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Introduction

An automorphism of a convex cone V in an n-dimensional real space R is a
nondegenerate linear transformation of the space R which leaves the cone V in-
variant. We denote the group of all automorphisms of the cone V by G(V).

The cone V is said to be homogeneous if the group G (V) acts on it trans-
itively. In this case the group G (V) is a subgroup of finite index in some alge-
braic linear group [2]. Let G be the Lie algebra of the group G(V). We shall
refer to the elements of G as the derivations of the cone V. Most of the results

of this paper refer to derivations and not to automorphisms.

) The main results of this paper were presented at the meeting of the Moscow
Mathematical Society onthe 10th of April 1962.
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An important special case of the set of homogeneous convex cones is the set
of selfadjoint homogeneous cones (Chapter II). In this case, and only in this case,
the algebra of derivations is reducible. A description of the algebras of deriva-
tions of selfadjoint cones is given in Chapter II. )

If V is an arbitrary homogeneous cone, then its algebra of derivations G

admits, as does every algebraic linear Lie algebra, a decomposition of the form
G=N+A4+S, where N is a maximal ideal consisting of nilpotent endomorphisms,
A is an Abelian algebraic subalgebra consisting of semisimple endomorphisms
and S is a semisimple subalgebra commuting with 4 ([7], Proposition 5, $4,
Chapter V). We denote the sums of all the noncompact and compact ideals of the
algebra S by S, and S, respectively, and the sets of all the elements in 4

which have real and pure imaginary eigenvalues by Al and AO’ respectively.

Then
G=N+ G°¢ + GO,
~ where
c
G =A1+Sl' GO=A0+SO.

In this notation most of the results of this paper can be formulated as fol-
lows:

1°. The weights of the algebra 4, over the space R are of the form
(Y, + (//’3)/2, where 1 <a <8 <pu and W/l,- T (/1#} is some basis in the space
of linear functionals on Al' The corresponding weight subspaces will be denoted
by R,s. They are clearly invariant with respect to G® + Gj. Some of the spaces

Ra.,B may be equal to 0 but the spaces R_, are never zero.

a

2° The intersection of the space R® = ZR__ with the cone V is a homogen-

aa
eous selfadjoint cone V¢, called the kernel of the cone V. It splits into the

direct sum of cones V_ lying in the subspaces R_.

3° The restriction of the algebra G° to R® is its isomorphic image in the
algebra of derivations of the cone V°.

4°. The transformations in G map R° into 0.

5° The weights of the adjoint representation of the algebra Al over the

ideal N are of the form (¥, — l//ﬁ)/Z, where 1 <a <f < pu. The corresponding
weight subspaces will be denoted by Na.,B' They are invariant with respect to
G + G,

6% If v € Vg and a < the mapping A — Av, A €N_g, is an isomorphism
of the space Na.[i onto the space Raﬁ‘

The results 1° — 6° follow easily from the results of Chapter IV, where we
describe the action of the algebra G in the space R in terms of the generalized
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matrix calculus constmct_ed in [2]. In this calculus a homogeneous convex cone
appears as the cone of "‘positive-definite’” Hermitian generalized matrices. A
precise definition of the matrix calculus is given in Chapter I. In Chapter III we
construct a modification of it which is adapted to the description of the deriva-
tions of a cone. . -

The action of the algebra G° + N in the space R is described in Chapter IV
in explicit detail. The results for the algebra GO are not so complete. In partic-
ular, finding the algebra GO is an independent problem, the solution of which re-
quires quite different methods. It is clear from examples that the semisimple part
SO of the algebra GO may be isomorphic to any compact semisimple Lie algebra.
Moreover, the representations of the algebra So in the space R may contain any

of its irreducible representations.

CHAPTER 1

Matrix Calculus

$1. Definition of a T-algebra

In [2] we introduced the so-called T-algebras which are a natural means of
discussing and studying homogeneous convex cones. For the convenience of the
reader we shall now give the relevafn definitions.

