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Abstract

Let K be a closed convex cone with dual K∗ in a finite-dimensional
real Hilbert space. A positive operator on K is a linear operator L such
that L (K) ⊆ K. Positive operators generalize the nonnegative matrices
and are essential to the Perron-Frobenius theory. We say that L is a
Z-operator on K if

〈L (x), s〉 ≤ 0 for all (x, s) ∈ K ×K∗ such that 〈x, s〉 = 0.

The Z-operators are generalizations of Z-matrices (whose off-diagonal el-
ements are nonpositive) and they arise in dynamical systems, economics,
game theory, and elsewhere. We connect the positive and Z-operators.
This extends the work of Schneider, Vidyasagar, and Tam on proper cones,
and reveals some interesting similarities between the two families.

1 Introduction
Positive operators arose from the study of integral operators and matrices with
nonnegative entries [1]. Perron showed that a matrix with positive entries has a
simple eigenvalue equal to its spectral radius and that some corresponding eigen-
vector has positive entries. Moreover its other eigenvalues are strictly less than
the spectral radius in modulus. Frobenius partially extended Perron’s result to
nonnegative matrices, and the nonnegative matrices are positive operators in
that setting.

Suppose that V is an ordered vector space and that x ≥ 0 in V . In the
theory of operators [1], x is called a positive element of V . A positive operator
is a linear operator that sends positive elements of V to positive elements. Every
proper cone K orders [3] its ambient space by x ≥ 0 ⇐⇒ x ∈ K. With respect
to this ordering, we denote the set of positive operators by

π (K) := {L : V → V | L is linear and L (K) ⊆ K} .

The Perron-Frobenius theorem is thus a statement about positive operators on
the cone K = Rn+, the nonnegative orthant in Rn. The Krein-Rutman theorem
extends Perron-Frobenius to a compact positive linear operator with positive
spectral radius on a Banach space ordered by a closed convex pointed cone.
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A Z-matrix is a real square matrix whose off-diagonal entries are nonpositive.
Equivalently, a Z-matrix has the form λI −N where N is a nonnegative matrix
(that is, a positive operator on Rn+). It is therefore not surprising that the
two theories are intertwined. Berman and Plemmons [4] cite an astounding
number of equivalent conditions for Z-matrices to be nonsingular M-matrices,
connecting them to many different areas.

Generalizations of Z-matrices have started to appear [5, 6]. Our definition
of a Z-operator is due to Gowda and Tao [11]. If K∗ represents the dual of K,
then L is a Z-operator on K and we write L ∈ Z (K) if 〈L (x), s〉 ≤ 0 for all
x ∈ K and s ∈ K∗ such that 〈x, s〉 = 0. This definition reduces to that of a Z-
matrix when K = Rn+. These Z-operators emerge in dynamical systems [8, 11],
complementarity problems [11], game theory [9], economics, and everywhere
that Z-matrices arise [4]. Kuzma et al. [15] recently resolved an open problem
that applies Z-operators to mathematical finance. In each of these cases, the
cone K is assumed to be proper : closed, convex, pointed, and solid.

Schneider and Vidyasagar [21] and Elsner [8] discovered a striking connection
between the positive and Z-operators on a proper cone. We eventually extend
this result to any closed convex cone in finite dimensions.

Theorem. If K is a proper cone in Rn and if A is a matrix in Rn×n, then
A ∈ Z (K) if and only if e−tA ∈ π (K) for all t ≥ 0.

The set of all Z-operators contains a subspace LL (K) := −Z (K)∩Z (K) of
Lyapunov-like operators. Lyapunov-like operators are important because they
can be used to solve the equation 〈x, s〉 = 0 for x ∈ K and s ∈ K∗ that
appears as optimality conditions in convex optimization [19]. One motivation
for studying Z-operators is their connection to the Lyapunov-like operators.
Implicit in the work of Schneider and Vidyasagar is the following.

Theorem. If K is a proper cone in Rn, then Z (K) = cl (LL (K)− π (K)).

We will also generalize this result. Sometimes the closure is superfluous and
Z (K) = LL (K)−π (K); the problem solved by Kuzma et al. was of that type.
By studying Z (K) and π (K), we hope to gain insight into similar problems.

There is also a practical motivation for extending these results to closed
convex cones. To compute π (K) or Z (K), we need a representation of the cone
K that can be fed as input into an algorithm. There is a natural way to represent
a polyhedral convex cone since any finite set of vectors can be identified with the
cone it generates. As a result, existing algorithms tend to operate on polyhedral
convex cones (which are necessarily closed). No similar representation is known
for proper polyhedral cones: given a set of vectors, how can one determine if
the cone it generates is proper? The best answer to that question currently
involves a verification step that we would like to avoid by showing that π (K)
and Z (K) are meaningful for all closed convex K. The concept of Lyapunov
rank was extended to closed convex cones for similar reasons [16].

Theorems 1 and 4 provide generators of π (K)∗ and Z (K)∗. When K is
polyhedral, Algorithms 1 and 2 turn those theorems into a method for computing
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π (K) and Z (K) using exact rational arithmetic. In Section 2.4, we introduce
an isometry that associates a proper cone to every closed convex cone. However,
that isometry will often involve irrational roots and thus inexact arithmetic. In
other words, one cannot simply apply the isometry and fall back on the known
algorithms for proper cones. It is because they avoid that issue that our new
algorithms—implemented in the SageMath [28] system—are useful.

2 Preliminaries
Throughout this section, V will be a finite-dimensional real Hilbert space. Here
and from now on, the term “Euclidean space” will be used for such a space.

