilinearity rank of K in some sense quantifies how easy it is to
solve a complementarity problem over K by splitting the “complementary
slackness” equation into a system of multiple equations.

2014 Gowda and Tao [12] notice that the space of bilinear complementarity re-
lations is isomorphic to the space of Lyapunov-like operators (now defined
for a proper—and not necessarily symmetric—cone), and coin the term
Lyapunov rank for its dimension.

2017 Orlitzky [16] shows that the concepts of Lyapunov-like operator and Lya-
punov rank are meaningful for closed convex cones in general. This sim-
plifies the practical computation of LL (K) when K is polyhedral.

2018 Orlitzky [17] shows that the Gowda/Tao definition of a Z-operator and
the associated exponential-positivity extends to a closed convex cone. In
particular, we have the following.

Theorem 4. If K is a closed convex cone in a finite-dimensional real
Hilbert space V and if L ∈ B (V ), then L ∈ Z (K) if and only if e−tL ∈
π (K) for all t ≥ 0.

4 Connecting Z-operators to subtangentiality
From Theorems 2 and 4, we can draw the conclusion that L ∈ Z (K) if and
only if −L (x) is subtangential to K at every x ∈ bdy (K). But why? We
would like to prove this fact directly, showing that there is a simple geometric
principle underlying the definition of a Z-operator. (Recall that the definition
of a Z-operator goes back to Schneider and Vidyasagar, whose proof was not
geometric and worked only for proper cones.) To do this, we need only a few
minor results. The following proposition combines Ben-Israel’s Theorem 1.3 and
Corollary 1.7 [1], and Rockafellar’s Theorem 14.6 [20].

Proposition 1. If K,J are closed convex cones, then (K + J)∗ = K∗ ∩J∗ and
cl (K∗ + J∗) = (K ∩ J)∗. Moreover we have that linspace (K) = span (K∗)⊥.

Lemma 1 (Stern [25], Lemma 2.7). If K is a closed convex cone in a finite-
dimensional real Hilbert space V and if x ∈ bdy (K), then 〈v, x〉 = 0 for all
v ∈ NK (x).
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Proof. Substitute y = 0 and y = 2x into Definition 6 to find 〈v,±x〉 ≤ 0.

The next result appears as Lemma 1.4 in Hilgert and Hofmann [13], but follows
easily from Lemma 1.

Corollary 1. If K is a closed convex cone in a finite-dimensional real Hilbert
space V and if x ∈ bdy (K), then NK (x) = −K∗ ∩ span ({x})⊥.

Observe that NK (x) ⊆ bdy (−K∗) in Corollary 1: if v ∈ −K∗ and if
〈v,±x〉 = 0 for x ∈ K, then it is apparent that v is orthogonal to some el-
ement of −K, and thus that v ∈ bdy (−K∗) = −bdy (K∗).

We digress briefly to mention some related results. A subcone F of K is
called a face of K if x, y ∈ K and x+ y ∈ F together imply that x, y ∈ F . The
duality operator [27] of a closed convex cone K is defined on the faces F of K
by dK (F ) = K∗ ∩ span (F )⊥. In particular when F = cone ({x}), we have

dK (cone ({x})) = K∗ ∩ span (cone ({x}))⊥ = −NK (x) .

This is not a new observation; Tam himself notes the equality. Corollary 1 is of
interest because for z to be subtangential to K at x means that −z ∈ NK (x)∗.
We also record the following from Lemma 1.4 in Hilgert and Hofmann [13], which
follows immediately from the definition of subtangentiality and Proposition 1.

Proposition 2. If K is a closed convex cone in a finite-dimensional real Hilbert
space V and if x ∈ bdy (K), then z is subtangential to K at x if and only if
z ∈ cl (K + span ({x})).

Tam’s Proposition 3.1 [27] shows that cones of the form K + span ({x}) are
called a point’s cone, or the cone of K at x, and they are of particular interest.
After taking the closure, cl (K + span ({x})) is called the cone of support of K
at x. It is known that every proper non-polyhedral cone K has some x such that
K + span ({x}) is not closed, and that therefore the closure in Proposition 2 is
not superfluous. The next result also follows immediately from Corollary 1.

