
Gaddum’s test for symmetric cones
Michael Orlitzky

December 16, 2019

Abstract

A real symmetric matrix A ∈ Sn is copositive if 〈Ax, x〉 ≥ 0 for all
x in the nonnegative orthant. Copositive programming has attracted a
lot of attention since Burer showed that hard nonconvex problems can be
formulated as completely-positive programs. Alas, the power of copositive
programming is offset by its difficulty: simple questions like “is this matrix
copositive?” have complicated answers. In 1958, Jerry Gaddum proposed
a recursive procedure to check if a given matrix is copositive by solving a
series of matrix games. It is easy to implement and conceptually simple.

Copositivity generalizes to cones other than the nonnegative orthant.
If K is a proper cone, then the linear operator L is copositive on K if
〈L (x), x〉 ≥ 0 for all x in K. Little is known about these operators in
general. We extend Gaddum’s test to self-dual and symmetric cones,
thereby deducing criteria for copositivity in those settings.

1 Introduction
This is a story about copositivity. In the beginning, there was game theory:
von Neumann and Morgenstern [38] published the “Theory of Games and Eco-
nomic Behavior” in 1944, and the field of game theory was born. Shortly there-
after, Dantzig formalized the notion of a linear program and devised his simplex
method to solve them. The simultaneous emergence of digital computers made
it possible to solve linear programs quickly, and von Neumann [8] noticed as
early as 1947 that any matrix game can be posed as a linear program.

The notion of copositivity was subsequently introduced by Motzkin [27] in
1952. A copositive matrix is a real, symmetric, n-by-n matrix A such that
〈Ax, x〉 ≥ 0 for all x ∈ Rn

+. Here and hereafter, the symbol Rn
+ denotes the

componentwise-nonnegative orthant in Rn. Originally, copositivity was studied
via copositive quadratic forms, but every copositive quadratic form corresponds
to some copositive matrix and vice-versa. The difficulty was immediately appar-
ent; simple questions like “is this matrix copositive?” have complicated answers.
A few such tests were proposed [27], but one in particular stands out. In 1958,
Jerry Gaddum [18] combined game theory and linear programming to formulate
the following recursive procedure.
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Gaddum’s test. If A ∈ Rn×n is symmetric and if each principal submatrix of
A of order (n− 1) is copositive, then A is copositive if and only if the value of
the matrix game associated with A is nonnegative.

Here the timeline splits for a few decades. Fiedler [17] and Loewy and
Schneider [31] were likely the first to extend the notion of copositivity to more
difficult cones (the Lorentz “ice-cream” cone, in this case), but not until the
mid-seventies. Back in the world of linear programming, progress was being
made at an incredible pace, culminating in the 1984 paper of Karmarkar [30]
showing that barrier-function “interior point” methods could solve linear pro-
grams in polynomial time. Karmarkar’s method was extended to second-order
cone programs (SOCP) and semidefinite cone programs (SDP), and another
major breakthrough in conic optimization was made in 1994 when Nesterov and
Nemirovskii introduced their self-concordant barrier functions [33]. The au-
thors showed that a “universal” self-concordant barrier function exists for any
open convex set, and that on the interior of a proper cone, the universal barrier
function is log-homogeneous. Computing it, however, is generally problematic.

Güler used the theory of Jordan algebras to show in 1996 that this univer-
sal barrier function is essentially known for homogeneous cones [24]. He also
pointed out that self-dual homogeneous cones correspond exactly to the cones of
squares in Euclidean Jordan algebras. At the same time, Nesterov and Todd [34]
were showing that particularly efficient methods exist for “self-scaled” conic op-
timization, and self-scaled cones turn out to be nothing other than self-dual
homogeneous cones. Thus, the most efficient interior-point barrier methods ap-
ply to the cones that arise as cones of squares in Euclidean Jordan algebras.
Over the next five years or so, Faybusovich cemented these ideas by showing
that certain efficient algorithms (in particular, Nesterov-Todd) can be described
directly in Jordan-algebraic terms [14, 15, 16].

The nonnegative orthant, Lorentz “ice-cream” cone, and the cone of real
symmetric positive-semidefinite matrices are all examples of self-dual homoge-
neous cones, which we now call symmetric cones. Symmetric cone programming
has become popular over the past two decades because many hard problems
can be reformulated as symmetric cone programs. For example, the famous
NP-hard traveling salesman problem has several formulations as a semidefinite
program [7, 10, 9]. Since we can solve semidefinite programs with relative ease,
there must be a trade-off involved: each reformulation is weaker than the true
traveling salesman problem, and can produce non-optimal solutions [25]. But
as these things usually go, we can get better solutions by working harder.