2.1 Standard definitions
Let W be another Euclidean space. The set of all linear operators from V to
W forms a vector space which we denote by B (V ,W ). We abbreviate B (V , V )
by B (V ). If L ∈ B (V ,W ) is invertible and preserves inner products, then L
is an isometry. Any L ∈ B (V ,W ) has an adjoint L∗ ∈ B (W,V ) such that
〈L (x), y〉 = 〈x, L∗ (y)〉 for all x ∈ V and y ∈ W . The identity operator on V
is idV ∈ B (V ). Given two elements x and s in V , we define s ⊗ x to be the
operator y 7→ 〈x, y〉 s on V . For subsets S and X of V , we will write S ⊗X :=
{s⊗ x | s ∈ S, x ∈ X}. The adjoint of s⊗ x is x⊗ s, and s⊗L∗ (x) = (s⊗ x)L
is the composition of the operators s⊗ x and L ∈ B (V ).

Define the trace operator on B (V ) to be the sum-of-eigenvalues, trace (L) :=∑
λ∈σ(L) λ. Then 〈L1, L2〉 := trace (L1 ◦ L∗2) is our inner product on linear

operator spaces. Later we use the fact that trace (s⊗ x) = trace (x⊗ s) = 〈x, s〉.
The topological closure of a set X is cl (X).

If W is a subspace of V , then the orthogonal complement of W is another
subspace of V defined by W⊥ := {y ∈ V | 〈x, y〉 = 0 for all x ∈W}, and V has
direct sum decomposition V = W ⊕W⊥. If E ,F ,G, and H are sets of linear
operators whose domains and codomains are such that it makes sense to do so,
then we will use the shorthand notation[

E F
G H

]
:=
{[

L11 L12
L21 L22

] ∣∣∣∣∣ L11 ∈ E , L12 ∈ F
L21 ∈ G, L22 ∈ H

}

to denote a set of block-form operators.
The real n-space Rn is equipped with the usual inner product, standard basis

(e1, e2, . . . , en), and nonnegative orthant Rn+ := {x ∈ Rn | xi ≥ 0 for all i}. The
real identity matrix of the appropriate size is denoted by I.

2.2 Cone definitions
Definition 1. A nonempty subset K of V is a cone if λK ⊆ K for all λ ≥ 0.
A closed convex cone is a cone that is closed and convex as a subset of V .
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Definition 2. The conic hull of a nonempty subset X of V is a convex cone,

cone (X) :=
{

m∑
i=1

αixi

∣∣∣∣∣ xi ∈ X, αi ≥ 0, m ∈ N

}
.

Definition 3. If cone (G) = K, then G generates K and the elements of G are
generators of K. If a finite set generates K, then K is polyhedral.

Clasically, a polyhedral cone is defined to be the finite intersection of homo-
geneous half-spaces. However, Theorem 1.3 in Ziegler [29] or Theorem 19.1 in
Rockafellar [17] shows that the two definitions are equivalent. For cones, the two
implications in that equivalence are known as the theorems of Minkowski and
Weyl, and can also be found as Theorem 2.8.6 and Theorem 2.8.8 in Stoer and
Witzgall [24]. As a result of the equivalence, all polyhedral cones are closed [2].

Definition 4. The dimension of K ⊆ V is dim (K) := dim (span (K)). A
convex cone K in V is solid if it has nonempty interior in V , or, equivalently, if
dim (K) = dim (V ). The lineality space of a convex cone K is linspace (K) :=
−K ∩ K. Its lineality is lin (K) := dim (linspace (K)), and K is pointed if
lin (K) = 0. A pointed, solid, and closed convex cone is proper.

If S and X are linearly-independent subsets of V , then S ⊗ X is linearly-
independent in B (V ), and it follows that dim (S ⊗X) = dim (S) dim (X) [18].
Proper cones have a convenient set of generators that are, in a sense, minimal.

Definition 5. An element x in the convex cone K is an extreme vector of K
if it is not a positive linear combination of two linearly-independent vectors in
K. The set of all unit-norm extreme vectors of K is Ext (K).

Extreme vectors are primarily used with proper cones. If K is closed and
pointed, then K = cone (Ext (K)) by a version of the Krein-Milman theorem.

Definition 6. If K is a subset of V , then the dual cone K∗ of K is given by

K∗ := {y ∈ V | 〈x, y〉 ≥ 0 for all x ∈ K} .

The following dual relationships are well-known and will be used freely. They
may be found in Ben-Israel’s [2] Theorem 1.3, Theorem 1.5, and Corollary 1.6.

• The dual K∗ is a closed convex cone for any subset K ⊆ V .

• If K is a convex cone, then (K∗)∗ = cl (K).

• A subset K ⊆ V is a closed convex cone in V if and only if (K∗)∗ = K.

Rockafellar’s Corollary 19.2.2 relates duality to polyhedrality [17].

Proposition 1. If K is a polyhedral convex cone, then K∗ is polyhedral. A
closed convex cone K is polyhedral if and only if its dual K∗ is polyhedral.
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Duals are defined in terms of the inner product, so they are preserved un-
der isometry: ψ (K)∗ = ψ (K∗) for every isometry ψ. Likewise, the dual of a
cartesian product (K1 ×K2)∗ is the cartesian product of duals K∗1 ×K∗2 . The
following proposition combines Ben-Israel’s Theorem 1.3 and Corollary 1.7 [2].

Proposition 2. If K and J are closed convex cones, then (K + J)∗ = K∗ ∩J∗
and cl (K∗ + J∗) = (K ∩ J)∗.

Finally, we will need Rockafellar’s Theorem 14.6 for the duality between
pointed and solid cones [17].

Proposition 3. If K is a closed convex cone, then linspace (K) = span (K∗)⊥.

2.3 Classes of linear operators
Our main results concern a few classes of linear operators. They are all sensibly
defined on any subset K ⊆ V , but in practice, K will be a closed convex cone.

Definition 7. An operator L ∈ B (V ) is a positive operator on K ⊆ V if
L (K) ⊆ K. The set of all such operators is denoted by π (K).

The prototypical positive operators are nonnegative matrices [4] on K = Rn+.
If K is a closed convex cone, then we have an alternative characterization:

L ∈ π (K) ⇐⇒ 〈L (x), s〉 ≥ 0 for all (x, s) ∈ K ×K∗.