Lemma 2. If K is a closed convex cone in a finite-dimensional real Hilbert
space V and if x ∈ bdy (K), then

(x, s) ∈ C (K) ⇐⇒ −s ∈ NK (x) .

Lemma 3. If K is a closed convex cone in a finite-dimensional real Hilbert
space V and if L ∈ B (V ), then L ∈ Z (K) if and only if −L (x) is subtangential
to K at every x ∈ bdy (K).

Proof. The following are equivalent after an application of Lemma 2:

(a) L ∈ Z (K).

(b) 〈L (x), s〉 ≤ 0 for all (x, s) ∈ C (K).

(c) 〈L (x), s〉 ≤ 0 for all x ∈ bdy (K) and s ∈ −NK (x).
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(d) −L (x) ∈ −NK (x)∗ for all x ∈ bdy (K).

(e) −L (x) is subtangential to K at x for all x ∈ bdy (K).

Recall that −L (x) being subtangential to K at x has the intuitive inter-
pretation that −L (x) “points into K” from the point x. Consider this in the
context of Example 1: if x′ (t) = −L (x) points into the cone K at every bound-
ary point x of K, then obviously x (t) will remain in K for all t ≥ 0 given
that x (0) starts there. One need only note that x (t) = e−tL (x (0)) to deduce
exponential-positivity in that case.

Thus, Lemma 3 gives us an intuitive explanation for why Definition 8 results
in exponential-positivity on a closed convex cone. And it does so directly, with-
out having to appeal to the result for proper cones. We now merely combine
known results into a new form.

Theorem 5. If K is a closed convex cone in a finite-dimensional real Hilbert
space V and if L ∈ B (V ), then the following are equivalent:

(a) L ∈ Z (K).

(b) −L (x) is subtangential to K at every x ∈ bdy (K).

(c) −L (x) ∈ cl (K + span ({x})) for all x ∈ bdy (K).

Proof. The first two items are equivalent by Lemma 3, and the last is equivalent
by Proposition 2.

Theorem 5 incorporates one item from each of Theorems 2, 3 and 4. More
in-depth equivalent conditions have been published by each group of authors.
Having different perspectives on a single idea is of inherent value. Nevertheless,
to further justify this endeavor we demonstrate a simpler proof of the following
Theorem 2 in Gowda and Tao [12].

Theorem. If K is a proper polyhedral cone in a finite-dimensional real Hilbert
space V and if L ∈ B (V ), then L ∈ LL (K) if and only if each x ∈ Ext (K) is
an eigenvector of L.

Proof. It is already known [16] that if L is Lyapunov-like on the generators (in
this case, Ext (K)) of K, then L is Lyapunov-like on all of K. So we will prove
only the difficult implication, namely that if L ∈ LL (K), then each x ∈ Ext (K)
is an eigenvector of L.

From the definition LL (K) := −Z (K) ∩ Z (K) and the last item in Theo-
rem 5, we see that L ∈ LL (K) implies L (x) ∈ linspace (cl (K + span ({x}))) for
all x ∈ bdy (K), and in particular for all x ∈ Ext (K). Since K is polyhedral,
we have cl (K + span ({x})) = K + span ({x}). And Tam [27] has proven that
linspace (K + span ({x})) = span (φ ({x})), where φ ({x}) is the minimal face
of K containing {x}. However for any x ∈ Ext (K), we have that cone ({x})
is a (necessarily minimal) face of K, and thus that linspace (K + span ({x})) =
span ({x}). Combining everything, we arrive at

L ∈ LL (K) =⇒ L (x) ∈ span ({x}) for all x ∈ Ext (K) .
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5 Some questions
Question 1. Can Theorem 5 be used to prove that L1◦L2−L2◦L1 is Lyapunov-
like on a given cone K whenever L1 and L2 are? This is already known to be
true, since LL (K) is a Lie algebra. However, based solely on Definition 10, this
result looks like magic.
Question 2. The cone of support to K at x is not generally equal to K +
span ({x}). Can this be used to produce a new proof of Z (K) 6= LL (K)−π (K)?
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