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MATRIX GAMES: INTRODUCTION

A two-person game involves two players:

1. Alice
2. Bob

Both players make a move, and then some rule is
applied to determine the winner.

The winner gets a prize.
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MATRIX GAMES: INTRODUCTION
Example (rock-paper-scissors).
The players choose either rock, paper, or scissors.

e Rock beats scissors
e Scissors beats paper

e Paper beats rock

The loser pays the winner one dollar.
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MATRIX GAMES: INTRODUCTION

The legal moves and payoffs for this game can be
described by a table (Bob pays Alice):

Alice
rock paper scissors
a rock 0 1 -1
n% paper -1 0 1
scissors 1 -1
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MATRIX GAMES: INTRODUCTION

When Alice loses a dollar, we think of it instead
as winning —1 dollars. The winnings of the two
players therefore always sum to zero.

Any game where the winnings of all the players
sum to zero is called a zero-sum game.
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MATRIX GAMES: INTRODUCTION
These games were introduced and studied by

1. von Neumann and Morgenstern (1944)
2. Kaplansky (1945)

3. Karlin (1959)

4. Dantzig (1963)

(among others)
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MATRIX GAMES: INTRODUCTION

Problem.
There is no “best” choice in rock-paper-scissors.

If you play rock every time (a pure strategy), |
can beat you.
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MATRIX GAMES: INTRODUCTION

Solution.
Allow mixed strategies.

A mizxed strategy assigns probabilities to the
available moves.

MICHAEL ORLITZKY UMBC



MATRIX GAMES: INTRODUCTION

Example.

Alice plays rock 50% of the time, and paper 50%
of the time.

Bob always plays paper.

Alice’s strategy is mixed. Bob’s strategy is pure.
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MATRIX GAMES: INTRODUCTION

The expected payoff (to Alice) in this case is

rock/paper paper/paper
—_— —
e+ Lo 2L
2 -

This is nothing but the probability of each
outcome times the payoff for that outcome.
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MATRIX GAMES: INTRODUCTION

Probability interpretation of mixed strategies:

1. Players assign probabilities to the moves
2. Each player chooses a move randomly

3. Afterwards, we compute the expected payoft
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MATRIX GAMES: INTRODUCTION

von Neumann proved that there are always
optimal mixed strategies.

“Optimal” means you would be no better off
doing something else (on average).
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MATRIX GAMES: INTRODUCTION

von Neumann’s argument is elementary [3], based
on the existence of a min/max on compact sets.

More generally, optimal strategies are guaranteed
by the famous Nash existence theorem.
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MATRIX GAMES: INTRODUCTION

Problem.
Probabilities and expectations are gross.
Solution.

Use linear algebra instead.
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MATRIX GAMES: INTRODUCTION

Recall our table for rock-paper-scissors:

Alice
rock paper scissors
a rock 0 1 -1
m? paper -1 0 1

SC1SS0TS 1 -1
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MATRIX GAMES: INTRODUCTION

Clearly we can represent the payoffs by a matrix,

0 1 -1
L=|-1 0 1
1 -1

Problem.

How to find the payoff from the players’ moves?
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MATRIX GAMES: INTRODUCTION

Solution.
Identify the moves with standard basis vectors,

rock 2 ey == (1,0,0)"
paper = ¢; == (0,1,0)"

scissors = e = (0,0,1)"

MICHAEL ORLITZKY UMBC



MATRIX GAMES: INTRODUCTION
and use a payoff function

p(e.y) =y L
that picks out rows/columns of L:

p(ej,e) = e;TFLej = L;;.
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MATRIX GAMES: INTRODUCTION

Example.

If Alice plays paper = e; and Bob plays
rock = eq, then

p(es,e1) =ef Les = Lig =1

is the amount that Alice wins.
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MATRIX GAMES: INTRODUCTION

So that works for pure strategies.
What about mixed strategies?