The requisite property of a Z-operator is similar, but it need only hold on pairs
of orthogonal vectors in K ×K∗.

Definition 8. The complementarity set of K is

C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0} .

Definition 9. An operator L ∈ B (V ) is a Z-operator on K ⊆ V if

〈L (x), s〉 ≤ 0 for all (x, s) ∈ C (K) .

By Z (K) we denote the set of all Z-operators on K.

When K = Rn+, the complementarity set C
(
Rn+
)

contains all pairs of distinct
standard basis vectors. The requirement on Z

(
Rn+
)

gives rise to matrices whose
off-diagonal elements are nonpositive—the Z-matrices. The set Z (K) is a closed
convex cone and it contains the subspace of Lyapunov-like operators.

Definition 10. An operator L ∈ B (V ) is Lyapunov-like on K ⊆ V if

〈L (x), s〉 = 0 for all (x, s) ∈ C (K) .

By LL (K) we denote the set of all Lyapunov-like operators on K.

The set LL (K) is a vector space and LL (K) = linspace (Z (K)). Find-
ing Lyapunov-like operators is an interesting problem. The search began with
Rudolf et al. [19] and has been continued by others [10, 12, 16].
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2.4 Decomposing improper cones
Any closed convex cone is isometric to a cartesian product of a proper cone,
a subspace, and a trivial cone. The following is well-known and appears, for
example, as Stoer and Witzgall’s Theorem 2.10.5 [24].

Proposition 4. If K is a convex cone in a Euclidean space, then K has an
orthogonal direct sum decomposition into two convex cones,

K = K ∩ linspace (K)⊥ ⊕ linspace (K).

Its first factor K ∩ linspace (K)⊥ is pointed.

Observe that any convex cone K is solid in the ambient space span (K), and
that K ∩ linspace (K)⊥ is pointed by Proposition 4. If Kp represents the cone
K ∩ linspace (K)⊥ living in the subspace span (K) ∩ linspace (K)⊥, then Kp is
both solid and pointed. Now, the ambient space V is an orthogonal direct sum,

V = linspace (K)⊕ span (K) ∩ linspace (K)⊥ ⊕ span (K)⊥.

From this and Proposition 4 we deduce the existence of a useful isometry of V .

Lemma 1. If K is a closed convex cone in a Euclidean space V and if Kp =
K ∩ linspace (K)⊥, then there is an isometry φ such that

φ : V → V1 × V2 × V3

φ (K) = linspace (K)×Kp × {0}

where

V1 := linspace (K)

V2 := span (K) ∩ linspace (K)⊥

V3 := span (K)⊥ ,

and Kp is a proper cone in V2. An operator L ∈ B (φ (V )) will thus have the
block form L =

[
Lij
]

where Lij ∈ B (Vj , Vi). We abbreviate this as

L ∈

B (V1, V1) B (V2, V1) B (V3, V1)
B (V1, V2) B (V2, V2) B (V3, V2)
B (V1, V3) B (V2, V3) B (V3, V3)

 .
This isometry will often reduce our problems to the case of a proper cone,

where existing results can be applied.

Proposition 5. If K is a closed convex cone in V and if φ and Kp are as in
Lemma 1, then K is polyhedral if and only if Kp is polyhedral.

Proof. By properties of isometry, we have that K is polyhedral if and only if
φ (K) is polyhedral. The other two factors linspace (K) and {0} in φ (K) are
polyhedral; therefore polyhedrality of φ (K) depends entirely on that of Kp.
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To reason about the positive and Z-operators in the product space we will
use the following two easy results.

Proposition 6. If K is a closed convex cone in V and if ψ is an isometry of
V , then Z (ψ (K)) = ψZ (K)ψ−1 and π (ψ (K)) = ψπ (K)ψ−1. As a result,
π (ψ (K)) and Z (ψ (K)) are isometric to π (K) and Z (K) respectively.

Proposition 7. If X and S are subsets of V and if ψ is an isometry of V , then
ψ (S ⊗X)ψ−1 = ψ (S)⊗ ψ (X) is isometric to S ⊗X.

3 Positive operators
Observe that the positive operators on a closed convex cone K themselves form
a closed convex cone. The three criteria—that π (K) is closed, convex, and a
cone—are easy to verify and depend on the same properties of K.

Proposition 8. If K is a closed convex cone, then so is π (K).

If K is proper, then both π (K) and its dual are proper [21]. To determine
if some linear operator belongs to π (K), it suffices to check positivity on a
generating set of K. This can be seen by expanding any element of K in terms
of its generators and using the linearity of the operator. However, checking the
generators will almost always be impractical if K is not polyhedral.

Proposition 9. If K = cone (G) in a Euclidean space V and if L ∈ B (V ), then
L ∈ π (K) if and only if L (G) ⊆ K.

Tam [27] found a simple expression for the generators of the dual of π (K)
when K is proper. He uses the fact that cone (K∗ ⊗K) is closed to prove that

π (K)∗ = cone (K∗ ⊗K) if K is proper. (1)

These generators also work when K is merely closed and convex. Tam’s ar-
gument is based on the following equivalence, the conditions of which follow
directly from the definitions and a property of the trace.

Proposition 10. If K is a closed convex cone in a Euclidean space V and if
L ∈ B (V ), then the following are equivalent:

• L ∈ π (K)

• L (x) ∈ K for all x ∈ K

• 〈L (x), s〉 ≥ 0 for all x ∈ K and s ∈ K∗

• 〈L, s⊗ x〉 ≥ 0 for all x ∈ K and s ∈ K∗

It follows that π (K) is the dual of cone (K∗ ⊗K), and thus that π (K)∗ =
cl (cone (K∗ ⊗K)). Tam shows that cone (K∗ ⊗K) is closed for proper K,
and the formula (1) follows. We will take the same approach. Note that any
L ∈ cone (K∗ ⊗K) can be written L =

∑
si ⊗ xi for (xi, si) ∈ K ×K∗ without

scalar factors, since they can be absorbed into si ⊗ xi.
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Lemma 2. If K is a closed convex cone in a Euclidean space V , then the set
cone (K∗ ⊗K) is closed.