In the subspace Sn ⊆ Rn×n of all real symmetric n-by-n matrices, the
positive-semidefinite matrices form a proper cone Sn

+ over which semidefinite
programming takes place. The set of all copositive matrices in Sn also forms
a proper cone, but one much larger and less wieldy than Sn

+. In 2008, Samuel
Burer [4, 5] made a major breakthrough when he showed that every binary
nonconvex quadratic program can be formulated as a cone program over the
dual of this copositive cone. This result has rekindled the interest in copositive
matrices, and brings us full circle, back to Gaddum’s test.
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Two threads, however, were left dangling. Game theory and linear program-
ming were closely intertwined during their formative years. Cone progamming,
on the other hand, developed directly from linear programming and convex op-
timization, independent of game theory. What part does game theory play in
conic optimization? And what of copositivity with respect to a more general
cone? We will address both of these questions.

In 2015, Gowda and Ravindran [20] introduced “linear games,” which are
basically two-person zero-sum games over a self-dual cone. The authors were
motivated by some results in classical game theory concerning classes of ma-
trices, and were able to extend many of those results to operators that are
imporant in cone programming. Two years later, Orlitzky [35] extended those
ideas to proper (but not necessarily self-dual) cones, and showed that the re-
sulting game can be posed as a cone program. When we can solve the cone
program efficiently—in particular, when the cone is symmetric—we can solve
the linear game efficiently as well.

To connect linear games to copositivity, we will extend Gaddum’s test to self-
dual and symmetric cones, showing in the latter case that there is a recursive
procedure to determine whether or not an operator is copositive on a symmetric
cone. At each step, our procedure involves the solution of linear games that we
now know can be solved efficiently.

2 Gaddum’s test
Our game theory notation is classical and by now completely standard. The real
n-fold Cartesian product space Rn has the usual inner-product, standard ba-
sis {e1, e2, . . . , en}, and nonnegative orthant Rn

+ := {x ∈ Rn | xi ≥ 0 for all i}.
Linear operators from Rm to Rn are represented by matrices A ∈ Rn×m.

Definition 1 (convex hull, conic hull). In any finite-dimensional real Hilbert
space V , we denote the convex hull of a nonempty set X ⊆ V by

conv (X) :=
{

m∑
i=1

αixi

∣∣∣∣∣ m ∈ N, xi ∈ X,αi ≥ 0,
m∑

i=1
αi = 1

}
.

The conic hull of X consists of all nonnegative scalar multiples of the convex
hull; specifically,

cone (X) :=
{

m∑
i=1

αixi

∣∣∣∣∣ m ∈ N, xi ∈ X,αi ≥ 0
}
.

Gaddum’s test for copositivity involves solving a sequence of two-person
zero-sum matrix games. These games originated with von Neumann and Mor-
genstern [38], but Karlin [29] provides a good introduction to the material from
around the same time that Gaddum published his test. A two-person zero-sum
matrix game consists of a matrix A ∈ Rn×n and a compact convex set of “strate-
gies” denoted by ∆ := conv ({e1, e2, . . . , en}) from which the two players choose.
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If the players choose x and y respectively from ∆, then the game is played by
evaluating yTAx as the “payoff” to the first player. The payoff to the second
player is −yTAx, fulfilling the promise that something should sum to zero. For
later reference, we remark that the strategy set ∆ has an alternate description,

∆ =
{
x ∈ Rn

+
∣∣ 〈x, e〉 = 1

}
, where e := (1, 1, . . . , 1)T ∈ int

(
Rn

+
)
. (1)

An axiom of economics states that each player will try to maximize his payoff
in this scenario; or, equivalently, try to minimize the payoff to his opponent.
The existence of optimal strategies is guaranteed for both players, and the value
of the matrix game A is defined to be the payoff resulting from optimal play,

v (A) := max
x∈∆

min
y∈∆

(
yTAx

)
= min

y∈∆
max
x∈∆

(
yTAx

)
.

The payoff to the first player in this case is v (A). Necessarily corresponding to
v (A) is an optimal strategy pair (x̄, ȳ) ∈ ∆×∆ such that

ȳTAx ≤ v (A) = ȳTAx̄ ≤ yTAx̄ for all (x, y) ∈ ∆×∆. (2)

The existence of optimal strategies and this “saddle-point” inequality follow
from Karlin’s Theorems 1.3.1 and 1.5.1 which are much more general state-
ments about continuous functions on compact convex sets [29]. Copositivity
becomes important here for a simple reason that constitutes the “easy direc-
tion” in Gaddum’s theorem.

Proposition 1. If A ∈ Sn is copositive, then v (A) ≥ 0.

Proof. Let (x̄, ȳ) ∈ ∆×∆ be an optimal strategy pair. Then x := ȳ would be a
valid strategy for the first player as well. Moreover, the entire strategy set ∆ is
contained in the nonnegative orthant. Thus if the game matrix A is copositive,
the Inequality (2) gives v (A) ≥ ȳTAx = ȳTAȳ ≥ 0.

Naturally the converse does not hold: there are plenty of non-copositive
matrices whose games have a nonnegative value. We recall Gaddum’s Theo-
rem 3.2 [18] to complete the characterization, but we borrow our presentation
of the theorem from Hiriart-Urruty and Seeger’s survey article [27] where it is
stated more conveniently.

