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Abstract

Principal angles between linear subspaces have been studied for their
application to statistics, numerical linear algebra, and other areas. In
2005, Iusem and Seeger defined critical angles within a single convex cone
as an extension of antipodality in a compact set. Then, in 2016, Seeger
and Sossa extended that notion to two cones. This was motivated in part
by an application to regression analysis, but also allows their cone theory
to encompass linear subspaces which are themselves convex cones.

One obstacle to computing the maximal critical angle between cones is
that, in general, the maximum won’t occur at generators of the cones. We
show that in the special case where the maximal angle between the cones
is nonobtuse, it does suffice to check only the generators. This extends
some results of Iusem and Seeger, and we show that the special case can
be checked at essentially no extra cost.

Finally, we point out how large eigenspaces become problematic during
a search for critical angles. We prove a few results that aid in this search,
and then focus on computing the maximal angle where we can rule out
the nonobtuse case and avoid the associated class of hard problems.

1 Background
The idea of a principal angle between linear subspaces goes back at least to
Afriat [1], who set out to construct a linear-algebraic framework that would
encompass multivariate statistical analysis. A newer reference whose terminol-
ogy is closer to our own is Miao and Ben-Israel [18]. The first principal angle
between a pair of linear subspaces P and Q is defined by

cos (θ1) := max ({〈u, v〉 | u ∈ P, v ∈ Q, and ‖u‖ = ‖v‖ = 1}) , (i)

and since the cosine function is decreasing on [0, π], we can think of θ1 as being
a minimal angle between the spaces P and Q. The pair (u1, v1) achieving the
minimal angle θ1 is called the first pair of principal vectors, and the second
principal angle θ2 can then be defined by considering only those u ∈ P and
v ∈ Q that are orthogonal to u1 and v1 respectively. Subsequent (third, fourth,
et cetera) principal angles are defined similarly.
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To motivate these definitions, let P := span ({p}) be the line generated by
some unit vector p, and let Q be a subspace of the same ambient space. The
maximization problem (i) is then equivalent to

minimize − 〈αp, v〉 subject to α ∈ {−1, 1} , v ∈ Q, and ‖v‖ = 1.

This is apparently two least-squares problems, since

‖αp− v‖2 = 〈αp− v, αp− v〉 = 2− 2 〈αp, v〉 .

One might therefore think of principal angles and vectors as generalizing least-
squares. It would then not be surprising that Björck and Golub [3] were able to
use the QR-factorization to compute them.

The first generalization of principal angles to convex cones appears to be
Obert [19], who considers two specific cones with applications to differential
equations. However, our story begins in earnest with Iusem and Seeger [12].
Two points u and v in a compact set K are antipodal if they are “diametrically
opposite,” which means that ‖u− v‖ achieves the diameter of the set K,

diam (K) := max ({‖u− v‖ | u, v ∈ K}) .

The diameter of a closed convex cone is undefined, because cones are unbounded.
However, if we consider only its unit-norm elements, then those form a compact
set and we can formulate the problem

maximize ‖u− v‖ subject to u, v ∈ K and ‖u‖ = ‖v‖ = 1.

Maximizing ‖u− v‖2 is equivalent to minimizing 〈u, v〉, which in turn is equiva-
lent to maximizing an angle. This leads Iusem and Seeger to define the maximal
angle of a closed convex cone K as

θmax (K) := sup ({arccos (〈u, v〉) | u, v ∈ K and ‖u‖ = ‖v‖ = 1}) , (ii)

and to note that

arccos (〈u, v〉) = θmax (K) ⇐⇒ ‖u− v‖ = diam ({x ∈ K | ‖x‖ = 1}) .

As practical motivation, the number θmax (K) appears in Peña and Rene-
gar [20] which is concerned with the distance between some given linear-conic
constraints and the set of ill-posed constraints. The authors reformulate these
constraints so that interior-point methods can be applied to determine feasibil-
ity, and θmax (K) appears in some estimates of the backwards-stability of that
process. Another application of θmax (K) is in determining “how pointed” a
given cone K is. Iusem and Seeger call this an index of pointedness [11], and it
becomes important whenever pointedness of the cone K is a necessary property
but can vary depending on some parameter. The authors provide a satisfying
answer involving θmax (K) a bit later [16], and eventually show that θmax is
Lipschitz continuous on an appropriate space [23].

Iusem and Seeger prove a number of results for polyhedral cones. In partic-
ular, they show that polyhedral cones whose maximal angle is nonobtuse will
have an antipodal pair of generators.
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Proposition I (Iusem and Seeger [12], Proposition 6.2). Let K be a polyhedral
convex cone with unit-norm generating set G. If θmax (K) ≤ π/2 and if g1, g2 ∈
G form the largest angle within G, then (g1, g2) is an antipodal pair of K.