Proof. Closedness is preserved under isometry, so let φ andKp be as in Lemma 1.
Then φ (K)∗ = φ (K∗) = {0} × K∗p × span (K)⊥, and Proposition 7 says that
instead of K∗ ⊗K, we can without loss of generality consider

φ (K∗)⊗ φ (K) =

 {0} {0} {0}
K∗p ⊗ V1 K∗p ⊗Kp {0}
V3 ⊗ V1 V3 ⊗Kp {0}

 .
It it straightforward to verify that when all of the sets involved contain zero,
the cone (·) operation acts componentwise. Thus,

cone (φ (K∗)⊗ φ (K)) =

 {0} {0} {0}
cone

(
K∗p ⊗ V1

)
cone

(
K∗p ⊗Kp

)
{0}

cone (V3 ⊗ V1) cone (V3 ⊗Kp) {0}

 .
Notice, for example, that

cone
(
K∗p ⊗ V1

)
= cone

(
K∗p ⊗±V1

)
= span

(
K∗p ⊗ V1

)
,

which (by a dimension argument) equals its ambient space B (V1, V2). Using
that same reasoning, we obtain

cone (φ (K∗)⊗ φ (K)) =

 {0} {0} {0}
B (V1, V2) cone

(
K∗p ⊗Kp

)
{0}

B (V1, V3) B (V2, V3) {0}

 .
Since Kp is proper, we can cite Tam’s result for proper cones to conclude that
cone

(
K∗p ⊗Kp

)
= π (Kp)∗ is closed. The other sets are obviously closed.

Theorem 1. If K is a closed convex cone in a Euclidean space, then π (K)∗ =
cone (K∗ ⊗K).

Proof. Deduce from Proposition 10 that π (K)∗ = cl (cone (K∗ ⊗K)), and then
apply Lemma 2.

This result was known for proper cones, so we look elsewhere for examples.

Example 1. If K = cone ({e1,±e2}) is the right half-space in V = R2, then
K∗ = cone ({e1}) and Theorem 1 gives

π (K)∗ = cone
({
e1e

T
1 ,±e1e

T
2
})
.

In this simple polyhedral case, we can use the definition of dual cone and the
fact that π (K) =

(
π (K)∗

)∗ to directly compute

π (K) = cone
({
e1e

T
1 ,±e2e

T
1 ,±e2e

T
2
})
.

This result is verified using Proposition 9.
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Corollary 1. If K is a closed convex cone in a Euclidean space V and if φ and
Kp are as in Lemma 1, then

π (φ (K)) =

B (V1, V1) B (V2, V1) B (V3, V1)
{0} π (Kp) B (V3, V2)
{0} {0} B (V3, V3)

 .
Proof. Through Theorem 1, the proof of Lemma 2 gives us a block representa-
tion of cone (φ (K∗)⊗ φ (K)) = π (φ (K))∗. Simply take duals therein.

We can now extend another result of Tam.

Theorem 2. If K is a closed convex cone in a Euclidean space V , then π (K)
is polyhedral if and only if K is polyhedral.

Proof. Let Kp be as in Lemma 1. Proposition 5 shows that K is polyhedral if
and only if Kp is polyhedral. A result of Tam [27] shows that Kp is polyhedral
if and only if π (Kp) is polyhedral. Combining the two, we deduce that K is
polyhedral if and only if π (Kp) is polyhedral.

Corollary 1 and Proposition 6 provide the remaining equivalence, that π (Kp)
is polyhedral if and only if π (K) is. This is easily deduced in a manner sim-
ilar to Proposition 5, since all components of π (φ (K)) other than π (Kp) are
(polyhedral) vector spaces or {0}.

Lemma 3. Let K be a closed convex cone in a Euclidean space V , and let
n = dim (V ), m = dim (K), and ` = lin (K). Then,

dim (π (K)) = n2 − ` (m− `)−m (n−m) .

Proof. Note that dim
(

span (K) ∩ linspace (K)⊥
)

= dim (K)− lin (K) = m− `.
The result then follows from Corollary 1 and the fact that π (Kp) is proper.

Example 2. If K = {0} in V , then m = ` = 0, and dim (π (K)) = n2 which
agrees with the obvious fact that π (K) = B (V ).

Example 3. If K is proper, then in Lemma 3, we have m = n and ` = 0. Thus
dim (π (K)) = n2 and π (K) is solid.

Example 4. Example 1 has n = m = 2 and ` = 1 giving dim (π (K)) = 3.

Lemma 4. If K is a closed convex cone in a Euclidean space V , then

lin (π (K)) = dim (V )2 − dim (K) dim (K∗) .

Proof. From Theorem 1, it follows that π (K)∗ = cone (K∗ ⊗K), whose dimen-
sion is dim (K) dim (K∗). Therefore, by Proposition 3, we have

lin (π (K)) = dim (V )2 − dim
(
π (K)∗

)
= dim (V )2 − dim (K) dim (K∗) .
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Example 5. If K = {0} in V , then dim (K) = 0, and lin (π (K)) = dim (V )2

in agreement with the fact that π (K) = B (V ).
Example 6. If K is proper, then dim (K) = dim (K∗) = dim (V ). Lemma 4
gives lin (π (K)) = 0, showing that π (K) is pointed.
Example 7. In Example 1, we have lin (π (K)) = 4− 2 · 1 = 2.

These examples reaffirm that π (K) is proper whenever K is proper [20]. In
the general setting where K may not be proper, Lemma 4 gives us a converse.
Theorem 3. If K is a closed convex cone in a Euclidean space, then π (K) is
proper if and only if K is proper.