A matrix algebra with involution is an algebra U which is bigraded by the
subspaces ?Il.l. (i, j=1,+++, m) and provided with an involutive antiautomorphisms*
in such a way that
C¥%, when j=/,
=0 when |+ [;

2) 91",/ =%,

The number m is called the rank of the matrix algebra .

1) %%,

The elements of the matrix algebra are conveniently represented as matrices
of the form (aii)’ where ai’. € ?Iil.. The matrix (ai/') is said to be Hermitian if

a;'i = a... Skew-Hermitian matrices may be defined in the same way.

ji

We shall adopt the convention that the symbols a; X etc., will always

denote arbitrary elements of the subspace uii of the niatrix algebra .

A matrix algebra with involution is said to be a T-algebra if the following
conditions (axioms) are satisfied:

1) for any i the subalgebra % ; is one-dimensional and admits an isomorphic

mapping p onto the algebra of real numbers;
2) a..b.. = p(aii) bij;

iy
3) there exist numbers n;> 0 such that
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4) p(ail.a;i) > 0 when a;i #0;
5) a;ibier) = (azbyey s

~J

| L
6) ai/'(bikckl) = (aijbjk)ckl when i <j <k and j <[
7) aii(bjkb;k) = (aijbjk)b;k when i <] <k.

From axioms 2), 5) and 7) we easily deduce the important relation

p((ail.b’.k) (aiibik)') = pla; .a;‘i)p(b].kb;k) when i <j <k. (1)

]
Let X denote the space of Hermitian matrices in the T-algebra 2. The set

V(Y) of matrices which are expressible in the form ¢t*, where ¢ is an upper

triangular matrix with positive elements on the main diagonal, is a homogeneous

convex cone in the space X. The transformations

D,: x — tx + xt* (x € X),

where ¢ is an arbitrary upper triangular matrix, are derivations of the cone V(20).
"They form a Lie algebra. The Lie group generated by them acts simply-transi-
tively in the cone V (%), »

For every homogeneous convex cone V there exists a T-algebra 2l such that the
cones V and V(%) are isomorphic. The positive numbers n, appearing in axiom
3) for a T-algebra may be specified arbitrarily but beyond that the algebra 2 is
uniquely determined. '

In what follows we shall consider only canonical T-algebras, for which

1 .
n; 1+2s}§id1m?lis. (2)
This choice of the numbers n; is connected with the invariant measure in the

cone V().

§2. Canonical Riemannian geometry of a cone

In every convex cone V we may define the function

()= [ , e'("")dy,
yEV

where the integral is taken over the adjoint cone V' and dy is the Euclidean
measure. The function ¢ has the following properties [3; 2]:

1) for every automorphism A of the cone V

¢ (x).
detA’

¢ (Ax) =

2) in an affine coordinate system the quadratic form dzlogd) is positive
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definite at any point of the cone V;

3) the function ¢ grows without limit on approach to the boundary of the
cone V.

The property 1) shows that the measure ¢ (x)dx is invariant under automor-
phisms of the cone V. If the quadratic form d?log¢ is considered only in affine
coordinate systems then it defines an invariant Riemannian metric in the cone V.
Let I be an object of the linear connectivity associated with this metric. In af-
fine coordinate systems the object I" may be regarded as a tensor which is twice

covariant and once contravariant.
Let x; be some point of the cone V. The connectedness algebra of the cone

V at the point x is the algebraic structure in the tangent space to the cone 14
at the point x; defined by the formula '

* (a0byY = — Tk (x,) /b*

(the square denotes the operation of multiplication in the connectedness algebra).
If the cone V lies in a linear space R then the tangent space to the cone V at
any point on it may be identified with the space R, by means of a parallel trans-
lation. Therefore the structure of the connectedness algebra may also be discussed
in the space R itself.