In other words: if the maximal angle of a polyhedral cone is known to be nonob-
tuse, then it will occur at a pair of generators, and those are essentially finite
in number. The proof of their proposition involves constructing the Gramian
matrix M =

[
〈gi, gj〉

]
, and therefore relies on the fact that G is finite or (equiv-

alently) that K is polyhedral.
Due to the nonconvexity in (ii), there is a necessary but insufficient condition

for a pair (u, v) ∈ K2 to consist of antipodal points of K. Pairs satisfying the
necessary condition are called critical pairs, and the angles they form critical
angles. The set of all critical angles within a cone is its angular spectrum, and
it provides useful information about the geometric structure of the cone. For
example, polyhedral cones have finite angular spectra [17]. Iusem and Seeger
explicitly construct cones having infinite angular spectra [14], and conjecture
that the angular spectrum of any closed convex cone is nowhere-dense. They
also point out an application of critical angles to a complementarity problem
involving eigenvalues of a matrix relative to a closed convex cone.

In what the authors consider the third part of a triptych [15], some remain-
ing questions about the angular spectrum are answered. A weaker notion of
antipodal pair called a Nash angular equilibrium is introduced that satisfies the
following relationship: all antipodal pairs are Nash angular equilibria, and all
Nash angular equilibria are critical pairs.

Proposition II (Iusem and Seeger [15], Proposition 2). Let K be a closed
convex cone such that K 6= {0}. If 〈x, y〉 > 0 for all x, y ∈ K \ {0}, then every
Nash angular equilibrium is a pair of normalized extreme rays of K.

Since antipodal pairs are Nash angular equilibria, Propositions I and II are
related. Later we will unify and generalize these two results, allowing for the
cones to be non-polyhedral and the inner products to be merely nonnegative.

Iusem and Seeger apply their theory to two classes of cones, ellipsoidal and
spectral cones. Spectral cones are particularly important in optimization be-
cause they allow one to transfer a problem from a difficult space, such as the
space of n-by-n real symmetric matrices, to an easier one like Rn. The authors
show that the maximal angle problem is susceptible to this type of attack [13].
These sorts of problems are still an active area of research. For example, the
commutation principle used by Iusem and Seeger was later shown by Ramı́rez,
Seeger, and Sossa [21] to hold in a general Euclidean Jordan Algebra, and by
Gowda and Jeong [8] to hold in a normal decomposition system.

With respect to practical computation, the next advance is by Gourion and
Seeger [6], who devise an algorithm to compute the angular spectrum of a poly-
hedral cone. This algorithm provides evidence for the cardinality of a random
polyhedral cone’s angular spectrum. In a subsequent work [7], the authors for-
mally investigate this expected number of critical angles.
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As a final application, recall that an n × n real matrix A is copositive if
〈Ax, x〉 ≥ 0 for all x ∈ Rn+. The set of all copositive matrices forms a closed
convex cone in the space of n × n real symmetric matrices. What is the max-
imal angle that can be formed by two copositive matrices? Hiriart-Urruty
and Seeger [10] conjecture that the answer is 3π/4, but Goldberg and Shaked-
Monderer [4] show that the maximal angle tends towards π as n grows large.

Seeger and Sossa are responsible for expanding the theory to two cones [24,
25]. The concepts of critical angle, Nash angle, maximal angle, and the associ-
ated pairs all extend in a natural way. And since linear subspaces are themselves
closed convex cones, this brings us full-circle to a generalization of the principal
angles between linear subspaces.

2 Two cones
The natural setting in which to discuss angles between convex cones is in a
real Hilbert space. And for reasons that will become apparent, we would like
the unit sphere to be compact. So, throughout this section, V will denote a
finite-dimensional real Hilbert space.

Definition 1. A nonempty subset K of V is a cone if αK ⊆ K for all α ≥ 0.
A closed convex cone is a cone that is closed and convex as a subset of V .

Definition 2. The conic hull of a nonempty subset X of V is a convex cone,

cone (X) :=
{

m∑
i=1

αixi

∣∣∣∣∣ xi ∈ X, αi ≥ 0, m ∈ N

}
.

If cone (G) = K, then G generates K and the elements of G are generators of
K. If a finite set generates K, then K is polyhedral.

All polyhedral convex cones are closed [22]. Note that for G 6= {0} we have

cone (G) = cone
({

g

‖g‖

∣∣∣∣ g ∈ G, g 6= 0
})

,

and that therefore no generality is lost if we insist on unit-norm generators.

Definition 3. If K is a subset of V , then the dual cone of K is

K∗ := {y ∈ V | 〈x, y〉 ≥ 0 for all x ∈ K} .

If K is contained in K∗, then K is subdual.

We adopt the standard definition of the angle θ between two vectors u and
v in a Hilbert space, namely ‖u‖ ‖v‖ cos (θ) = 〈u, v〉. For nonzero u and v, we
divide and set cos (θ) := 〈u/ ‖u‖, v/ ‖v‖〉.

Definition 4. The unit sphere in V is denoted by S (V ).
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This leads to a small problem: K = {0} satisfies Definition 1, but it contains no
unit-norm elements. Thus the angle between a given vector and any element of
K is undefined. This can be settled by fiat, but nothing of value is gained and
the additional special cases complicate the proofs. We therefore follow Seeger
et al. and omit the cone K = {0} from consideration. For the same reason, we
omit the cone K = V ; we generally need to take duals and V ∗ = {0}.

Definition 5. The set of admissible cones in V is

C (V ) := {K | K is a closed convex cone in V and K /∈ {{0} , V }} .