When K is polyhedral, Theorem 1 allows us to compute a generating set
of π (K). Algorithms to compute the dual generators of a polyhedral cone are
known, and the inverse operations vec () and mat () are isometries.

Algorithm 1 Compute generators of π (K)
Input: A polyhedral convex cone K
Output: A generating set of π (K)

function pi(K)
G1 ← a finite set of generators for K
G2 ← dual (G1) . a finite set of generators for K∗
G← G2 ⊗G1
return mat (dual (vec (G)))

end function

4 Z-operators
We now move on to the Z-operators of Definition 9. Every Z-operator is the
negation of some cross-positive operator—the class originally introduced by
Schneider and Vidyasagar [21]. Elsner [8] and Tam [25] answered some early
open questions about cross-positive operators. More work was done later by
Gritzmann, Klee and Tam [13, 26]. Recently, Kuzma et al. [15] used cross-
positive operators to answer an open question posed by Damm [7].

Many of the results hereafter would appear more natural (that is, without
a minus sign) if stated in terms of cross-positive operators. However, the Z-
operators—by way of Z-matrices—have historically received more attention, so
we present our results in those terms. As before, we begin by pointing out that
the set of all Z-operators on K forms a closed convex cone. Verification of the
three criteria is straightforward.
Proposition 11. Z (K) is a closed convex cone for any set K.

If the ambient space V is nontrivial, then Z (K) contains the nontrivial
subspace span ({idV }) and is never proper in contrast with Theorem 3. It
does however suffice to verify the Z-operator property on generating sets. This
simplifies things greatly when K is polyhedral.
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Proposition 12. If K = cone (G1) is closed in a Euclidean space and if K∗ =
cone (G2), then L ∈ Z (K) if and only if

〈L (x), s〉 ≤ 0 for all (x, s) ∈ C (K) ∩ (G1 ×G2). (2)

Proof. Clearly, if L ∈ Z (K), then L satisfies (2). So suppose that L satisfies (2)
and let (x, s) ∈ C (K). Since G1 generates K and G2 generates K∗, we can
write x =

∑
αixi and s =

∑
γjsj . By expanding 〈x, s〉 = 0 and noting that

〈xi, sj〉 ≥ 0, we see that each (xi, sj) ∈ C (K). Linearity gives 〈L (x), s〉 ≤ 0.

As before, we want to find a generating set of Z (K)∗ and use it to prove
some results about Z (K). Recall from Section 3 that cone (K∗ ⊗K) = π (K)∗
for any closed convex cone K. We will take that fact for granted in this section.
A similar set will generate Z (K)∗. The following characterization is due to
Bit-Shun Tam, and will simplify our remaining work.

Lemma 5. If K is a closed convex cone in a Euclidean space V , then

cone ({s⊗ x | (x, s) ∈ C (K)}) = π (K)∗ ∩ span ({idV })⊥.

Proof. If L =
∑
si ⊗ xi with (xi, si) ∈ C (K), then L ∈ π (K)∗ by Theorem 1.

Furthermore we have 〈L, idV 〉 =
∑
〈xi ⊗ si, idV 〉, where each term satisfies

〈xi ⊗ si, idV 〉 = 〈xi, si〉 = 0. As a result we have L ∈ span ({idV })⊥.
On the other hand, if L ∈ π (K)∗ ∩ span ({idV })⊥, then Theorem 1 lets

us write L =
∑
si ⊗ xi for (xi, si) ∈ K × K∗, and 〈L, idV 〉 = 0 expands to∑

〈xi, si〉 = 0. Since each 〈xi, si〉 is nonnegative, they all must be zero. Thus
L is a conic combination of si ⊗ xi terms with (xi, si) ∈ C (K).

Theorem 4. If K = cone (G1) is closed in a Euclidean space and if K∗ =
cone (G2), then Z (K)∗ = cone (G) where G is the generating set

G := {−s⊗ x | (x, s) ∈ C (K) ∩ (G1 ×G2)} .

Proof. We have L ∈ Z (K) if and only if 〈−L (x), s〉 = 〈L,−s⊗ x〉 ≥ 0 for all
(x, s) ∈ C (K) by one property of the trace. Thus

L ∈ Z (K) ⇐⇒ L ∈ cone ({−s⊗ x | (x, s) ∈ C (K)})∗ .

Infer that the cone (·) is closed from Lemma 5, and then take duals on both
sides to obtain Z (K)∗ = cone ({−s⊗ x | (x, s) ∈ C (K)}).

It remains only to show that cone (G) = cone ({−s⊗ x | (x, s) ∈ C (K)}).
One inclusion is obvious, so let L =

∑
−si⊗xi where (xi, si) ∈ C (K). Expand

each xi and si in terms of G1 and G2 to obtain a sum of the form

L =
∑
i,j,k

αijγik (−tik ⊗ yij) where αij , γik ≥ 0, yij ∈ G1, and tik ∈ G2. (3)

Since 〈L, idV 〉 = 0 from Lemma 5, the linearity of the inner product and the
fact that each 〈yij , tik〉 ≥ 0 together imply that all 〈yij , tik〉 = 0, or that each
(yij , tik) ∈ C (K) ∩ (G1 ×G2). Thus L ∈ cone (G).
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The same result for proper cones follows from Lemma 2.2 in Gritzmann,
Klee and Tam [13]. A few examples demonstrate how Theorem 4 can be used
to find Z (K)∗. In simple polyhedral cases, we are able to obtain Z (K) as well.

Example 8. If K = Rn+ in V = Rn, then C (K) = {(ei, ej) | i 6= j}. Form
G :=

{
−ejeTi

∣∣ i 6= j
}

to find that Z (K)∗ = cone (G) is the set of matrices
whose diagonal entries are zero and whose off-diagonal entries are nonpositive.
Its dual is the cone of Z-matrices.

Example 9. If K is the half-space from Example 1, then Theorem 4 gives
Z (K)∗ = Z (K)⊥ = span

({
e1e

T
2
})

. This result is verified by Proposition 12.