The connectedness algebras of the cone V at its different points form a
“field of algebras’’ which is invariant under the automorphisms of the cone V.
In particular, the connectedness algebra at some point x, € V is invariant under
the automorphisms which leave this point fixed. This fact will be used in what
follows.

We now present the formulas which describe the Riemannian metric and the
connectedness algebra of the homogeneous convex cone V in terms of the can-

onical T-algebra U corresponding to it (cf. S1).

For any matrix a = (a‘.l.) € U we put
Spa=2np(a;) (3)

The unit matrix e belongs to the cone V and at the point e the Riemannian

metric is given by the formula
(x, y) = Spxy,
and the connectedness algebra by the formula
1
x0y =—(xy+yx),

where x and y are arbitrary Hermitian matrices, considered as elements of the

tangent space to the cone V at the point e.
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§3. Associativity relations in a T-algebra

The axioms 5)-7) for a T-algebra are associativity relations. Other such
relations can be derived from them.

Proposition 1. In every T-algebra U
if i #k, j# | and the pair of numbers i, k does not differ (strictly) from the pair
Jj» L by any point on the real axis. Moreover

'
and
a‘?’.(aq ik = (a”a”)b (6) ‘
if j lies between i and k. -

To prove this we introduce the following scalar product in the algebra :
(a, b) = Sp ab*
l
(cf. (3)). It follows from axiom 4) for a T-algebra that (a, a) >0 for a # 0. Axiom l
3) is equivalent to the result that W
(a*, b*) = (a, b) |
for any a, b € U. Further, axiom 5) implies that l
(ab, ¢) =(a, cb*) = (b, a*c) ’ ‘
for any a, b, ¢ € U
We now show how to prove the formula (4), for example, in the case when
j <k <l <i. We have that
* * *
@i bgerp)s %) = Bjpepp ajixy) = (bjpep) 53, ab)
* * * * * %
= G lepmiy), al) = (e (bhar)) = (ayb ey xy),
which implies that aij(bjkckl) - (aijbjk)ckl‘
The remaining associativity relations are proved in the same way. Some of
them are obtained from others by use of the involution.

§4. The kernel of a T-algebra

In this section we shall construct something like an ‘‘associative center”
of a T-algebra. It will play an important part in the solution of our problem.

Let 2 be a T-algebra of rank m and M the set of indices 1, 2,-++, m. For
brevity we put

ni= dim ?I‘.I..



o STRUCTURE OF THE GROUP OF AUTOMORP HISMS 69

By virtue of the axioms for a T-algebra, n n;; =1 and = ; forany i, jE€M.

The permutation i — i of the set M is said to be adnusszble ifi<j,i>]
implies that n;j = 0. Every admissible permutation defines an “‘inessential’’
change in the gradation of the algebra ¥, consisting in the renaming of the space
?Iil. as ?l;"l" The T-algebra obtained by means of the new gradation is, by def-
inition, isomorphic to the original T-algebra.

Let R be the set of all equivalence relations in the set M. We introduce a
partial ordering in R by putting R, < R, R,,R,€R) if i= j(mode) implies
that i = j(mod R,).

We first consnder the equivalence relations Rew defined by the following
condition: i :](modﬁ) if n,; #0 and n; =n;, forall s #1i, j. (It is easy to see
that this relation is transntLve.)

Let ?ﬁ denote the set of equivalence relations R € R satisfying the follow-
ing two conditions:

(A) R < ’k’;

(B) ifi<j<k and i=k gmodR) then either nij =Mk =0ori=j=k
(mod R).