Probabilities are simply nonnegative weights
summing to one. Can we assign similar weights
to the basis vectors in our geometric model?
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MATRIX GAMES: INTRODUCTION

Suppose

T = (r1e1 + ioéy + Qize3
where

a; > 0and > a; = 1.
Then

xr = (0517 G2, 043)T

and x belongs to the convezr hull of {ey, ey, e3}.
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MATRIX GAMES: INTRODUCTION

The scalars «; are the probabilities that Alice
assigns to rock, paper, and scissors, respectively.

Do the same thing for Bob:

y = Bier + Poea + Baez = (B1, B2, B3)"
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MATRIX GAMES: INTRODUCTION

Using the bilinearity of our payoff function,
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is precisely the expected payoft.
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MATRIX GAMES: INTRODUCTION

Why? If Alice plays e; with probability o; and
Bob plays e; with probability (;, then the term

;i - p(ej, €)

is the payoff p (ej, ;) for that outcome times the
probability «;3; that it occurs.
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MATRIX GAMES: INTRODUCTION

Moral: our geometric model works for mixed
strategies, too.

Example.

Alice plays rock 50% of the time, and paper 50%
of the time.

Bob always plays paper.
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MATRIX GAMES: INTRODUCTION

We represent Alice’s strategy as

_1 Ll _(110>T
TTa T2 = g9

or “halfway between rock and paper.”
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MATRIX GAMES: INTRODUCTION

Similarly, Bob’s strategy is y = (0,1,0)". The
associated payoff is

p(z,y) =y Lz

0 1 —1][1/2
=0 10 |-1 0 1[|1/2
1 -1 0| 0

1/2 .
=[-1 0 1] {1/3} =3
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MATRIX GAMES: INTRODUCTION

This is the same expected payoff that we
computed previously.

It says that “Bob wins half the time.”
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MATRIX GAMES: INTRODUCTION

Geometric interpretation of mixed strategies:
1. Both players choose a vector from the convex
hull of the standard basis vectors.

2. We compute the payoff (x,y) — yT L.

It is equivalent to the probability interpretation.
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PART 1, SECTION 2

Matrix games: Formality
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MATRIX GAMES: FORMALITY

Definition.

The convex hull of a nonempty subset X of V is

r; € X, a; >0

conv (X) = Z:l%xi m e N f:ou:l

1=1

The convex hull of X is also the set of all convex
combinations of elements of X.
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MATRIX GAMES: FORMALITY

MICHAEL LITZKY

Example. 1f X = {(1,1)",(1,3)",(2,2)"},

then the convex hull of X is

(1,3)
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MATRIX GAMES: FORMALITY

Definition.

The unit simpler in R" is the convex hull of the
standard basis,

A = conv ({e1,e2,...,€,}).
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MATRIX GAMES: FORMALITY

The unit simplex in R?:
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MATRIX GAMES: FORMALITY

The unit simplex in R3:
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MATRIX GAMES: FORMALITY
Another way to think of the unit simplex is
A={zxeR} | (z,e) =1}
where R’} is the nonnegative orthant and

e:=(1,1,... 1)T,
< > 1+ To+ -+ Ty
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MATRIX GAMES: FORMALITY

A two-person zero-sum matrix game consists of,

e A matrix L € R"™",
e The unit simplex A C R”,
e The payoff function (x,y) — y' L.
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MATRIX GAMES: FORMALITY

A matrix game is played as follows:

1. Alice chooses an x € A,
2. Bob simultaneously chooses a y € A,
3. Then, the payoff is made from Bob to Alice.
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MATRIX GAMES: FORMALITY

Each player wants to maximize his or her payoff.

The game is zero-sum, so that goal is equivalent
to minimizing the payoff to his or her opponent.

MICHAEL ORLITZKY UMBC



MATRIX GAMES: FORMALITY

Traditionally one assumes that each player wants
to maximize his worst-case payoft.

That is, he wants to guarantee himself the largest
payoff possible.
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MATRIX GAMES: FORMALITY

Thus Alice’s goal is to find

. (T
argmax (min (y~ Lz) |,
%eA <y€A (y )>

and Bob’s goal is to find

. T
argmin [ max Lx ) )
ygEA (IEA (y )
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MATRIX GAMES: FORMALITY

Theorem (von Neumann, 1944).