Corollary 2. If K is a closed convex cone in a Euclidean space V and if φ and
Kp are as in Lemma 1, then

Z (φ (K)) =

B (V1, V1) B (V2, V1) B (V3, V1)
{0} Z (Kp) B (V3, V2)
{0} {0} B (V3, V3)

 .
Proof. Apply Theorem 4, Lemma 5, and Corollary 1 to φ (K) in the space φ (V ):

−Z (φ (K))∗ =

 {0} {0} {0}
B (V1, V2) cone

(
K∗p ⊗Kp

)
{0}

B (V1, V3) B (V2, V3) {0}

 ∩ span
({

idφ(V )
})⊥

.

Write span
({

idφ(V )
})

in diagonal block form. The sets B (Vi, Vj) and {0} are
unaffected by the intersection, and cone

(
K∗p ⊗Kp

)
∩span ({idV2})

⊥ = −Z (Kp)∗
by Lemma 5 and Theorem 4. Take duals and negate both sides for the result.

Theorem 5. If K is a closed convex cone in a Euclidean space, then

dim (Z (K)) = dim (π (K)) .

Proof. Compare Corollary 1 and Corollary 2 in view of Proposition 6. A pri-
ori we have dim (−Z (Kp)) ≥ dim (π (Kp)), but π (Kp) is full-dimensional by
Theorem 3, so the equality dim (Z (Kp)) = dim (π (Kp)) follows.

Theorem 6. If K is a closed convex cone in a Euclidean space V , then Z (K)
is polyhedral if and only if K is polyhedral.

Proof. If K is polyhedral, then both K and K∗ have finite generating sets by
Proposition 1. Those generators combine via Theorem 4 to form a finite gener-
ating set of Z (K)∗, showing that Z (K) is polyhedral (again by Proposition 1).

Let Kp be as in Lemma 1 and recall that K is polyhedral if and only if Kp is
polyhedral by Proposition 5. If K is nonpolyhedral, then Ext (Kp) is infinite. To
each x ∈ Ext (Kp) we can associate [21] a nonzero s ∈ Ext

(
K∗p
)

with 〈x, s〉 = 0.
Tam proved [27] that the resulting s ⊗ x belongs to Ext

(
π (Kp)∗

)
, and since

it also belongs to −Z (Kp)∗ ⊆ π (Kp)∗, we must have s ⊗ x ∈ Ext
(
Z (Kp)∗

)
.

Thus Ext
(
Z (Kp)∗

)
is infinite and Z (Kp) is nonpolyhedral by Proposition 1.

Corollary 2 and Proposition 6 now show that Z (K) is nonpolyhedral.
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These results are corroborated by the polyhedral cones we have examined,
all of which have polyhedral cones of Z-operators and satisfy dim (Z (K)) =
dim (π (K)).

Corollary 3. If K is a closed convex cone in a Euclidean space, then Z (K) is
polyhedral if and only if π (K) is polyhedral.

There are no simple characterizations of Z (K) for nonpolyhedral K. One
sees an example in the work of Stern and Wolkowicz [23] who characterize the
Z-operators on the Lorentz “ice cream” cone. We close this section with an
algorithm, based on Theorem 4, to compute Z (K) for polyhedral K.

Algorithm 2 Compute generators of Z (K)
Input: A polyhedral convex cone K
Output: A generating set of Z (K)

function Z(K)
G1 ← a finite set of generators for K
G2 ← dual (G1) . a finite set of generators for K∗
G← {−s⊗ x | x ∈ G1, s ∈ G2, 〈x, s〉 = 0}
return mat (dual (vec (G)))

end function

4.1 Composing Lyapunov-like operators
This is a convenient place to explain the observed behavior of Lyapunov-like
operators on polyhedral convex cones. Recall that L is Lyapunov-like on K
and we write L ∈ LL (K) if and only if both ±L ∈ Z (K). From the following
Theorem 2 of Gowda and Tao [12], it is easy to deduce that the composition of
two Lyapunov-like operators on a proper polyhedral cone is itself Lyapunov-like.

Theorem 7. If K is a proper polyhedral cone in a Euclidean space, then L ∈
LL (K) if and only if every x ∈ Ext (K) is an eigenvector of L.

Lemma 6. If K is a proper polyhedral cone in a Euclidean space V , then
LL (K) is closed under composition, which is commutative.

Proof. Theorem 7 shows that if L1 and L2 belong to LL (K), then L1x =
λ1 (x)x and L2x = λ2 (x)x for all x ∈ Ext (K). As a result, L1L2x = L2L1x =
λ2 (x)λ1 (x)x for all x ∈ Ext (K). Apply Theorem 7 again to conclude that both
L1L2 and L2L1 belong to LL (K). Thus, LL (K) is closed under composition.
Global commutativity follows from the fact that Ext (K) spans V .

One observes similar behavior when the cone in question is not proper.
Lemma 6 has the following partial extension to a general polyhedral cone.

Theorem 8. If K is a polyhedral convex cone in a Euclidean space V , then
LL (K) is closed under composition.
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Proof. Proposition 6 and Corollary 2 extend in a natural way to LL (K)—
simply replace “Z” by “LL” everywhere. Keeping the block-upper-triangular
representation of LL (φ (K)) in mind, and by applying Lemma 6 to LL (Kp),
one readily shows that LL (φ (K)) is closed under composition. It follows that
LL (K) = φ−1LL (φ (K))φ is also closed under composition.

Note that in going from proper to closed and convex, we have lost com-
mutativity. One easily finds nonpolyhedral proper cones whose Lyapunov-like
operators are not closed under composition. The Lyapunov-like operators on
the symmetric positive semidefinite cone [7] are the Lyapunov transformations
LA (X) := AX +XAT , and they are not closed under composition. Nor is the
conclusion of Theorem 8 exclusive to polyhedral cones: most cones [13] have
LL (K) = span ({idV }), trivially closed under composition.