Reference to the set of admissible cones will simplify the statement of our
results. For example, if P,Q ∈ C (V ), then Seeger and Sossa [24] define the
maximal angle between P and Q to be

sup ({arccos (〈u, v〉) | u ∈ P ∩ S (V ), v ∈ Q ∩ S (V )}) . (1)

Since P,Q ∈ C (V ), they contain at least one unit-norm element. Problem (1)
is therefore maximizing the continuous function (u, v) 7→ arccos (〈u, v〉) over
a nonempty compact set. The supremum is thus achieved, and moreover the
arccos function is decreasing on [−1, 1]. As a result, we can pose the supremum
problem (1) as a minimization problem instead.

Definition 6. If P,Q ∈ C (V ), then the maximal angle between P and Q is

Θ (P ,Q) := arccos (min ({〈u, v〉 | u ∈ P ∩ S (V ), v ∈ Q ∩ S (V )})) .

If arccos (〈ū, v̄〉) = Θ (P ,Q) for some ū ∈ P ∩ S (V ) and v̄ ∈ Q ∩ S (V ), then
(ū, v̄) is an antipodal pair of (P,Q). We abbreviate Θ (K,K) as Θ (K).

One can define the minimal angle in a completely analogous way, but as Seeger
and Sossa explain [24], the maximal angle is in many ways nicer to work with.

Definition 6 involves an optimization problem. As is the standard practice,
one can use its Karush–Kuhn–Tucker conditions to obtain necessary conditions
for optimality. The search space is then reduced to the pairs of points satisfying
the necessary conditions. Seeger and Sossa call these critical pairs [24].

Definition 7. If P,Q ∈ C (V ), then (u, v) is a critical pair of (P,Q) if

u ∈ P ∩ S (V ),
v ∈ Q ∩ S (V ),

v − 〈u, v〉u ∈ P ∗, and
u− 〈u, v〉 v ∈ Q∗.

In that case, arccos (〈u, v〉) is a critical angle of (P,Q). The set of all such angles
is the angular spectrum of (P,Q), and is denoted by Γ (P ,Q).

One final class of pairs, the Nash angular equilibria, lies conceptually between
antipodal pairs and critical pairs. For consistency, we will refer to Nash angular
equilibria as simply “Nash pairs.”
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Definition 8. If P,Q ∈ C (V ), then (ū, v̄) is a Nash pair of (P,Q) if

ū ∈ P ∩ S (V ),
v̄ ∈ Q ∩ S (V ),

〈ū, v̄〉 ≤ 〈u, v̄〉 for all u ∈ P ∩ S (V ), and
〈ū, v̄〉 ≤ 〈ū, v〉 for all v ∈ Q ∩ S (V ).

In that case, arccos (〈ū, v̄〉) is a Nash angle of (P,Q).

Seeger and Sossa mention Nash angular equilibria for pairs of cones [25], but
their true heritage is the earlier work of Iusem and Seeger [15] for a single cone.
The following relationship holds for both pairs of points and for angles:

antipodal =⇒ Nash =⇒ critical.

To remain completely precise in our prose, we record the following.

Definition 9. The angle θ is nonobtuse if θ ∈ [0, π/2].

In the later sections, we work in the real n-space Rn rather than in a general
Hilbert space. The space Rn has the usual inner product and standard basis
{e1, e2, . . . , en}. Linear operators from Rm to Rn are represented by matrices
A ∈ Rn×m, and the Moore–Penrose pseudoinverse of A is denoted by A+. The
cardinality of a set X is card (X); so, for example, card ({e1, e2, . . . , en}) = n.
The nonnegative orthant in Rn is Rn+ := cone ({e1, e2, . . . , en}).

3 The nonobtuse case
Using Definition 6, we are immediately able to characterize when the maximal
angle between two closed convex cones is nonobtuse.

Theorem 1. If P,Q ∈ C (V ) for a finite-dimensional real Hilbert space V , then
the following are equivalent:

1. Θ (P ,Q) ∈ [0, π/2]

2. P ⊆ Q∗

3. Q ⊆ P ∗

Proof. To see that Item 1 implies Item 2, suppose that Θ (P ,Q) ∈ [0, π/2]. A
minimal pair (ū, v̄) in Definition 6 must have 〈ū, v̄〉 ∈ [0, 1]. But then the fact
that 〈u, v〉 ≥ ‖u‖ ‖v‖ 〈ū, v̄〉 ≥ 0 for all u ∈ P and v ∈ Q shows that P ⊆ Q∗.

For the converse implication: if P ⊆ Q∗, then 〈u, v〉 ≥ 0 for all u ∈ P and v ∈
Q. And by Cauchy–Schwarz, we have 〈u, v〉 ≤ ‖u‖ ‖v‖ = 1 for any feasible pair
(u, v) in Definition 6. Thus 〈u, v〉 ∈ [0, 1] for any feasible pair, and in particular
for the minimal pair (ū, v̄). It follows that Θ (P ,Q) = arccos (〈ū, v̄〉) ∈ [0, π/2],
and that Items 1 and 2 are equivalent.
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To see that Item 2 implies Item 3, start with P ⊆ Q∗ and take duals on
both sides to find P ∗ ⊇ (Q∗)∗. Use the fact that Q is a closed convex cone
and Ben-Israel’s [2] Theorem 1.5 to conclude that (Q∗)∗ = Q. The proof of the
converse is identical with the roles of P and Q switched.