There exists a pair (Z,%) of strategies that
simultaneously solves both of these problems.

Definition. The associated payoff
v(L) =y Lz

is the value of the game.
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MATRIX GAMES: FORMALITY

Theorem (Dantzig, 1951).

Every two-person zero-sum matrix game is solved
by a linear program.

MICHAEL ORLITZKY UMBC



MATRIX GAMES: FORMALITY

Alice wants to:

e Maximize (over ) some number v,

e Subject to the fact that v is a lower bound
on her payout,

e And subject to x € A.
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MATRIX GAMES: FORMALITY

If we translate those goals to a constrained
convex optimization problem, we obtain:

maximize 1%
subject to Lx > ve
|

x> 0.

This is a linear program in nonstandard form. Its
dual turns out to be Bob’s problem.
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PART 2, SECTION 3

Linear games: Symmetric
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LINEAR GAMES: SYMMETRIC

Definition. A symmetric cone is,

A cone
Closed
Convex
Solid
Pointed
Self-dual

Homogeneous
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LINEAR GAMES: SYMMETRIC

Definition.

Suppose that K is a cone and B C K does not
contain the origin. If any nonzero x € K can be

uniquely represented x = Ab where A > 0 and
b € B, then B is a base of K.

In English: a base is a cross-section of the cone.
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LINEAR GAMES: SYMMETRIC

Observations:
e The strategy set A in the classical case forms

a base for the cone R

e The cone R is symmetric.
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LINEAR GAMES: SYMMETRIC

Idea (Gowda and Ravindran[l], 2015).

Why don’t we replace R” with some other
symmetric cone K, and A with a base of K7

Instead of a matrix, we’ll have a linear operator
L, and the payoff function (z,y) — (L (x),y).

A lot of stuff still works.
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LINEAR GAMES: SYMMETRIC

If K is a symmetric cone and e € int (K), then
A={zxe K| (z,e)=1}

still forms a compact base for K.
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LINEAR GAMES: SYMMETRIC

As a result, von Neumann’s proof still works.

Theorem.

There exists a pair (Z,y) € A x A such that
(L(x),y) < (L(x),y) <(L(T),y)

for all (z,y) € A x A.
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LINEAR GAMES: SYMMETRIC

Ok, but why bother?

In the classical case, Raghavan [2] derived results
for games whose payoff matrix is an M-matrix—a
family related to the Z-matrices and nonnegative
matrices.

MICHAEL ORLITZKY UMBC



LINEAR GAMES: SYMMETRIC

Those matrix families have been generalized to
linear operators on closed convex cones, and we
are interested in their properties.

Existing game theory results may provide insight.

In fact, many results survive the generalization.
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PART 2, SECTION 4

Linear games: Asymmetric
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LINEAR GAMES: ASYMMETRIC

We can go further!

e The cone doesn’t have to be symmetric.

e The players can have different strategy sets.

Question. But why?
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LINEAR GAMES: ASYMMETRIC

Answer. Because why not?

The operator families that we are interested in
are defined for any closed convex cone.

And most things done by Gowda and Ravindran
generalize with little additional work.
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LINEAR GAMES: ASYMMETRIC

In these games we will consider a proper cone K
with dual K*. Take two points e; € int (K) and
es € int (K*), and define the strategy sets,

Ay ={zxe K| (z,e) =1}
Ag:={y € K" | (y,e1) = 1}.

These are compact bases for their cones.
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LINEAR GAMES: ASYMMETRIC

This game is played in a familiar manner:

1. Alice chooses an x € A;.
2. At the same time, Bob chooses a y € A,.
3. Bob pays Alice (L (z),y).

Once more, we are promised optimal strategies.
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LINEAR GAMES: ASYMMETRIC
So we have the data:

1. A linear operator L.
2. A proper cone K.

3. A point e; € int (K).
4. A point ey € int (K*).
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LINEAR GAMES: ASYMMETRIC

And Alice wants to find

argmax (min ((L (x), y>)>

reA;  \YEA:

and Bob wants to find

argmin (max ((L (x), y))) :

y€A2 $€A1
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LINEAR GAMES: ASYMMETRIC

That’s all good, but how do we solve them?
Theorem.
In our game,

vey— L* (y) € K* and L () —ve; € K

for v € R if and only if v is the value of the game
and (z,y) is optimal for it.
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LINEAR GAMES: ASYMMETRIC

From that theorem, Alice’s goal is to

maximize v
subject to re K
(x,e9) =1
velR

L(z)—ve € K
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LINEAR GAMES: ASYMMETRIC

Definition.