5 The exponential connection
Finally we exhibit an explicit connection between positive and Z-operators. As
discovered by Schneider and Vidyasagar [21] and Elsner [8], it applies to proper
cones. We restate their theorem in slightly more general language.

Theorem 9. If K is a proper cone in a Euclidean space V and if L ∈ B (V ),
then L ∈ Z (K) if and only if e−tL ∈ π (K) for all t ≥ 0.

This theorem has been used effectively. Elsner [8] equates exponentially-
positive, resolvent-positive, essentially-positive, cross-positive, and quasimono-
tone operators. Damm [7] shows that Lyapunov-like operators on the positive-
semidefinite cone are the familiar Lyapunov transformations from dynamical
systems. Gowda, Tao, and Orlitzky [12, 16] characterize the Lie algebra of the
automorphism group of a closed convex cone.

Lemma 7. If K is a subset of a Euclidean space V and if L ∈ B (V ) with
e−tL ∈ π (K) for all t ≥ 0, then L ∈ Z (K).

Proof. Let e−tL ∈ π (K) for all t ≥ 0, and take any (x, s) ∈ C (K). We show
that 〈L (x), s〉 ≤ 0 and it follows that L ∈ Z (K). Since e−tL (x) ∈ K,

1
t

〈[
e−tL − idV

]
(x), s

〉
= 1
t

〈
e−tL (x), s

〉
≥ 0 for all t > 0.

Take the limit as t→ 0 to find 〈L (x), s〉 ≤ 0.

To prove the converse of Lemma 7, we will ultimately rely on Theorem 9 for
proper cones. To do that we will appeal to the decomposition in Section 2.4.

Theorem 10. If K is a closed convex cone in a Euclidean space V and if
L ∈ B (V ), then L ∈ Z (K) ⇐⇒ e−tL ∈ π (K) for all t ≥ 0.
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Proof. One implication was already shown in Lemma 7. If we let φ and Kp be
as in Lemma 1, then the converse of Lemma 7 holds for φ (K). To see why,
suppose that L =

[
Lij
]
∈ Z (φ (K)) has the block form of Corollary 2. Then

L22 ∈ Z (Kp), and from Theorem 9 we obtain e−tL22 ∈ π (Kp) for all t ≥ 0. Now,
by appealing to the block-upper-triangular form of L, exponentiate directly:

e−tL =
∞∑
n=0

1
n! (−tL)n =

e−tL11 A B
0 e−tL22 D
0 0 e−tL33

 .
We are not interested in the precise form of A, B, and D. Apply Corollary 1 to
conclude that e−tL ∈ π (φ (K)) for all t ≥ 0, and use Proposition 6 to eliminate
φ from the result.

A similar result appears in Hilgert, Hofmann, and Lawson [14]. The first two
items of their Theorem III.1.9 state that L ∈ Z (K) if and only if e−tL ∈ π (K)
for all t ≥ 0. However, the remaining items suggest hidden assumptions, and
its proof relies on another Theorem I.5.27 where the cone is solid. Nevertheless,
their Theorem I.5.17 seems to provide the machinery needed to prove the result.

All of our previous examples corroborate Theorem 10. We provide an appli-
cation to dynamical systems.

Example 10. The system x′ (t) = −L (x (t)) has solution x (t) = e−tL (x (0)).
If L ∈ Z (K) for some closed convex cone K, then Theorem 10 shows that
e−tL ∈ π (K) for all t ≥ 0. Therefore x (t) remains in K for t > 0 if x (0) ∈ K.

Theorem 4 of Orlitzky [16] now follows as a corollary.

Corollary 4. If K is a closed convex cone in a Euclidean space, then LL (K)
is the Lie algebra of the automorphism group of K.

Proof. Apply Theorem 10 to both ±L ∈ Z (K).

When K = V = Rn, this witnesses the well-known fact that the n × n real
matrices are the Lie algebra of the general linear group of degree n over R.

6 Decomposing Z-operators
Any L ∈ Z

(
Rn+
)

is of the form L = λI −N where λ ∈ R and N ∈ π
(
Rn+
)

is a
nonnegative matrix [4]. Schneider and Vidyasagar [21] show that a similar de-
composition exists for any proper polyhedral cone: if K is proper and polyhedral
in V , then Z (K) = span ({idV })− π (K). The authors leave open the question
of when such a decomposition exists. The answer is “almost never” [13], but we
do always have Z (K) = cl (span ({idV })− π (K)) if we take the closure [21].

An M-matrix is a Z-matrix all of whose eigenvalues have nonnegative real
parts. Early attempts to generalize M-matrices to a proper coneK in V involved
operators of the form span ({idV })−π (K), and operators having that form are
called K-regular [22]. A K-regular matrix whose eigenvalues have nonnegative
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real parts is called a K-general M-matrix. But recall that K-regularity is not
necessarily equivalent to membership in Z (K) when K is non-polyhedral [13].
Using the geometric notion of subtangentiality, Stern and Tsatsomeros [22] rem-
edy that situation by introducingK-extended M-matrices defined in terms of the
exponential positivity that (by Theorem 10, for example) characterizes Z (K). It
is shown that every K-extended M-matrix is the limit of K-general M-matrices.

From Definition 10 it should be obvious that span ({idV }) ⊆ LL (K) ⊆
Z (K) for any closed convex coneK. It therefore makes sense to investigate when
LL (K)−π (K) = Z (K). Damm [7] asks if this is true for the cone of symmetric
or Hermitian positive-semidefinite matrices (either real or complex). Kuzma et
al. [15] provide an answer, constructing a counterexample when the matrices
are larger than 2× 2. In the process, the authors show that if K is the cone of
squares in a simple Euclidean Jordan algebra V , then Z (K) = LL (K)− π (K)
if and only if the rank of V is 2 or less.

With Theorem 10 at our disposal, we can prove an analogue of the result
obtained by Schneider and Vidyasagar.
Theorem 11. If K is a closed convex cone in a Euclidean space V , then
Z (K) = cl (span ({idV })− π (K)).