It turns out that there is a maximal element R in the set gi The relation R
can be defined by the following inductive construction:

1) i =i (modR) for all i € M;

2) if we have already determined whether all the i, j € M such that |i —j| <
p are comparable modulo R or not, then for |i - j| =p we put i = (mod E) if i =
j (mod R) and for all s lymg between i and j either n; =ngj= Oori=s
(modR) and s = j (mod R)

The relation R defines a partiﬁon of the set M into disjoint equivalence
classes M (a=1,-+-, p). Let z( D een, if:i be elements of the set M, arranged
in increasing order. If necessary we renumber the sets M, so that we have the
inequalities L( D < ;(2) <own < i({") and we arrange the elements of the set M as

follows:

KD, e, iDL )

m l’ L 1 ’ ’ m#
Let i be the ordinal of the number i € M in this arrangement. We shall show
that the permutation { — i is admissible.

Suppose that i <j but that i >]. If i €M,, j € Mg then a > B. In fact
a> B since otherwise i and j would belong to the same set M, and their relative

position would be unaltered. Since

B RIS, o



70 E. B. VINBERG

and i(ie) = j (mod E) it follows that either Byj= 0 or i = (mod E). The latter is
clearly impossible and so Byj= 0 which is what we had to prove.

Thus, by means of an inessential change in the gradation we can arrange for
the relation R to satisfy the following condition, which is stronger than (B):

(B') if i <j <k and i =k (modR), then i = j = k (mod R).

For every i € M we define a(i) so that i € Ma(i). It follows from (B') that
if i <j then a(i) <a(j). In what follows we shall assume that this condition al-
ways holds.

The property (A) of the relation R implies that when i and j run through the
set Ma, remaining distinct, the number nij remains constant; we shall denote
this value by v, ,. If i runs through the set M_ and j the set Mg (B # a), then

nij also has a constant value which we shall denote by v,5. Thus

n 'Va(l)a(/) ’ if i 7& jv
ij= 1 s .
. , if {=].
The subspace
9[‘ = Z m”
i=j (modR)
will be called the kernel of the T-algebra .
Clearly U° is a subalgebra which is invariant under involution. We provide
it with a gradation by putting
Ao, = UMY, = % if i=j] (modl_?).
0, if i3%j (modR).
It is easy to see that, with this gradation, 2° becomes a T-algebra.
We observe that if i = j (mod R) then n;=n; (cf. (2)).

Proposition 2. The relations (5) and (6) (with i # k) and the relation (4)
(with i #k and j #1) are automatically satisfied if at least one of the elements
appearing in them belongs to the kernel U° of the T-algebra U

Proof. Let i <j <k and a; € ?Iij' We consider the mapping
Xip = 8% (7)
of the space ?'Iik into the space ?Iik' This mapping is invertible. In fact

- * *
aij(aijxjk) = (aiiaii) g = p(a‘.l.a‘.l-) e
We now assume that i = j (mod R). Then the dimensions of the spaces ?Il.k and
?'Iik are equal and the image of the space Hik under the mapping (7) coincides

with ?’[ik' This is the basis for the proof of Proposition 2.
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We_confine ourselves here to the proof of the fact that, when i <j <k and i =
j (mod R), '

a;i(b‘kb B =(alb, bl

ijoi

i.e. of a relation of the form (5) which, in general, does not hold if i # j (mod E).
Expressing b'k in the form bik = aifuik’ we find that

(ai',-(b ) =pbbh )a =p(a;

= p(a”a”) ("lkb ) = (a]

(Here we have used the relation (6), Proposition 1, axiom 3) for a T-algebra and

)p(ulku k)a p(a”a”)((ulku'.'k) a‘.‘i)

Yub, = (alby )bl

ijri

ij%;j

x/az]

the equation n; = nj 2)
The other assocmtlvxty relations involving elements of ?[ are proved in the

same way.

CHAPTER II

Homogeneous selfadjoint cones

§1. Classification and the connection with Jordan algebras

An open convex cone V in a linear space R is said to be selfadjoint if the
following two conditions are satisfied in an appropriate Euclidean metric:

1) (%, y) >0 for all x, y € ¥;

2) if x € R is a vector such that (x, y) 20 forall y € V then x € V.