Theorem 1 (Gaddum’s test). If A ∈ Sn and if each principal submatrix of A
of order (n− 1) is copositive, then A is copositive if and only if v (A) ≥ 0.

Note that “principal submatrix” here refers to one where the same column
and row indices have been deleted; in Gaddum’s original paper, the correspond-
ing operation is to set certain components of x equal to zero in the quadratic
form x 7→ 〈Ax, x〉. The fact that we need only consider submatrices of order
(n− 1) can be inferred from Gaddum’s proof, since every boundary point of Rn

+
lies in some (n− 1)-dimensional face of Rn

+.
The practical appeal of this result is that the value of a matrix game can

be found by solving a linear program [8], and linear programs of enormous size
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are solved instantaneously using modern algorithms and machines. If you look
closely, Theorem 1 describes a recursive procedure. If A ∈ Sn, then verifying
the conditions of Theorem 1 involves checking the copositivity of matrices in
S(n−1). This will involve solving a linear program whose size is on the order
of (n− 1), and then checking the copositivity of matrices in S(n−2), and so on.
There are many such problems to solve, but each one is tractable.

3 For self-dual cones
We now need to introduce a few concepts that can be defined in quite some
generality. However, since we will ultimately wind up in a finite-dimensional
Euclidean Jordan algebra, and since those algebras are over the real field and
are equipped with an inner-product, we won’t venture outside of that setting.
So from now on, even if a definition could be stated more generally, we do so in
a finite-dimensional real Hilbert space.

Fortunately, much of the terminology in these spaces is standard. If V is
a finite-dimensional real Hilbert space, then B (V ) is the space of all linear
operators on V . The inner-product on V induces a norm, which induces a
metric, which induces a topology, with respect to which we can talk about the
interior int (X) and boundary bdy (X) of a set X ⊆ V .

Definition 2 (cones, faces). In a finite-dimensional real Hilbert space V , a
nonempty subset K of V is a cone in V if αK ⊆ K for all α ≥ 0. A closed convex
cone in V is a cone that is closed and convex as a subset of V . A convex cone K
in a finite-dimensional real Hilbert space V is solid if dim (span (K)) = dim (V ),
and pointed if dim (−K ∩K) = 0. A pointed, solid, closed convex cone is proper.
A subcone F of K is called a face of K if x, y ∈ K and x+y ∈ F together imply
that x, y ∈ F . We indicate that F is a face of K by writing F E K. A proper
face of K is a face F of K that is not equal to K, and is denoted by F / K.

Since each face of a cone is itself a cone, the phrase “proper face” must be
wielded with caution. When we say “proper face” of a “proper cone,” we mean
that the big cone is solid, pointed, et cetera—and that the face is not equal to
it. Whether or not the proper face is a proper cone in its own right is a separate
question. Perhaps the best way to think about this is to not think about this.

The faces of a proper cone form a complete lattice of finite length with
respect to the “is a face of” ordering [1]. Each point in the cone belongs to the
face generated by that point, and therefore to some maximal face with respect
to the lattice ordering. As a special case of Dickinson’s Theorem 2.8, we see
that the boundary of a proper cone is the union of its maximal proper faces [11].
We record this fact and an immediate corollary for later reference.

Proposition 2. If K is a proper cone in a finite-dimensional real Hilbert space,
then the boundary of K is the union of its maximal proper faces.

Corollary 1. If K is a proper cone in a finite-dimensional real Hilbert space
and if x ∈ bdy (K), then x belongs to some maximal proper face of K.
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Definition 3 (dual cone). If K is a cone in a finite-dimensional real Hilbert
space V , then the dual cone of K in V is

K∗ := {y ∈ V | 〈x, y〉 ≥ 0 for all x ∈ K} .

If K = K∗ then K is a self-dual cone in V .

Ben-Israel’s Theorem 1.3 shows that K∗ is in fact a closed convex cone [3],
which justifies calling it the “dual cone of K.” Rockafellar’s Theorem 14.6,
reproduced in the following proposition, evinces the duality between pointed
and solid cones [37]. From this duality and the fact that K∗ is a closed convex
cone, we infer that every self-dual cone is proper.

Proposition 3. If K is a closed convex cone, then −K ∩K = span (K∗)⊥.

Definition 4 (copositive operator). If K is a cone in a finite-dimensional real
Hilbert space V and if L ∈ B (V ) satisfies

∀x ∈ K : 〈L (x), x〉 ≥ 0,

then L is copositive on K.

Now that we know a bit about cones, we can introduce the linear games of
Gowda and Ravindran [20]. These games will be unfamiliar to most readers,
but the only parts of the theory that we’re going to use are those that arise
directly by analogy with the classical case. For the etymologically curious, the
name “linear game” appears only in a later work by Gowda [19].

Definition 5 (linear game). A linear game G := (L,K, e) consists of a linear
operator L on a finite-dimensional real Hilbert space V , a self-dual cone K in
V , and a point e in the interior of K. Associated to every game is a strategy set

∆ := {x ∈ K | 〈x, e〉 = 1}

and a payoff function (x, y) 7→ 〈L (x), y〉 defined on ∆×∆.