From now on, we will cite the geometric condition P ⊆ Q∗ when we wish
to convey that the maximal angle between P and Q is nonobtuse. Note that
if P = cone (G) and Q = cone (H) for two sets G and H, then the condition
P ⊆ Q∗ is equivalent to saying that 〈g, h〉 ≥ 0 for all g ∈ G and h ∈ H. One
implication in that equivalence is trivial, and the other follows immediately from
the bilinearity of the inner product using Definition 2. Thus when P and Q are
polyhedral, we can actually determine whether or not Theorem 1 applies.

Recall from Definition 3 that a subset K of a Hilbert space V is subdual if
K ⊆ K∗. If K ∈ C (V ) is subdual, then we can set P := K and Q := K in
Theorem 1 to see that the maximal angle in K is nonobtuse.

Corollary 1. If K ∈ C (V ) for a finite-dimensional real Hilbert space V , then
Θ (K) ∈ [0, π/2] if and only if K ⊆ K∗.

Example 1. Consider the completely-positive cone in Rn,

CP
(
Rn+
)

:= cone
({
uuT

∣∣ u ∈ Rn+
})
,

which is known to be subdual [9]. Set K := CP
(
Rn+
)

in Corollary 1 to see that
Θ (K) ∈ [0, π/2]. Now both e1e

T
1 and e2e

T
2 belong to CP

(
Rn+
)
, and〈

e1e
T
1 , e2e

T
2
〉

= 〈e1, e2〉2 = 0.

Since arccos (0) = π/2 is as large as possible, we have Θ
(
CP

(
Rn+
))

= π/2.

While our main focus is the nonobtuse case, there is one obtuse angle whose
criticality and maximality are easy to characterize, so we record this fact for
later. One implication follows from Seeger and Sossa’s Proposition 4.1 and
Proposition 4.2 [24], but a direct proof of the entire result is straightforward.

Proposition 1. If P,Q ∈ C (V ) for a finite-dimensional real Hilbert space V ,
then the following are equivalent:

1. P ∩ −Q 6= {0}

2. Θ (P ,Q) = π

3. π ∈ Γ (P ,Q)

Intuitively, the maximal angle should not occur “inside” the cones. This is
made precise by Seeger and Sossa’s Theorem 2.3 [24]; but perhaps surprisingly,
the maximal angle need not occur at a pair of generators.

Example 2. Let P := cone ({e1, e2,−e2}) be the right half-plane in R2. If Q =
cone ({−e1 + e2,−e1 − e2}), then e1 ∈ P ∩−Q and it follows from Proposition 1
that Θ (P ,Q) = π. However it is visually obvious that no pair of generators
forms an angle of π.

7



If the maximal angle always occurred at a pair of generators, then—at least for
polyhedral cones—we could simply check them all. Alas, this is true only if the
maximal angle is known to be nonobtuse. We set out to prove the following.

Corollary 2. Let V be a finite-dimensional real Hilbert space, and let P,Q ∈
C (V ) be such that P ⊆ Q∗. If P = cone (G) and Q = cone (H) for G,H ⊆
S (V ), then some (g, h) ∈ G×H is an antipodal pair for (P,Q).

However, it turns out that all Nash angles (not just the largest) will occur at
pairs of generators when the maximal angle between the cones is nonobtuse.

Lemma 1. Let V be a finite-dimensional real Hilbert space, and let P,Q ∈ C (V )
be such that P ⊆ Q∗. If (ū, v̄) is a Nash pair for (P,Q) corresponding to the
angle θ and if v̄ ∈ cone ({v1, v2}) for v1, v2 ∈ Q ∩ S (V ), then either (ū, v1) or
(ū, v2) is also a Nash pair corresponding to the angle θ.

Proof. Let v̄ = α1v1 +α2v2 with α1, α2 ≥ 0 and note that the triangle inequality
gives 1 = ‖α1v1 + α2v2‖ ≤ α1 + α2. Since P ⊆ Q∗, both 〈ū, v1〉 and 〈ū, v2〉 are
nonnegative. Suppose without loss of generality that 〈ū, v1〉 ≤ 〈ū, v2〉. Then,

〈ū, v̄〉 = α1 〈ū, v1〉+ α2 〈ū, v2〉 ≥ (α1 + α2) 〈ū, v1〉 ≥ 〈ū, v1〉 .

But (ū, v̄) is a Nash pair, so from Definition 8, we also have that 〈ū, v̄〉 ≤ 〈ū, v1〉.
It follows that 〈ū, v̄〉 = 〈ū, v1〉, and that (ū, v1) is a Nash pair.

Theorem 2. Let V be a finite-dimensional real Hilbert space, and let P,Q ∈
C (V ) be such that P ⊆ Q∗. If P = cone (G) and Q = cone (H) for G,H ⊆
S (V ), then every Nash angle of (P,Q) is achieved by some (g, h) ∈ G×H.