If the nondegenerate linear transformation A of the space R leaves the self-
adjoint cone V invariant then so does the adjoint transformation A*. In other
words if the group of all automomhisms of a selfadjoint cone contains a transfor-
mation then it also contains its adjoint. This implies that it is completely reduc-
ible. It will become clear from what follows that among the homogeneous cones it
is only the selfadjoint ones that have a completely reducible group of automor-
phisms.

In [1, 4] and [5] a connection was established between the homogeneous self-
adjoint cones and compact Jordan algebras and on this basis a complete class-
ification of homogeneous selfadjoint cones was obtained. It turned out that each
such cone splits into the direct sum of indecomposable hqmogeneoﬁs selfadjoint
cones (having an irreducible group of automorphisms); the latter are of the follow-
ing five types:

I. The cone of positive-definite symmetric nth order matrices.

II. The cone of positive-definite Hermitian nth order matrices.

III. The cone of positive-definite Hermitian quaternion nth order matrices.
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IV. The cone of positive-definite Hermitian octavic third order matrices. D

V. The spherical cone

xo>\/x%+---+x’2'.

In the canonical Riemannian geometry (cf. Chapter I) the homogeneous self-
adjoint cones are symmetric spaces of nonpositive curvature. In our terminology
the Jordan algebra corresponding to such a cone is none other than its connected-
ness algebra.

Let V be a homogeneous selfadjoint cone corresponding to the Jordan alge-
bra /. The operator of multiplication by the element a in the algebra / will be
denoted by R . For any a this operator is symmetric in the Euclidean metric
(a, b) =spR ;. The cone V may be described as the set of x € / for which the
operator R_ is positive-definite. In particular, the unit element e of the algebra
] belongs to the cone V. The stationary subgroup H of the point e € V in the
group § of all automorphisms of the cone V coincides with the group of automor-

" phisms of the algebra /. Every element of the group § is uniquely expressible in
the form of the product of an automorphism of the algebra / and the transforma-
tion exp Ra' a € ], which is a parallel translation along the geodesic of the cone
V passing through the element e.

Among the indecomposable homogeneous cones enumerated above a particular
place is occupied by the cone of type IV. This will become completely clear in
Chapter IV (Theorem 1). We shall refer to it as the exceptional cone. It is of
dimension 27. The Jordan algebra corresponding to it is the only exceptional com-
pact Jordan algebra. Its group of automorphisms is connected and is the direct
product of a one-parameter similitude group and a real simple group of type E6;
the stationary subgroup is isomorphic to a simple compact group of type F [8].

$2. The construction of T-algebras

In this section we shall construct the T-algebras (cf. the introduction) corre-
sponding to indecomposable selfadjoint cones. We shall see that these T-algebras
are characterized by the following property:

dim 21'.’. = const when i # J- (1)

) The Hermitian octavic third order matrices form a Jordan algebra under the opera-
tion a 0 b =(ab +ba)/2. By means of some automorphism from this algebra every Hermi-
tian matrix a can be reduced to a diagonal form in which the real numbers appearing on
the main diagonal are determined uniquely except for order [6] and are called the eigen-
values of the matrix a. The matrix a is said to be positive-definite if all its eigenvalues
are positive.
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W5e shall use A” (v =1, 2, 4, 8) to denote the ~dimensional division algebra
over the real field, i.e. the algebra of real numbers, of complex numbers, of quater-
- nions, of octaves (Cayley ﬁumbers). Suppose further that ?_I; v=1,2 4 mis
any natural number; or.v = 8 and m = 3) is an algebra of mth order matrices with
elements in the algebra A”. We shall denote the multiplication of matrices in
ﬁ; by a dot.

The algebra ?.I; can be equipped with an involution (transposition and conjug-
ation) in a natural way. For every matrix a € ?I:‘ we denote by Pa the matrix ob-
tained from a by replacement of the diagonal elements by their real parts. We con-

sider the space
uY = PUY.
We provide it with multiplic;tion by means of the formula
ab=Pla-b) (a b€W).