Since we will never have more than one game in scope at the same time,
we suppress the dependence of ∆ on both K and e for notational convenience.
As in the classical case, we imagine two players choosing strategies x and y
respectively from ∆. The game is then played by evaluating the payoff function
at (x, y), and by paying the amount 〈L (x), y〉 to the first player out of the
second player’s pocket.

The construction of the strategy set ∆ in Definition 5 is by analogy with
Equation (1) in the classical case. Since the point e lies in the interior of K, and
since K is K∗, the strategy set ∆ is guaranteed to be compact and convex [20].
And of course, the payoff function in a linear game is entirely equivalent to the
classical one. These choices were made to ensure that linear games do not escape
the purview of Karlin’s Theorems 1.3.1 and 1.5.1 that guaranteed the existence
of optimal strategies and a saddle-point inequality in the classical case [29].
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Definition 6 (value of a linear game, optimal strategies). If G := (L,K, e) is a
linear game, then the value of G is

v (G) := max
x∈∆

min
y∈∆

〈L (x), y〉 = min
y∈∆

max
x∈∆

〈L (x), y〉 ,

and any (x̄, ȳ) ∈ ∆×∆ satisfying

〈L (x), ȳ〉 ≤ v (G) = 〈L (x̄), ȳ〉 ≤ 〈L (x̄), y〉 for all (x, y) ∈ ∆×∆ (3)

is called an optimal strategy pair for G.

As you would expect, when K = Rn
+ and e = (1, 1, . . . , 1)T , a linear game

reduces to a two-person zero-sum matrix game. Orlitzky showed that the players
in a linear game are trying to solve dual cone programs, and that therefore every
linear game can be posed as a cone program [35]. That correspondence, like this
next result that appears as Proposition 1 in Gowda and Ravindran [20], is once
more completely analogous to the classical case.

Proposition 4. If G := (L,K, e) is a linear game and if L is copositive on K,
then v (G) ≥ 0.

Proof. As in Proposition 1, the definition of copositivity and ∆ ⊆ K together
imply that v (G) ≥ 〈L (ȳ), ȳ〉 ≥ 0 in Inequality (3).

The last thing that we need to state our main results is the notion of a
principal subtransformation. This we borrow from Gowda and Tao [23], who
studied them in relation to the cone complementarity problem.

Definition 7 (orthogonal projections, principal subtransformations). If V is a
finite-dimensional real Hilbert space and if X ⊆ V , then πX denotes the self-
adjoint linear orthogonal projection onto the subspace span (X) of V . If K is a
closed convex cone in V , if L ∈ B (V ), and if F is a face of K, then the principal
subtransformation of L corresponding to F is

LF : span (F )→ span (F )
LF := πF ◦ L.

Principal subtransformations are intended to generalize principal submatri-
ces, and this definition reduces to what you’d expect for faces of Rn

+.

Example 1. Let V = Rn, K = Rn
+, and L ∈ Rn×n. It’s easy to see that every

face F of K is isomorphic to Rm
+ in Rm, where m := dim (F ) ≤ n. As a result,

every principal subtransformation LF of L is a principal submatrix of L.

Lemma 1. If K is a self-dual cone in a finite-dimensional real Hilbert space,
if e ∈ int (K), and if ∆ = {x ∈ K | 〈x, e〉 = 1}, then for all x̄ ∈ ∆ and for all
x ∈ K there exist

• a λ ∈ [0, 1],
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• an α ≥ 0,

• a maximal proper face F of K, and

• an element x′ in F

such that x = λαx̄+ (1− λ)x′.

Proof. If x ∈ bdy (K), then we can take α = λ = 0, x′ = x, and F to be the
maximal proper face of K that contains x by Corollary 1—and we are done.

If x ∈ int (K), then 〈x, e〉 > 0 and we can scale to obtain x/ 〈x, e〉 ∈ ∆.
Since x̄ ∈ ∆ as well, the entire segment conv ({x̄, x/ 〈x, e〉}) is contained in
∆. By extending that segment past x/ 〈x, e〉, we eventually leave ∆ which is
compact and therefore bounded. Along the way, we encounter some boundary
point b ∈ bdy (∆) such that x/ 〈x, e〉 lies in the segment conv ({x̄, b}). Thus,

∃λ ∈ [0, 1] : x/ 〈x, e〉 = λx̄+ (1− λ) b.

Let α = 〈x, e〉, x′ = 〈x, e〉 b ∈ bdy (K), and F be the maximal proper face
containing x′ by Corollary 1.

Theorem 2 (Gaddum’s test for self-dual cones). If K is a self-dual cone in a
finite-dimensional real Hilbert space V and if L ∈ B (V ), then the following are
equivalent:

• L is copositive on K.

• The value of the linear game G := (L,K, e) is nonnegative, and the prin-
cipal subtransformation LF is copositive on F for all maximal F / K.