Proof. Let (ū, v̄) be a Nash pair of (P,Q). Using Definition 2, write v̄ ∈ cone (H)
as v̄ = α1h1 +α2h2 + · · ·+αmhm for hj ∈ H. Applying Lemma 1 at most m−1
times shows that there exists a j for which (ū, hj) is also a Nash pair of (P,Q).
Now from Theorem 1, deduce that Q ⊆ P ∗ as well. Play the same game with ū
to conclude that some (gi, hj) is a Nash pair for (P,Q).

Corollary 2 now follows easily given that maximal angles are Nash angles.

Corollary 3. If cone (G) ∈ C (V ) is subdual in a finite-dimensional real Hilbert
space V for G ⊆ S (V ), then some (g1, g2) ∈ G2 is an antipodal pair for cone (G).

Example 3. We introduced the completely-positive cone in Rn in Example 1.
Now let V be any finite-dimensional real Hilbert space, and let K ∈ C (V ) be
such that −K ∩K = {0}. We consider the completely-positive cone of K,

CP (K) := cone ({u⊗ u | u ∈ K ∩ S (V )}) .

This cone is known to be subdual [9]. Apply Corollary 3 to conclude that

Θ (CP (K)) = arccos (min ({〈u⊗ u, v ⊗ v〉 | u, v ∈ K ∩ S (V )}))

= arccos
(

min
({
〈u, v〉2

∣∣∣ u, v ∈ K ∩ S (V )
}))

.
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If Θ (K) is nonobtuse, then every inner product 〈u, v〉 above is nonnegative, and
minimizing the squares is the same as squaring the minimum. Thus,

Θ (CP (K)) = arccos
(

[cos (Θ (K))]2
)

if Θ (K) ∈ [0, π/2] .

On the other hand, if Θ (K) > π/2, then there exist u, v ∈ K ∩ S (V ) having
〈u, v〉 < 0. Since −K ∩K = {0}, the origin is not a convex combination of u
and v. But K is a convex cone, so the image of f : [0, 1]→ V defined by

f (α) := αv + (1− α)u
‖αv + (1− α)u‖

is contained in K ∩ S (V ). The composite α 7→ 〈u, f (α)〉 is continuous, and
the intermediate value theorem thus ensures the existence of a v′ ∈ K ∩ S (V )
such that 〈u, v′〉 = 0. As in Example 1, this shows that Θ (CP (K)) = π/2.
Combining these cases, we see that the maximal angle within CP (K) is a
function of the maximal angle within K itself, namely

Θ (CP (K)) = arccos
(

[max ({0, cos (Θ (K))})]2
)
.

4 Finding critical angles
Recall that the maximal angle between P and Q is necessarily a critical angle
of (P,Q). This motivates Seeger and Sossa’s algorithm, based on their The-
orem 7.3 [24], to find critical angles. Later we incorporate the results from
the previous section into this algorithm, and ultimately focus on finding the
maximal angle. But first, we introduce the notation and recall their theorem.

Definition 10. If G := {g1, g2, . . . , gp} is a subset of some vector space, then

I (G) :=
{
I ⊆ {1, 2, . . . , p}

∣∣ I 6= ∅, {gi}i∈I is linearly-independent
}
.

Thus {{gi | i ∈ I} | I ∈ I (G)} is the set of linearly-independent subsets of G.

Definition 11. If I ⊆ N is nonempty, then we will write Ik to denote indexing
into the set I using the canonical order on N. For example, if I = {3, 1, 4}, then
I1 = 1, I2 = 3, and I3 = 4 because 1 ≤ 3 ≤ 4.

To calculate critical angles in practice we will use matrices, and must there-
fore drop the pretense of working in a general Hilbert space V . So from now
on, we will fix V = Rn with the usual basis and inner product.

Definition 12. Let G := {g1, g2, . . . , gp} and H := {h1, h2, . . . , hq} be subsets
of Rn. If I ⊆ {1, 2, . . . , p} and J ⊆ {1, 2, . . . , q}, then we define two matrices

GI :=
[
gI1 gI2 · · · gIcard(I)

]
∈ Rn×card(I)

HJ :=
[
hJ1 hJ2 · · · hJcard(J)

]
∈ Rn×card(J),

whose columns are elements of G and H indexed by I and J respectively.
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With that out of the way, we restate their theorem.

Theorem 3 (Seeger and Sossa [24], Theorem 7.3). Let G := {g1, g2, . . . , gp}
and H := {h1, h2, . . . , hq} be subsets of S (Rn). If P = cone (G), Q = cone (H),
and P,Q ∈ C (Rn), then θ is a critical angle of (P,Q) if and only if there exist
I ∈ I (G), J ∈ I (H), ξ ∈ Rcard(I), and η ∈ Rcard(J) satisfying[

0 GTI HJ

HT
J GI 0

] [
ξ
η

]
= cos (θ)

[
GTI GI 0

0 HT
J HJ

] [
ξ
η

]
(2)

subject to
〈gk, HJη − cos (θ)GIξ〉 ≥ 0 for all k /∈ I,
〈h`, GIξ − cos (θ)HJη〉 ≥ 0 for all ` /∈ J,〈

ξ,GTI GIξ
〉

= 1,〈
η,HT

J HJη
〉

= 1,
ξ > 0 componentwise, and
η > 0 componentwise.