The primal cone program in standard form is,

minimize (b, &)
subject to A (§) —c € Ko
§ €K

where K; and K5 are closed convex cones.
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LINEAR GAMES: ASYMMETRIC

Theorem.

Alice is trying to solve the primal cone program,
and Bob is trying to solve its dual.

Proof.

Make clever substitutions and then check that
everything works. ]
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LINEAR GAMES: ASYMMETRIC

Problem.

We don’t know how to solve cone programs,
either.

We do however know how to solve a few
symmetric cone programs.
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LINEAR GAMES: ASYMMETRIC

Corollary.

If K is a symmetric cone, then the associated
game is solved by a symmetric cone program.

This brings us back to the setting of Gowda and
Ravindran, albeit with two strategy sets A; and
Ay instead of just A.
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PART 3, SECTION 5

Dunshire: CVXOPT
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DUNSHIRE: CVXOPT

CVXOPT is a free software package for convex
optimization in the Python language.

It uses interior point methods to solve cone
programs.

The solvers are described in The CVXOPT linear
and quadratic cone program solvers, by Lieven
Vandenberghe (2010).
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DUNSHIRE: CVXOPT

The CVXOPT conelp solver can solve a cone
program over a cartesian product of,

e The nonnegative orthant.
e The Lorentz ice-cream cone.

e The symmetric positive semidefinite cone.
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DUNSHIRE: CVXOPT

Problem.
CVXOPT expects this primal problem:

minimize ¢’z
subject to Gx +s=h
Ar =10
s e C.
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DUNSHIRE: CVXOPT

Solution. Divine inspiration: let,

C=KxK
r=(v,p)
b=1, h=0
¢c=(-1,0)"
A:[O eg}

0 —I
o= _L].
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DUNSHIRE: CVXOPT

Then the CVXOPT problem becomes,

minimize —v
subject to P =5
Lp — rve|p = 59
<€27p> =1
S1 K
€ .
S9 K

This is Alice’s problem in the variable p.
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DUNSHIRE: CVXOPT

Since s1, so € K are arbitrary, the constraint
P =31
simply means that p € K. The same goes for

Lp —vey = sy € K.
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DUNSHIRE: CVXOPT

Thus we have presented Alice’s goal to CVXOPT:

maximize v
subject to peK
Lp—ve e K
(e2,p) = 1.

Its dual is Bob’s goal as we would hope.
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PART 3, SECTION 6

Dunshire: The library
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DUNSHIRE: THE LIBRARY

Dunshire is a Python library for solving linear
games over symmetric cones.

It uses CVXOPT, but performs the tedious pre-
and post-processing for you.
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DUNSHIRE: THE LIBRARY

Dunshire gives you access to the symmetric cones
that CVXOPT can handle.

>>> from dunshire import *
>>> K1 = NonnegativeOrthant (5)
>>> print (K1)

Nonnegative orthant in the real 5-space

>>> K2 = IceCream(2)

>>> print (K2)

Lorentz "ice cream" cone in the real 2-space
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DUNSHIRE: THE LIBRARY

>>> K3 = SymmetricPSD(7)
>>> print (K3)

Cone of symmetric positive-semidefinite
matrices on the real 7-space

Cartesian products can be created, too:

>>> K = CartesianProduct (K1, K2, K3)
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DUNSHIRE: THE LIBRARY

Let’s solve rock-paper-scissors!

Dunshire requires four data,

A linear operator L.

A symmetric cone K.
A point e; € int (K).
A point ey € int (K) = int (K*).
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DUNSHIRE: THE LIBRARY

First we set up the problem. ..