Proof. If L is copositive on K, then Proposition 4 shows that v (G) ≥ 0. More-
over, if L is copositive on K, then every LF must be copositive on F ; otherwise,
there would exist an x ∈ F such that 〈LF (x), x〉 < 0, and since x ∈ F ⊆ K we
could simply substitute:

〈πF (L (x)), x〉 = 〈L (x), πF (x)〉 = 〈L (x), x〉 < 0.

Thus, when L is copositive, it follows that every LF is copositive and that the
value of the game G is nonnegative.

On the other hand, if v (G) ≥ 0 with an optimal pair (x̄, ȳ), then we can use
Lemma 1 to write any x ∈ K as

x = λαx̄+ (1− λ)x′

for λ ∈ [0, 1], α ≥ 0, F /K maximal, and x′ ∈ F . Now expand using bilinearity,

〈L (x), x〉 = λ2α2 〈L (x̄), x̄〉+ 2λ (1− λ)α 〈L (x̄), x′〉+ (1− λ)2 〈L (x′), x′〉 .

Since (x̄, ȳ) is optimal for the game G with v (G) ≥ 0, it follows that

λ2α2 〈L (x̄), x̄〉 ≥ λ2α2 〈L (x̄), ȳ〉 = λ2α2v (G) ≥ 0.
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For the same reason, we can conclude that 2λ (1− λ)α 〈L (x̄), x′〉 ≥ 0. Thus
the first two terms in the expansion of 〈L (x), x〉 are nonnegative. It remains
only to show that 〈L (x′), x′〉 ≥ 0. However, since πF (x′) = x′ ∈ F ,

〈L (x′), x′〉 = 〈L (x′), πF (x′)〉 = 〈πF (L (x′)), x′〉 = 〈LF (x′), x′〉 .

And, since x′ ∈ F and LF is copositive on F , we have 〈LF (x′), x′〉 ≥ 0. It
follows that 〈L (x), x〉 ≥ 0 as desired.

One might wonder why we have opted for “maximal proper face” in the
statement of Theorem 2, when a face of codimension one (a facet) would be
more in line with Theorem 1. The reason is simple: facets may not exist.

Example 2. The Lorentz “ice-cream” cone in Rn is

Ln
+ :=

{
(t, x)T ∈ R× Rn−1

∣∣∣ ‖x‖ ≤ t} .
It is well-known that the nonzero proper faces of Ln

+ are its one-dimensional
boundary rays. When n > 2, it therefore has no facets.

Since there are no intermediate proper faces between Ln
+ and its boundary

rays, a single application of Theorem 2 reduces the problem of copositivity on
Ln

+ to that of copositivity on bdy
(
Ln

+
)
. There are many important properties

of an operator with respect to a proper cone that need only be checked on the
boundary of that cone. For example, the operator L ∈ B (V ) is a Lyapunov-
like, Z, or positive operator on a proper cone K in V if and only if L satisfies
the respective property on the boundary of K [36]. However, copositivity is
not one of those properties. Suppose that a point x in some proper cone K
is a conic combination of two boundary points of K; that is, x = x1 + x2 for
x1, x2 ∈ bdy (K). Then

〈L (x), x〉 = 〈L (x1), x1〉+ 〈L (x1), x2〉+ 〈L (x2), x1〉+ 〈L (x2), x2〉 .

Even if we know that the two terms 〈L (x1), x1〉 and 〈L (x2), x2〉 are nonnegative
here, that doesn’t tell us anything about the other two terms. Thus, knowing
that L is copositive on the boundary of K does not generally imply that L is
copositive on all of K.

But as luck would have it, the situation with Ln
+ turns out to be typical.

And while Theorem 2 was stated in terms of maximal proper faces for superficial
parity with Gaddum’s original test, for visceral impact we include the additional
equivalent condition in terms of copositivity on the boundary.

Lemma 2. If K is a proper cone in a finite-dimensional real Hilbert space V
and if L ∈ B (V ), then the following are equivalent:

• LF is copositive on F for all maximal F / K.

• L is copositive on the boundary of K.
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Proof. Both implications follow easily from Proposition 2 and the identity

〈LF (x), x〉 = 〈πF (L (x)), x〉 = 〈L (x), πF (x)〉 = 〈L (x), x〉 .

Corollary 2. If K is a self-dual cone in a finite-dimensional real Hilbert space
V and if L ∈ B (V ), then the following are equivalent:

• L is copositive on K.

• The value of the linear game G := (L,K, e) is nonnegative, and L is copos-
itive on the boundary of K.

Proof. Combine equivalent conditions in Theorem 2 and Lemma 2.

4 For symmetric cones
Unfortunately, Theorem 2 is not the end of the story. The practical appeal
of Theorem 1 is as a recursive procedure: checking the copositivity of each
principal submatrix is conceptually equivalent to checking the copositivity of
the original matrix, sans a particular row and column. If K is a self-dual cone
and if F is a maximal proper face of K, then F may look nothing like K. How,
then, should we test the copositivity of LF ? Is F even self-dual? In general, no.