(3)

In that case, the critical angle θ corresponds to the pair (u, v) = (GIξ,HJη).

Based on that result, Seeger and Sossa sketch the following algorithm.

Algorithm 1 Compute the angular spectrum of (P,Q)
Input: Sets G and H that generate P,Q ∈ C (Rn) as in Theorem 3.
Output: The set Γ (P ,Q) of all critical angles of (P,Q).

Γ← ∅
for all I ∈ I (G) and J ∈ I (H) do

Find all cos (θ), ξ, and η that solve Equation (2)
if any cos (θ), ξ, and η satisfy (3) then

Γ← Γ ∪ {θ}
end if

end for
return Γ

In Section 5, we discuss a difficulty that arises while implementing this al-
gorithm. But before we proceed, we show that Equation (2) can be restated
as a standard eigenvalue problem whose size can be cut roughly in half. To
streamline the notation, we introduce the Moore–Penrose pseudoinverse.

Definition 13. The Moore–Penrose pseudoinverse of A ∈ Rm×n is the unique
matrix A+ ∈ Rn×m satisfying AA+A = A, A+AA+ = A+, (AA+)T = AA+,
and (A+A)T = A+A.

The Moore–Penrose pseudoinverse can be computed efficiently using the sin-
gular value decomposition. We will need only one well-known property of the
pseudoinverse, stated in Section 5.5.2 of Golub and Van Loan [5].
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Proposition 2. If A ∈ Rn×m has rank m, then A+ =
(
ATA

)−1
AT , and both

AA+ and A+A are orthogonal projections.

Proposition 3. In Theorem 3, Equation (2) is equivalent to[
0 G+

I HJ

H+
J GI 0

] [
ξ
η

]
= cos (θ)

[
ξ
η

]
. (4)

Proof. By construction, the columns of GI and HJ form linearly-independent
sets. The matrices GTI GI and HT

J HJ are therefore positive-definite and can be
inverted directly to obtain[

0
(
GTI GI

)−1
GTI HJ(

HT
J HJ

)−1
HT
J GI 0

] [
ξ
η

]
= cos (θ)

[
ξ
η

]
.

Now Proposition 2 shows that
(
GTI GI

)−1
GTI = G+

I and likewise for HJ .

Having expressed Equation (2) as a standard eigenvalue problem, we now
consider two cases: when the eigenvalue cos (θ) is zero, and when it is not.

Proposition 4. In the context of Proposition 3, the eigenspace corresponding
to the eigenvalue cos (θ) = 0 is ker

(
HT
J GI

)
× ker

(
GTI HJ

)
.

Proof. Obvious after setting cos (θ) = 0 in the equivalent Equation (2).

Proposition 5. If cos (θ) 6= 0 in the context of Proposition 3, then the following
are equivalent for the vectors ξ ∈ Rcard(I) and η ∈ Rcard(J):

1. The block vector (ξ, η)T is a solution to Equation (4).

2. ξ is a solution to G+
I HJH

+
J GIξ = (cos (θ))2

ξ and η = H+
J GIξ/ cos (θ).

3. η is a solution to H+
J GIG

+
I HJη = (cos (θ))2

η and ξ = G+
I HJη/ cos (θ).

Proof. Write Equation (4) as a system of two equations. Divide by cos (θ) 6= 0
on the right-hand side, and substitute either equation into the other.

In practice, there could be a subtle difference between the problems in Propo-
sition 5. If Equation (4) is solved for an eigenvector (ξ, η)T , then for example it
admits solutions where ξ = 0 and η 6= 0. On the other hand, if we treat Item 2
as an eigenvalue problem, it admits only solutions where ξ 6= 0. But notice that
the conditions (3) require both ξ and η to be nonzero. As a result, we will not
overlook any feasible solutions (ξ, η)T if we choose to solve one of the smaller
problems in Items 2 and 3 for eigenvectors.

The formulation of the two smaller problems in Proposition 5 is similar to
the remarks following Theorem 8.6 in Iusem and Seeger [12]. Note that the
size of the original problem in Equation (4) is card (I) + card (J), and that by
choosing the smaller of the two problems in Proposition 5 we obtain a problem
of size min ({card (I) , card (J)}).
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5 The problem with eigenspaces
If all of the eigenspaces that appear as solutions to Equation (4) have dimen-
sion one, then Algorithm 1 works more or less as stated because checking the
feasibility of (3) is straightforward. Suppose

{
(ξ, η)T

}
is a basis for such an

eigenspace. If possible, multiply by −1 to make both ξ, η > 0 componentwise.
Then scale by a factor of 1/ ‖GIξ‖ so that ξ satisfies

〈
ξ,GTI GIξ

〉
= 1. The scaled

vector ± (ξ, η)T / ‖GIξ‖ is the only element of the eigenspace that satisfies both
the positivity and norm constraints, and it suffices to check the remaining two
inequalities in (3). But what if we encounter an eigenspace of higher dimension?
This situation occurs in some relatively simple examples.