L=[Co0, 1,-1],
(-1, 0, 1],
[ 1,-1, 0] ]

K = NonnegativeOrthant(3)
=el = [1,1,1]

G = SymmetricLinearGame(L,K,el,e2)

Then, we solve it.
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DUNSHIRE: THE LIBRARY

>>> print(G.solution())

Game value: 0.0000000

Player 1 optimal:
[0.3333333]
[0.3333333]
[0.3333333]

Player 2 optimal:
[0.3333333]
[0.3333333]
[0.3333333]
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DUNSHIRE: THE LIBRARY

As we all know, nobody wins rock-paper-scissors
on average—the expected payoff is zero.

The optimal strategy is to choose randomly
between the options, each with probability %
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DUNSHIRE: THE LIBRARY

Of course, solving linear programs is nothing new.
So let’s switch to the Lorentz ice-cream cone:

from dunshire import *

L = [[1,-1,12],[0,1,22],[-17,1,0]]
K = IceCream(3)

el = [1, 1/2, 1/4]

e2 = [1, 1/4, 1/2]

G = SymmetricLinearGame(L,K,el,e2)
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DUNSHIRE: THE LIBRARY

>>> print(G.solution())
Game value: -11.4912789
Player 1 optimal:
[0.7403323]
[0.7233499]
[0.1576604]
Player 2 optimal:
[ 1.2547399]
[-0.9304062]
[ 0.8418529]
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DUNSHIRE: THE LIBRARY

Dunshire can catch common mistakes:

>>> from dunshire import *

>>> L = [[1,0],[0,1]]

>>> K = NonnegativeOrthant(2)

>>> e2 = el = [-1,1]

>>> G = SymmetricLinearGame(L,K,el,e2)
Traceback (most recent call last):

ValueError: the point el must lie in the

interior of K
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DUNSHIRE: THE LIBRARY

Caveat.

The concept of “interior” is meaningless when
working with floating point numbers.

If the distance between x € K and bdy (K) is
107'2, does « lie in the interior of K?

Both answers lead to contradictions.
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PART 3, SECTION 7

Dunshire: Starting points
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DUNSHIRE: STARTING POINTS

Most optimization algorithms need a starting
point, where the search begins.

In our case, we have access to a decent starting
point given to us in the problem data.
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DUNSHIRE: STARTING POINTS

Recall Alice’s problem:

maximize v
subject to re K
(x,e9) =1
velR
L(z)—ve € K

We need a feasible v and x for this problem.
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DUNSHIRE: STARTING POINTS

All we need is for v, z to satisfy

re K
(x,e9) =1
L(x)—ve € K.

But we already know that ey € K, so a multiple
of e5 is a good candidate.
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DUNSHIRE: STARTING POINTS

If we let x = aes, then

1
(x,e9) = «x H€2H2 =1 = a=—-31,
eal|

and thus
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DUNSHIRE: STARTING POINTS

Now the other constraint was,
L(z) —ve € K.
Assume that v > 0 and divide,

L(z)—ve e K

i
L(ey)
vl

e € K.
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DUNSHIRE: STARTING POINTS

Let d (e, K¢) be the distance from e; to the
outside of K. Since e; € int (K),

L (es)

Vel

can be satisfied if we make

L(eg)
2
Ve

| < d(el,Kc).
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DUNSHIRE: STARTING POINTS

If we arrange the scalar factors just right, then

H (He ||)H < [IL]l,-

Rearranging, we find,

I,
d(en, K) Jea]

vz
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DUNSHIRE: STARTING POINTS
But isn’t computing d (e1, K¢) difficult?

In general, yes, but not for us!
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DUNSHIRE: STARTING POINTS

Example. When K = R, we just need the
smallest coordinate of ey:
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DUNSHIRE: STARTING POINTS

For safety, we throw in another factor of two:

from dunshire import *
from cvxopt import matrix
el = matrix([2,1])

K = NonnegativeOrthant(2)
K.ball radius(el)
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DUNSHIRE: STARTING POINTS

Example. The ice-cream cone falls to basic
trigonometry:

_ 3 1 _
- h=5-3=1

d (e, K¢) = h - cos <:1>
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DUNSHIRE: STARTING POINTS

Rather than involve cos (§) = g,

by 2 3 \f instead to get a safe distance:

we multiply h

from dunshire import *

from cvxopt import matrix
el = matrix([3/2, 1/2])

K = IceCream(2)

K.ball radius(el)
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DUNSHIRE: STARTING POINTS

Proposition (Sossa, 2014).

