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Project overview

The Applied Math Lab is a long-running program of the Towson
University Mathematics Department. Under the sponsorship of
CSAC, our current project involves the following:

• Describe the transport of chlorine throughout the United
States.

• Create models for the risk associated with TIH transportation.

• Develop software systems implementing these models.

This talk presents some of the progress made towards a
transportation model.
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Transportation problem example

Producer 1 Producer 2

Consumer 1 Consumer 2 Consumer 3

Cost = 5 Cost = 100 Cost = 30

Cost = 10

Cost = 20
Cost = 300

Supply = 600Supply = 500

Demand = 400 Demand = 300 Demand = 200
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Problem constraints

Our goal is to minimize the total cost of transportation, that is, we
would like to minimize the function,

z = 5x11 + 100x12 + 30x13 + 10x21 + 20x22 + 300x23

But, we can’t over-sell,

x11 + x12 + x13 ≤ Supply1 = 500

x21 + x22 + x23 ≤ Supply2 = 600

Or over-consume,

x11 + x21 = Demand1 = 400

x12 + x22 = Demand2 = 300

x13 + x23 = Demand3 = 200
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Graphic representation: non-negativity
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Graphic representation: one constraint

Feasible solutions
One constraint

x1

x2
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Graphic representation: two constraints

Feasible solutions
Two constraints
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Graphic representation: three constraints

Feasible solutions
Three constraints
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Objective function: good
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Objective function: better
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Objective function: best
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Simplex method: step 1
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Simplex method: step 2
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Simplex method: step 3

x1

x2

Step 1 Step 2

Step 3
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What if we don’t know our parameters?

Producer 1 Producer 2

Consumer 1 Consumer 2 Consumer 3

Cost=?                              Cost=?                          Cost=?

Cost = ?

Cost = ?
Cost = ?

Supply = ?Supply = ?

Demand = ? Demand = ? Demand = ?
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Stochastic programming

• Allows uncertainty in both objective function and constraints

• Focuses on problems with two or more distinct phases

• Maximizes the expected value of some objective function

In our problem, there is only one phase. The expected value of the
objective function is easy to compute, but we are more interested
in “how wrong” we could possibly be.

References

• http://stoprog.org/

• http://tucson.sie.arizona.edu/SPX/tutorial slides/Philpott.pdf

• http://tucson.sie.arizona.edu/SPX/tutorial slides/Henrion.pdf
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Robust optimization

• Tends to optimize the worst case

• Assumes only a fixed number of coefficients are uncertain

• Uses penalty functions to encourage feasibility

• Can still produce infeasible solutions

References

• http://www.bschool.nus.edu/staff/dscsimm/docs/ROThesis.pdf

• http://robust.moshe-online.com/

• http://hostdb.ece.utexas.edu/˜cmcaram/pubs/RobustOptimizationPaper.pdf
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Replacing the cost coefficients

We’re ready to get rid of the known costs. We can replace the
costs cij by random uniform variables Cij .

x

y

2

1

With uniform random variables, all possible values are equally likely.
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New objective function

Our new objective is to minimize the function,

z = C11x11 + C12x12 + C13x13 + C21x21 + C22x22 + C23x23

where the Cij are the uniform variables mentioned previously. Let
c̃ij denote the mean of the random variable distributed by Cij . Note
that c̃ij is just a constant, so we can solve the following problem by
the usual process.

z̃ = c̃11x11 + c̃12x12 + c̃13x13 + c̃21x21 + c̃22x22 + c̃23x23

We’ll call the optimal solution to this problem
V ∗
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Starting vertex V ∗

We have a set of cost coefficients for which V ∗ is optimal, so we
can compute the probability distributions for the adjacent vertices.

V ∗

V1

known

V2

kn
ow

n

V3

kn
ow

n

V4

known
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An example

Let’s take for an example the following modification of our original
two-supplier three-consumer model.

c11 → U11 ∼ U11 (0, 10)

c12 → U12 ∼ U12 (75, 125)

c13 → U13 ∼ U13 (20, 40)

c21 → U21 ∼ U21 (0, 20)

c22 → U22 ∼ U22 (10, 30)

c23 → U23 ∼ U23 (200, 400)

Note that the means of these distributions equal the cost
coefficients from the original problem (this is just for convenience).
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Optimal at the mean

The optimal solution for the mean costs is just the optimal for our
original problem:

V ∗ = (300, 0, 200, 100, 300, 0)

There are three directions we can move from V ∗:

∆V12 = (−1, 1, 0, 1,−1, 0, 0, 0)

∆V33 = (1, 0,−1,−1, 0, 1, 0, 0)

∆V4 = (−1, 0, 0, 1, 0, 0, 1,−1)
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Movement costs

A (non-negative!) cost is associated with each direction. We can
express these costs in terms of the coefficients which are random
variables.

V ∗ V12

∆c12
V33

∆c33

V4
∆

c 4

∆c12 = U21 (0, 20)− U11 (0, 10) + U12 (75, 125)− U22 (10, 30)

∆c33 = U11 (0, 10)− U13 (20, 40) + U23 (200, 400)− U21 (0, 20)

∆c4 = U21 (0, 20)− U11 (0, 10)

Michael Orlitzky Towson University



Movement probability

The probability that we move in a direction is simply the
probability that the cost in that direction is negative. We’ll do the
easy direction (actually, its complement).

P
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U11 + Ũ21 ≤ 0

”
=

∞Z
−∞
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Simulation

We can test the result by running 100,000 trials (samples) using
our random distributions. The resulting vertex frequencies are
shown below.

linear_programs $ ./lp_solve trials-uniform-small
Solution Vector : Count
-----------------------
[100.0, 0.0, 200.0, 300.0, 300.0, 0.0] : 24974
[300.0, 0.0, 200.0, 100.0, 300.0, 0.0] : 75026

As expected, 25% of the time, we move to V4. The other vertices
are missing because we move to them with probability zero.
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Probability computation: one variable

Each of the probability calculations involve determining whether or
not the sum of random variables is negative. Here’s one variable
(easy).
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Probability computation: two variables

In two variables, we’re still piecewise linear so the probabilities can
be calculated quickly.

0.5 1 1.5 2
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Probability computation: three variables

With three or more variables, we’re in trouble. The graph below
changes for every combination of costs.

0.5 1 1.5 2 2.5 3

0.1
0.2
0.3
0.4
0.5
0.6
0.7
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Risk incorporation

Given (uncertain) information about the costs along a
transportation network, we study the distribution of material along
that network. However, monetary costs are not the only costs we
consider.

cost = money (uncertain) + risk (uncertain)

The risk along each route is also a “cost” that may be known with
some uncertainty. If we incorporate risk into the model, we can
analyze the resulting distribution to find the risk’s effect on the
network.
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Future work

• Are these computations fast enough to do on a large scale?

• Caching
• Numerical integration
• Monte Carlo methods

• If so, how can we optimize and extend the model for
non-uniform distributions?

• If not, do we really need to do that many of them? How far
does a typical problem deviate from V ∗?

• Is this the best method to obtain this information? Is it worth
the effort?
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