Example 4. Define P,Q := R2
+ with generators G,H := {e1, e2}. If I = {1}

and J = {2}, then Equation (2) reduces to[
0 0
0 0

] [
ξ
η

]
= cos (θ)

[
ξ
η

]
,

with the obvious two-dimensional eigenspace span ({e1, e2}) corresponding to
cos (θ) = 0. But note that neither (ξ, η)T = e1 nor (ξ, η)T = e2 satisfy the
positivity constraints in (3). We are thus left searching all of R2 for a solution
to the system of constraints. The assignment (ξ, η)T = (1, 1)T works in this
case by inspection, but in general this problem will be hard.

Example 5. Suppose card (I) = card (J) = n for two cones P,Q ∈ C (Rn)
in Theorem 3. By construction, both GI and HJ are square with linearly-
independent columns. Substituting G+

I = G−1
I and H+

J = H−1
J into Equa-

tion (4) and multiplying, we obtain the system

HJη = cos (θ)GIξ
GIξ = cos (θ)HJη.

It should be clear that for either cos (θ) = 1 or cos (θ) = −1, any choice of
ξ, η ∈ Rn will satisfy the system.

At present it is not clear how to adapt Algorithm 1 to work around this
difficulty. Since the Nash angles are in general a proper subset of the critical
angles, Theorem 2 doesn’t apply directly to Algorithm 1. However, checking
whether or not P ⊆ Q∗ involves computing the inner products between the
generators of P and Q. Then, if it turns out that P ⊆ Q∗, Corollary 2 says that
we will have computed Θ (P ,Q) as a side effect of that process. This has two
benefits. First, Θ (P ,Q) is itself a critical angle, and can be recorded as such.
Second, it allows us to ignore any eigenvalues (and their eigenspaces) that are
less than or equal to cos (Θ (P ,Q)), because they correspond to angles greater
than or equal to the maximal angle. However, it may be the case that P * Q∗,
and we don’t want to waste too much time checking a special case. Fortunately,
as the next proposition shows, these benefits come cheaply. This will be even
more important in Section 6, where Theorem 2 becomes invaluable.
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Proposition 6. In the context of Theorem 3, the matrices GTI HJ and HT
J GI

are submatrices of a matrix M :=
[
〈gi, hj〉

]
and its transpose, respectively.

Proof. Let MJ,I denote the submatrix of M with column indices in J and row
indices in I. The formula for matrix multiplication shows that

(
GTI HJ

)
ij

=〈
G{Ii}, H{Jj}

〉
and it is easily seen that (MJ,I)ij =

〈
gIi , hJj

〉
which amounts

to the same thing. Thus the matrices GTI HJ and MJ,I are equal. The matrix
HT
J GI is then equal to

(
GTI HJ

)T =
(
MT

)
I,J

.

Putting this all together, we propose the following adaptation of Algorithm 1.

Algorithm 2 Compute the angular spectrum of (P,Q)
Input: Sets G and H that generate P,Q ∈ C (Rn) as in Theorem 3.
Output: The set Γ (P ,Q) of all critical angles of (P,Q).

Γ← ∅
Compute the matrix M from Proposition 6
µ← mini,j (Mij)
if µ ≥ 0 then

Γ← Γ ∪ {arccos (µ)} // Nonobtuse case, the maximal angle is critical
end if
if P ∩ −Q 6= {0} then

Γ← Γ ∪ {π} // by Proposition 1
end if
for all I ∈ I (G) and J ∈ I (H) do

GTI HJ ←MJ,I // Proposition 6
HT
J GI ←

(
MT

)
I,J

if π/2 /∈ Γ then
Use Proposition 4 to find the eigenspace Wπ/2 for cos (θ) = 0

end if
Find all eigenspaces Wθ for cos (θ) 6= 0 using Proposition 5
for all eigenspaces Wθ do

if θ ∈ Γ then
Skip to the next Wθ

else if θ = π then
Skip to the next Wθ // We checked for π ∈ Γ (P ,Q) earlier

else if µ ≥ 0 and cos (θ) ≤ µ then
Skip to the next Wθ // Nonobtuse case, µ is a true minimum

else if any (ξ, η)T ∈Wθ satisfy (3) then
Γ← Γ ∪ {θ}

end if
end for

end for
return Γ

Unfortunately, we still expect to encounter eigenspaces of dimension greater
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than one in Algorithm 2. A partial solution to that problem is investigated
forthwith, as we limit our attention to the maximal angle. This allows us to bring
Theorem 1 and Corollary 2 to bear, eliminating at the outset any eigenspaces
that correspond to nonobtuse angles.

6 Finding the maximal angle
In this section, we address the problem of finding only the maximal angle be-
tween two cones. The main benefit of doing so is that several optimizations
become available as a consequence of our earlier results. These shortcuts offer
not only efficiency improvements, but also avoid some of the large eigenspaces
that plague Algorithm 2. The intention is that, if all such eigenspaces can be
ruled out, then we can be sure that the algorithm works for the given cones.

Recall Example 5, which showed that large eigenspaces occur when the ma-
trices GI and HJ are square. This is one situation that can be avoided entirely
during a maximal angle search.