Let V be an EJA with scaling factor 0 = tr;ec’:ge)’

and let © = A7 (Q) be a spectral set. Then for
allz € V,

1
75 9) = inf | () .

Applied to x € K and Q = bdy (K), this means
we just need to find the smallest eigenvalue of x.
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PART 3, SECTION 8

Dunshire: The future
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DUNSHIRE: THE FUTURE

Missing: the Symmetric PSD cone.

Not hard, but requires a different representation
than the other two cones.
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DUNSHIRE: THE FUTURE

Missing: Cartesian products in the default order.

CVXOPT supports cartesian products, but only
in a particular order. Once S is implemented,
this should be easy.
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DUNSHIRE: THE FUTURE

Missing: Cartesian products in arbitrary order.

We can reorder any Cartesian product with
isomorphisms, but then we need to pre- and
post-process the data/solution.
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PART 4, SECTION 9

Applications: Confirm theory
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APPLICATIONS: CONFIRM THEORY

Theorem. Every game has a solution.

>>> from test.randomgen import *
>>> G = random_orthant_game ()
>>> G.solution() .game_value()
-0.03335527701955072

>>> G = random_icecream_game ()

>>> G.solution() .game_value()
3.5685813042518917
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APPLICATIONS: CONFIRM THEORY

Proposition. The value of the game for aL is
a > 0 times the value of the game for L.

>>> from test.randomgen import *

>>> G = random_game ()

>>> (alpha, H) = random_nn_scaling(G)

>>> vall = alpha*G.solution() .game value()

>>> val2 = H.solution().game value()
>>> vall - val2
6.155475018587708e-10
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APPLICATIONS: CONFIRM THEORY

Proposition. The value for L + a (e1 ® e3) is «
plus the value for L.

>>> from test.randomgen import *
>>> G = random_game ()
>>> (alpha, H) = random_translation(G)

>>> vall = alpha + G.solution().game_value()
>>> val2 = H.solution().game value()

>>> vall - val2

7.506487015307428e-09
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APPLICATIONS: CONFIRM THEORY

Proposition. The value of (L, K, ey, e9) is
negative the value of (—L*, K, es, e7).

from test.randomgen import *
G = random_game ()
H = SymmetricLinearGame(-G.L(), G.KQO),
G.e2(0), G.e1())
>>> vall = G.solution() .game value()

>>> val2 = H.solution().game value()
>>> vall + val2
1.7701395904623496e-12
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APPLICATIONS: CONFIRM THEORY

Proposition. The value of a Lyapunov game
(L is Lyapunov-like) is the same as its dual.

>>> from test.randomgen import *
>>> G = random_l1_game ()

>>> H = G.dual()

>>> vall = G.solution() .game_value()

>>> val2 = H.solution() .game value()
>>> vall - val2
-2.942365862068641e-08
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PART 4, SECTION 10

Applications: Find S-operators
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APPLICATIONS: FIND S-OPERATORS

Definition.

L is an S-operator on K if there is a d € int (K)
such that L (d) € int (K).

S-operators are important for complementarity
problems, but we don’t know how to find them.
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APPLICATIONS: FIND S-OPERATORS

Proposition.

L is an S-operator on K if and only if the value
of the game (L, K, e, e9) is positive.
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APPLICATIONS: FIND S-OPERATORS

Example.

The matrix
1 2
L =
B

is an S-operator on the ice-cream cone in R?.
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APPLICATIONS: FIND S-OPERATORS

Proof.

>>> from dunshire import *

>>> [[1, 21, [-3, 4]]

>>> IceCream(2)

>>> [1, 1/2]

>>> = el

>>> G = SymmetricLinearGame(L, K, el, e2)

>>> G.solution() .game_value()
1.777777803973679
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