Proof. We have span ({idV }) − π (K) ⊆ Z (K) from their definitions. Thus
cl (span ({idV })− π (K)) ⊆ cl (Z (K)) = Z (K) because Z (K) is closed.

If L ∈ Z (K), then e−tL ∈ π (K) for all t ≥ 0 by Theorem 10. The function
f (t) :=

(
idV −e−tL

)
/t converges to L as t > 0 approaches zero, and f (t) ∈

span ({idV })− π (K) for all t > 0. Thus L ∈ cl (span ({idV })− π (K)).

To demonstrate the power of Theorem 11, we will use it to construct new
proofs of Theorem 4, Theorem 5, and half of Theorem 6.
Corollary 5. If K is a closed convex cone in a Euclidean space V , then
Z (K)∗ = cone ({−s⊗ x | (x, s) ∈ C (K)}).

Proof. Take duals in Theorem 11 and apply Proposition 2 to find Z (K)∗ =
span ({idV })⊥ ∩

(
−π (K)∗

)
. Now consult Lemma 5.

Corollary 6. If K is a closed convex cone in a Euclidean space V , then
dim (Z (K)) = dim (π (K)).

Proof. Use Theorem 11 to obtain dim (Z (K)) = dim (span ({idV })− π (K))
which is defined to be dim (span (span ({idV })− π (K))). But idV ∈ π (K), so

dim (Z (K)) = dim (span (π (K))) =: dim (π (K)) .

Corollary 7. If K is a polyhedral convex cone in a Euclidean space, then Z (K)
is polyhedral.

Proof. If K is polyhedral, then π (K) is polyhedral. It therefore follows that
span ({idV })−π (K), being the sum of two polyhedral cones, is both polyhedral
and closed. Thus Z (K) = cl (span ({idV })− π (K)) = span ({idV })−π (K).

The converse of Corollary 7 seems more elusive.
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[19] Gábor Rudolf, Nilay Noyan, Dávid Papp, and Farid Alizadeh. Bilinear
optimality constraints for the cone of positive polynomials. Mathematical
Programming, 129:5–31, 2011, doi:10.1007/s10107-011-0458-y.

[20] Hans Schneider. Positive operators and an inertia theorem. Numerische
Mathematik, 7:11–17, 1965.

[21] Hans Schneider and Mathukumalli Vidyasagar. Cross-positive matrices.
SIAM Journal on Numerical Analysis, 7:508–519, 1970, doi:10.1137/
0707041.

[22] Ronald. J. Stern and Michael Tsatsomeros. Extended M-matrices and
subtangentiality. Linear Algebra and its Applications, 97:1–11, 1987,
doi:10.1016/0024-3795(87)90134-0.

18

http://dx.doi.org/10.1016/j.laa.2011.10.006
http://dx.doi.org/10.1016/j.laa.2011.10.006
http://dx.doi.org/10.1007/s10107-007-0159-8
http://dx.doi.org/10.1007/s10107-013-0715-3
http://dx.doi.org/10.1016/0024-3795(93)00364-6
http://dx.doi.org/10.1016/0024-3795(93)00364-6
http://dx.doi.org/10.1016/j.laa.2015.03.006
http://dx.doi.org/10.1016/j.laa.2015.03.006
http://dx.doi.org/10.1080/10556788.2016.1202246
http://dx.doi.org/10.1080/10556788.2016.1202246
http://dx.doi.org/10.1007/978-0-387-72831-5
http://dx.doi.org/10.1007/s10107-011-0458-y
http://dx.doi.org/10.1137/0707041
http://dx.doi.org/10.1137/0707041
http://dx.doi.org/10.1016/0024-3795(87)90134-0


[23] Ronald. J. Stern and Henry Wolkowicz. Exponential nonnegativity on
the ice cream cone. SIAM Journal on Matrix Analysis and Applications,
12:160–165, 1991, doi:10.1137/0612012.

[24] Josef Stoer and Christoph Witzgall. Convexity and Optimization in Finite
Dimensions I, vol. 163 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, New York, 1970. ISBN 9783642462184, doi:10.1007/
978-3-642-46216-0.

[25] Bit-Shun Tam. A note on cross-positive matrices. Linear Algebra and its
Applications, 12:7–9, 1975, doi:10.1016/0024-3795(75)90122-6.

[26] Bit-Shun Tam. Some results on cross-positive matrices. Linear Alge-
bra and its Applications, 15:173–176, 1976, doi:10.1016/0024-3795(76)
90014-8.

[27] Bit-Shun Tam. Some results of polyhedral cones and simplicial cones.
Linear and Multilinear Algebra, 4(4):281–284, 1977, doi:10.1080/
03081087708817164.

[28] The Sage Developers. SageMath, the Sage Mathematics Software System,
2017. URL http://www.sagemath.org/.

[29] Günter M. Ziegler. Lectures on Polytopes, vol. 152 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1995. ISBN 9780387943657,
doi:10.1007/978-1-4613-8431-1.

19

http://dx.doi.org/10.1137/0612012
http://dx.doi.org/10.1007/978-3-642-46216-0
http://dx.doi.org/10.1007/978-3-642-46216-0
http://dx.doi.org/10.1016/0024-3795(75)90122-6
http://dx.doi.org/10.1016/0024-3795(76)90014-8
http://dx.doi.org/10.1016/0024-3795(76)90014-8
http://dx.doi.org/10.1080/03081087708817164
http://dx.doi.org/10.1080/03081087708817164
http://www.sagemath.org/
http://dx.doi.org/10.1007/978-1-4613-8431-1

	Introduction
	Preliminaries
	Standard definitions
	Cone definitions
	Classes of linear operators
	Decomposing improper cones

	Positive operators
	Z-operators
	Composing Lyapunov-like operators

	The exponential connection
	Decomposing Z-operators
	Acknowledgements