Example 3. In the inner-product space R3, let

v0 := (1, 1, 1)T
, v1 := (0, 1, 1)T

, v2 := (−1, 0, 1)T
,

v3 := (0,−1, 1)T
, v4 := (1,−1, 1)T

,

K := cone ({v0, v1, v2, v3, v4}) .

Barker and Foran [2] show that this polyhedral cone is self-dual; yet if we
consider the face generated by, say, v3 and v4, then cone ({v3, v4}) is not self-
dual in the space span ({v3, v4}).

This example shows that we cannot necessarily apply Theorem 2 to the
subtransformations LF that we obtain from a general self-dual cone. Does this
preclude the use of Theorem 2 in a recursive procedure? There are some well-
known self-dual cones whose faces are isomorphic to lower-dimensional versions
of themselves; we have already encountered this phenomenon with the Lorentz
“ice-cream” cone in Example 2. The faces of any ice-cream cone are its one-
dimensional boundary rays, and a ray is somewhat obviously a one-dimensional
ice-cream cone. The same sort of thing happens with the cone of real symmetric
positive-semidefinite matrices Sn

+, which is self-dual in Sn.

Example 4 (Hill and Waters [26], Theorems 3.4 and 3.6). The set W ⊆ Rn is
a subspace of Rn if and only if

FW :=
{
X ∈ Sn

+
∣∣ X (Rn) ⊆W

}
is a face of Sn

+ in Sn. Moreover, every face FW E Sn
+ is isomorphic to Sr

+ for
some r ∈ {0, 1, 2, . . . , n}.
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So we have three examples of cones whose faces are self-dual in an appro-
priate subspace. There’s the real symmetric PSD cone of Example 4 and the
Lorentz cone of Example 2, of course. But we also have our primeval Exam-
ple 1. The fact that the faces of Rn

+ look like Rm
+ for m ≤ n is precisely why

Gaddum’s original test is so elegant. These three cones are well-known exam-
ples of symmetric cones [13], which Güler recognized in 1996 as the cones of
squares in Euclidean Jordan algebras [24]. A symmetric cone is a self-dual cone
that has one additional property called homogeneity. We include the definition
of homogeneity only as a prerequisite for an honest definition of a symmetric
cone—it will not be needed.

Definition 8 (symmetric cone). A cone K in a finite-dimensional real Hilbert
space V is homogeneous if for all x and y in the interior of K, there exists an
invertible L ∈ B (V ) such that L (K) = K and L (x) = y. If K is both self-dual
and homogeneous, then it is symmetric.

One consequence of self-duality is that every symmetric cone is proper. The
reader should be aware that the definitions of “homogeneous” and “symmetric”
differ slightly between sources. For example, Faraut and Korányi’s symmetric
cones [13] are the interiors of what we call a symmetric cone. Our terminology
follows Güler [24] and Faybusovich [14] instead.

Perhaps all symmetric cones have faces that are self-dual in their spans? This
is our motivation for introducing Euclidean Jordan algebras, and the answer will
be affirmative: every face of a symmetric cone in a Euclidean Jordan algebra is
itself a symmetric cone in an appropriate subalgebra. For the sake of consistency,
we define a Euclidean Jordan algebra to be both finite-dimensional and unital,
in agreement with our main references.

Definition 9. A Euclidean Jordan algebra (V, ◦ , 〈·, ·〉) consists of a finite-
dimensional real Hilbert space (V, 〈·, ·〉) and a commutative bilinear algebra
“multiplication” operation ◦ such that

∀x, y ∈ V : x ◦ ((x ◦ x) ◦ y) = (x ◦ x) ◦ (x ◦ y),

∀x, y, z ∈ V : 〈x ◦ y, z〉 = 〈y, x ◦ z〉 ,

and having a multiplicative identity element 1V ∈ V such that

∀x ∈ V : 1V ◦ x = x.

One can think of Euclidean Jordan algebras as generalizing the real sym-
metric matrices. This is a crude interpretation, but with Sn in mind, the next
definition based on Chapter III of Faraut and Korányi [13] should be reminiscent
of the orthogonal projections that arise in the matrix spectral decomposition.

Definition 10 (Jordan frame). If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra,
then c ∈ V is idempotent if c ◦ c = c. Two idempotents c1, c2 ∈ V are said to
be orthogonal if c1 ◦ c2 = 0, since this implies orthogonality with respect to the
inner-product. A nonzero idempotent c is primitive if there do not exist two
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nonzero idempotents c1 and c2 in V such that c = c1+c2. The set {c1, c2, . . . , cr}
is a Jordan frame if its elements are pairwise-orthogonal primitive idempotents
that sum to the identity element of V .

Definition 11 (Peirce unit subalgebra). If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan
algebra and if J is a subset of a Jordan frame {c1, c2, . . . , cr}, then we define

cJ :=
∑
cj∈J

cj

so that the linear operator x 7→ cJ ◦ x has an eigenspace

VJ := {x ∈ V | cJ ◦ x = x}

corresponding to the eigenvalue one. We also define the set of squares on VJ ,

KJ := {x ◦ x | x ∈ VJ} .