Clearly, 21; then becomes a matrix algebra with involution. It is not difficult to
verify that 2[; is a T-algebra. In particular, when v =8, m = 3 axiom 6) of a T-
algebra becomes void and axiom 7) is satisfied because of the alternating property
of the algebra of octaves.-
The T-algebras so constructed correspond to indecomposable selfadjoint cones
of the first four types. Indeed, for any triangular matrix ¢t € ?I;
t* =P(t-t*)=1t.1%

on the other hand, it is well known that a symmetric (or Hermitian or Hermitian
quaternion) matrix is positive-definite if and only if it can be expressed in the form
t-t*, where ¢ is a triangular matrix with positive elements on the main diagonal.
The same holds for Hermitian octavic third order matrices.

Corresponding to the spherical cone in (v + 2)-dimensional space is the
unique 7T-algebra of rank 2 for which n 12 = V= We shall denote this T-algebra by
uz,

Proposition 3. Every T-algebra U having the property (1) is isomorphic to
one of the T-algebras

W (m > 1), B (m >2), Wk (m>3), U3, U (v > 3).

Proof. If the rank of the algebra U is two then it is isomorphic to the alge-
bra QI; for some v. Therefore we shall assume that the rank of the algebra I is
m > 3.

The property (1) means that the algebra 2 coincides with its kernel (cf. 34,
Chapter I). Therefore the associativity relations given in Proposition 2 hold in
U for any values of the sympols appearing in them. This will be the basis of our proof.
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In each of the subspaces U.,,, (i =1,-++, m - 1) we choose an arbitrary

i, l"‘
vector e; ., for which p(e, (4165, x+l) =1 and for i < we put

e..=e".
]t 7
Let e;; denote the element in ?I for which p(e .) = 1. If we use the associa-

€ = €iiv1Ci+1,i42° " ,'-1,,} @

tivity relauons we can easily show that

ek = Cik (3)
for any i, j, k.
For i #j and k # 1 we define the mapping 6;!1 of the space 91‘.1. onto the
space U, by putting
oY, (a;;) = { ew (aye;), if i1,
k1 Q1) = . .
(epa;j) €jy  if k&

(If i #1 and also k # ] then ek‘(allell) (e ;9; )ell.) Using the associativity relations

and equations (2), (3) we easily establish that

ghlgii

pq kL~
Therefore we may choose a ‘‘standard’’ linear space 4 and for every pair i, j,
where i £ j, define an isomorphic mapping €'/ of the space ?I‘.I. onto A in such
a way that

i) -
Here the eleﬁ:ents € € ?I‘.’. all go over into the same element ¢ € A, since
ext = Oile )
We provide the sbace A with a Euclidean metric by means of the formula
(0'™(a,,), 01™(b, ) = pla,, bY,)-
Then, for any i, j
(67(a,), 01(5,) = plab}). (4)

In fact, if i <j then, if we use the formula (1) of Chapter I, we find that
(0 (@), 07 (5,)) = (0" (exijejn), 0" (eubijen)

= p((€utije;m) (€nbijejn)) = P (exeit) p (@,5) 0 (€;meim) = P (100,

which is what we had to show. We shall not examine the case i > since we

shall not encounter it later.

We introduce a multiplication into the space A by putting
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for different i, j, k. It is easy to show that this definition is not inconsistent.
Thus the space 4 becomqs a ~dimensional algebra over the real field, one
equipped with a EuclidE_an metric. The element ¢ = Oii(eii) serves as the unit
element of the algebra A. Clearly

(e, €) = 1. (6)

The relation (5) and the formula (1) of Chapter I imply that for any elements a,

BE A
(@B, ap) = (a, a) (B, B 7)

By Hurwitz’s theorem the algebra A is isomorphic to one of the algebras A"
(v =1, 2, 4, or 8) (cf. the definitions at the beginning of this section). The
Euclidean metric with the properties (6) and (7) is unique.