Proposition 7. If card (I) = n or card (J) = n in the context of Theorem 3,
then the only eigenvalues satisfying Equation (4) are cos (θ) ∈ {−1, 0, 1}.

Proof. The eigenvalue cos (θ) = 0 is indeed a possibility, so record it and suppose
that cos (θ) 6= 0. If card (I) = n, then GI is square and its columns are linearly-
independent. Substitute G+

I = G−1
I into Item 3 in Proposition 5 to obtain

H+
J HJη = (cos (θ))2

η.

The matrix H+
J HJ is a projector by Proposition 2, and therefore has one nonzero

eigenvalue (cos (θ))2 = 1. Solve to obtain cos (θ) ∈ {−1, 1}. When card (J) = n,
the situation is analogous.

A similar optimization can likely be obtained from Seeger and Sossa’s Theo-
rem 2.3 [24]. This result comes into play for the maximal angle because The-
orem 1 can be used to rule out cos (θ) ∈ [0, 1], and Proposition 1 rules out
cos (θ) = −1. Having done so, we can ignore any index sets of cardinality n and
the associated eigenspaces.

The other improvements that we make relative to Algorithm 2 are similar in
spirit. Given generators for the cones P and Q, we first check whether or not
P ⊆ Q∗ in Theorem 1. This can be done cheaply according to Proposition 6.
If Θ (P ,Q) is nonobtuse, then Corollary 2 tells us how to find it. Otherwise we
proceed along the same lines, but skipping any angles (and their eigenspaces)
that are too small to be maximal. This is in contrast to a critical angle search
where even if the maximal angle is known, smaller angles may still be critical.
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Algorithm 3 Compute the maximal angle between P and Q

Input: Sets G and H that generate P,Q ∈ C (Rn) as in Theorem 3.
Output: The maximal angle Θ (P ,Q) between P and Q.

Compute the matrix M from Proposition 6
µ← mini,j (Mij)
if µ ≥ 0 then

return arccos (µ) // by Theorem 1 and Corollary 2
end if
// Proceed assuming Θ (P ,Q) ≥ arccos (µ)
if P ∩ −Q 6= {0} then

return π // by Proposition 1
end if
// Proceed assuming Θ (P ,Q) 6= π
for all I ∈ I (G) and J ∈ I (H) with cardinality < n do // Proposition 7

GTI HJ ←MJ,I // Proposition 6
HT
J GI ←

(
MT

)
I,J

Find all eigenspaces Wθ for cos (θ) 6= 0 using Proposition 5
for all eigenspaces Wθ do

if cos (θ) = −1 or cos (θ) ≥ µ then
Skip to the next Wθ // θ has been ruled out or is too small

else if any (ξ, η)T ∈Wθ satisfy (3) then
µ← cos (θ)

end if
end for

end for
return arccos (µ)

7 Conclusions
Algorithm 3 is still not a complete solution, but in some simple cases it can
provide reassurance that the maximal angle has indeed been found.

Example 6 (Seeger and Sossa [24], Example 7.4). Recall the standard basis
{e1, e2, e3, e4, e5} in R5 and define

hi := ei − ei+1,

P := cone ({e1, e2, e3, e4, e5}) = R5
+,

Q := cone ({h1, h2, h3, h4}) .

Seeger and Sossa find Θ (P ,Q) to be approximately 0.8524π. This result is
confirmed by Algorithm 3: no eigenspaces of dimension greater than one are
encountered. However, if we use Algorithm 2 to find the critical angles, then we
run into trouble. There is an eigenspace of dimension two corresponding to the
eigenvalue cos (θ) =

√
2/2. Is arccos

(√
2/2
)

a critical angle of (P,Q)?
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We leave open the general question of whether or not either algorithm can
be improved further. Theorem 5.2 of Seeger and Sossa [24] shows that the map
Θ (·, ·) is Lipschitz continuous: if P2 is close to P1 and if Q2 is close to Q1, then
Θ (P2, Q2) is close to Θ (P1, Q1). One line of inquiry would be to perturb the
cones P and Q, and to see if this can be done in a beneficial way.

Question 1. If P = cone (G) and Q = cone (H), how can we perturb the
generators G and H to obtain new cones that are close to P and Q?

Question 2. Assuming we can answer Question 1, how do those perturbations
affect the eigenspaces that appear in Proposition 3?

Taken together, these questions are harder than they look. For example,
randomly perturbing the generators G := {e1, e2,−e2} of the right half-plane in
R2 might (with high probability) destroy the structure in the matrices GI . But,
that same perturbation (if it nudges e2 or −e2 to the left) can turn the right
half-plane into the entire ambient space R2, which is not even in C

(
R2).

If we can eliminate the large eigenspaces with perturbations that don’t
change P and Q too much, then Θ (P ,Q) should be close to the maximal angle
that Algorithm 3 finds between the perturbed cones. In any case, a more holistic
approach is needed if we are to tackle larger problems. In higher dimensions,
the need for numerical linear algebra makes the dimension of an eigenspace a
somewhat subjective matter. Under those circumstances, a list of special cases
cannot simply be enumerated.
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