As VJ ⊆ V , we denote the associated inclusion embeddings by ιJ : VJ ↪→ V .

Since the set J in Definition 11 consists of orthogonal idempotents, the
element cJ is itself idempotent. After restricting the algebra and inner-products,
the subspace VJ therefore forms a subalgebra (VJ , ◦J , 〈·, ·〉J) by Proposition
IV.1.1 of Faraut and Korányi [13]. The set KJ must then be the symmetric
cone of squares in the Euclidean Jordan algebra (VJ , ◦J , 〈·, ·〉J).

The following theorem is half of Gowda and Sznajder’s Theorem 3.1 [21]. The
omission of the face F = {0} is of no consequence here, since {0} is trivially a
symmetric cone in the ambient space span (F ) = {0}.

Theorem 3. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra with cone of squares
K and if F E K is a nonzero face of K, then there exists a Jordan frame
{c1, c2, . . . , cr} for V and a subset J ⊆ {c1, c2, . . . , cr} such that F = ιJ (KJ).
In other words, F is a symmetric cone in span (F ).

Before we conclude, we should probably say something about the point e
that appears in both Lemma 1 and Theorem 2. There is a good reason why
we have not mentioned it up until this point. Gowda later investigated the
effect that this interior point has on a linear game [19], but in the original
work [20] on which Theorem 2 is based, the interior point is largely irrelevant.
For Theorem 2, any interior point will do.

Nevertheless, there are some low-hanging fruit nearby. Suppose we are given
a symmetric cone K in some real Hilbert space and a linear operator L on that
space. Before we can apply Theorem 2, we first need to find an e ∈ int (K) that
we can use to construct the game G := (L,K, e). Then to apply the theorem
recursively would involve a series of subcones F / K with associated principal
subtransformations LF and points eF ∈ int (F ). At least in principle, we know
how to obtain the subtransformations LF and subcones F /K. Is there a simple
procedure for finding an eF ∈ int (F )? Fortunately, in a Euclidean Jordan
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algebra V , it is known that the multiplicative identity element 1V belongs to
the interior of K (Theorem III.2.I in Faraut and Korányi mentions this [13]).
And it turns out that the same projection operator πF used to construct LF can
be used to find an interior point eF := πF (1V ). This next result is well-known,
and is a straightforward consequence of our definitions in any case. Gowda and
Sznajder use the first part of it in the proof of their Theorem 6.2 [21].

Proposition 5. Let (V, ◦ , 〈·, ·〉) be a Euclidean Jordan algebra and let J be
a subset of some Jordan frame {c1, c2, . . . , cr} in V . If cJ and VJ are as in
Definition 11, then cJ = 1VJ

= πVJ
(1V ).

The point obtained in Proposition 5 is an attractive choice. When 〈·, ·〉 is
the canonical trace inner-product (x, y) 7→ trace (x ◦ y), Proposition IV.3.2 of
Faraut and Korányi [13] tells us that the strategy set ∆ will be the convex hull
of the set of primitive idempotents in the algebra. Moreover, this choice upholds
the motivating analogy with the classical case. Recall from Equation (1) that the
interior point in every two-person zero-sum matrix game was a vector of ones.
When we move to a subspace in Theorem 1, the new interior point is simply a
shorter vector of ones. It is well-known that Rn with the usual inner-product
and componentwise multiplication forms a Euclidean Jordan algebra [13] whose
identity element is 1Rn = (1, 1, . . . , 1)T and whose symmetric cone of squares
is Rn

+. Taking eF = πF (1Rn) for each maximal proper face F in that scenario
results in the same procedure, giving us a vector of (n− 1) ones and ensuring
that the classical algorithm is a special case of the forthcoming result.

Theorem 4 (Gaddum’s test for symmetric cones). If (V, ◦ , 〈·, ·〉) is a Euclidean
Jordan algebra with symmetric cone K and if L ∈ B (V ), then the following are
equivalent:

• L is copositive on K.

• The value of the linear game G := (L,K, 1V ) is nonnegative, and the
principal subtransformation LF is copositive on F for all maximal F /K.

In this equivalence, each F / K arises as the symmetric cone of squares KF in
a Euclidean Jordan subalgebra VF of V such that LF ∈ B (VF ) and πF (1V ) =
1VF
∈ int (KF ). In addition, the value of the game G can be found by solving a

symmetric cone program.

Proof. Corollary 17 in Orlitzky [35] shows that we can solve the game G by
solving a cone program involving the symmetric cone K. Everything else follows
directly from Theorem 2, Theorem 3, and Proposition 5.

And of course, there is a related special case of Corollary 2.

Corollary 3. If (V, ◦ , 〈·, ·〉) is a Euclidean Jordan algebra with symmetric cone
K and if L ∈ B (V ), then the following are equivalent:

• L is copositive on K.
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• The value of the linear game G := (L,K, 1V )—which can be found by
solving a symmetric cone program—is nonnegative, and L is copositive on
the boundary of K.

We caution that the word “recursive” in our prose must be interpreted care-
fully. At each step, the dimension of the faces under consideration decreases
by at least one, and the zero-dimensional base case is indeed trivial. How-
ever, other aspects of the problem can change significantly as the dimension
decreases monotonically. Our three Examples 1, 2 and 4 where the faces all
look like smaller versions of the original cone were misleading in this regard.

Every symmetric cone is, up to order, a unique orthogonal direct sum of the
cones of squares in simple subalgebras. And up to isomorphism, there are only
five types of them. Theorem 5 in Gowda, Sznajder, and Tao [22] is likely the
most digestable reference for this fact. But if

K = Rn
+ ⊕ Ln

+ ⊕ Sn
+,

then there’s no reason to think that a proper face F / K must have the form

F ∼= Rm
+ ⊕ Lm

+ ⊕ Sm
+

for some m < n. In other words, some maximal proper faces of K may not “look
like” K itself. There is also the problem of cardinality. In Gaddum’s original
test, the number of faces is finite and decreases at each step. Unless by chance
you encounter a face that is isomorphic to Rm in Theorem 4, that generally
won’t be the case for a symmetric cone. So, you should probably not plan to
enumerate the maximal proper faces of your cone one-at-a-time.

5 Conclusions
Up until now, the fact that we could solve a linear game via cone programming
was a solution in search of a problem. But we see now that it has a role to play
in detecting copositivity. This is attractive to optimizers because copositivity
is important to the solution analysis of many convex optimization problems.
Section 2.5 in Facchinei and Pang [12], for example, discusses how copositivity
applies to the variational inequality and complementarity problems.

More recently, Németh and Gowda [32] described the cone of Z-operators
on the Lorentz cone Ln

+ in terms of the cone of operators copositive on Ln
+.

Iusem and Lara [28] found sufficient conditions for the existence of solutions to
a mixed variational inequality problem that involve copositivity. The concept
of a Z-operator can be traced back to the linear complementarity problem [6],
so these ideas are related, and the ongoing research shows that copositivity
continues to be important to complementarity problems.

Despite our cautionary remarks, we are optimistic that Theorem 4 can be of
practical use. The connection to copositivity on the boundary is theoretically
interesting. And ultimately, the state of the art is such that numerical evidence
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of copositivity is valuable. One has always been free to pick some points x from
a cone and to look for counterexamples by checking if 〈L (x), x〉 ≥ 0. And while
Theorem 4 doesn’t allow us to obtain a “yes” answer by brute-force computation,
Corollary 3 does show that we can perform a single computation at each step to
rule out the interior points as counterexamples. Since most of a proper cone is
made up of interior points, doing so provides stronger evidence for copositivity
than a completely random search would.
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Semidefinite programming methods for the symmetric traveling salesman
problem. In Gérard Cornuéjols, Rainer E. Burkard, and Gerhard J. Woeg-
inger (eds.), Integer Programming and Combinatorial Optimization, vol.
1610 of Lecture Notes in Computer Science, 126–136. Springer, Berlin, Hei-
delberg, 1999. ISBN 9783540660194, doi:10.1007/3-540-48777-8_10.

[8] George Bernard Dantzig. Linear Programming and Extensions. Princeton
University Press, Princeton, 1963. ISBN 9780691059136.

15

http://dx.doi.org/10.1016/0024-3795(73)90038-4
http://dx.doi.org/10.1016/0024-3795(73)90038-4
http://dx.doi.org/10.1016/0024-3795(76)90053-7
http://dx.doi.org/10.1016/0022-247X(69)90054-7
http://dx.doi.org/10.1016/0022-247X(69)90054-7
http://dx.doi.org/10.1007/s10107-008-0223-z
http://dx.doi.org/10.1007/978-1-4614-0769-0
http://dx.doi.org/10.1137/1.9780898719000
http://dx.doi.org/10.1007/3-540-48777-8_10


[9] Etienne de Klerk, Fernando M. de Oliveira Filho, and Dmitrii V. Pasechnik.
Relaxations of combinatorial problems via association scheme. In Miguel F.
Anjos and Jean B. Lasserre (eds.), Handbook on Semidefinite, Conic and
Polynomial Optimization, International Series in Operations Research &
Management Science, Chapter 7, 171–199. Springer, New York, 2012. ISBN
9781461407683, doi:10.1007/978-1-4614-0769-0_7.

[10] Etienne de Klerk, Dmitrii V. Pasechnik, and Renata Sotirov. On
semidefinite programming relaxations of the traveling salesman problem.
SIAM Journal on Optimization, 19(4):1559–1573, 2008, doi:10.1137/
070711141.

[11] Peter J. C. Dickinson. Geometry of the copositive and completely positive
cones. Journal of Mathematical Analysis and Applications, 380(1):377–395,
2011, doi:10.1016/j.jmaa.2011.03.005.

[12] Francisco Facchinei and Jong-Shi Pang. Finite-Dimensional Variational In-
equalities and Complementarity Problems, Volume I. Springer Series in Op-
erations Research. Springer-Verlag, New York, 2003. ISBN 9780387955803,
doi:10.1007/b97543.
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