The formulae (4) and (5) allow us to reconstru‘ct the T-algebra 2 from the
algebra A and the number m. It is easy to check that it is isomorphic to the T-

algebra 21;, where v = dim 4.

$3. Automorphisms

The connected component of the unit element of the group of automorphisms
of the cone of positive-definite symmetric (or Hermitian or Hermitian quaternion)

matrices consists of the transformations of the form
mu): x —>u-x-u”

where u is a nondegenerate real (or complex, or quaternion) matrix. D This asser-
tion is equivalent to saying that the derivations of the corresponding cone are

just the transformations of the form

*
Da: XxX—a-x+x-a

)2

where @ is any matrix (depending on the cone: real, complex or quaternion

Thus the automorphisms and derivations of indecomposable selfadjoint cones
of the first three types are conveniently described in terms of the corresponding
associative matrix algebras ?-I; (v =1, 2, or 4). To represent the automorphisms
and derivations of the spherical cone in the same way (and this will be very im-
portant later) we define the associative algebra ?—1’2' (v > 3) as an algebra of sec-
ond order matrices with elements in the Clifford algebra- AR, =y - 1, with

generators p,--+, p,, satisfying the relations

1) This does not hold for the full group of automorphisms. Namely, the transformation
x =% in the space of Hermitian complex matrices is an automorphism of the cone of posi-
tive-definite Hermitian matrices but is not expressible in the above form. Incidentally,
this is the only exception.

2) The above assertions are easily deduced from the general description of the group
of automorphisms of a homogeneous selfadjoint cone, given in §1 of this chapter.
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p'-2 =-1,pp; +pp; =0 G # ).
Multiplication in the algebra 5‘2' will be denoted by a dot.

We denote the space of homogeneous elements of degree s in the algebra
AK) by A(s"). In particular, Ag‘) is a one-dimensional subspace spanned by 1
and the subspace A(IK) is spanned by the generators p,--+,p, . We have

K
AR = 3 4K
s=0
For every

a=3a, (a, €4W)

we put

s$s+l!
a-%1) 2 a

The mapping @ — @ is an involutive anti-automorphism of the algebra A%,

s*

Using it wé define an involutive anti-automorphism a — a* of the algebra ‘ZI;

as transposition with conjugation.

We consider the projection operator

SR

in the algebra ?I;. The subspace Pﬁ; may be considered as a matrix algebra

with involution if in it we define multiplication by the formula
ab =P(a - b).

This matrix algebra is a T-algebra of the type ?I;. The corresponding cone con -

p T
x:[ ]s (8)
T o

p, 0 € Ag"), r€ Ag‘) + A(IK)

sists of the matrices

in which

and
p, 0>0, po—-r17>0. (9)

This is a (v + 2)-dimensional spherical cone.

Let 9 denote the subspace in the algebra ?_I; formed by the matrices

-0

Ly
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’

in which
By, a-8€AU L AU, a1 5€ AJ) + AP, (10)

"The dimension of this subspace is easily calculated to be (v + 1) (v +2)/2 + L.
For later use we note that this is also the dimension of the group of automor-

phisms of the cone V which is the direct product of the one-dimensional simili-
tude group and the group of pseudo-orthogonal transformations leaving invariant

the quadratic form (cf. (8))
(x, x) = po - 77, (11)
We make every matrix a € 9 correspond to the transformation

K *
Da: X—a-X+x-a

of the space of Hermitian matrices of the algebra ?Ig. We shall show in a moment
that the space of Hermitian matrices lying in ?I; is invariant under all transforma-
tions D, a € 9, and that the algebra of derivations of the cone V is the set of

restrictions of the transformations Da to this subspace.

Let

oes s s v
be a Hermitian matrix in SZIZ and

] a ﬁ
. y &
a matrix in 9. We have that (cf. (9) and (10))
Dx= ap+Pfr+pa + 10  ar+Po+py+ 18
Yo+ 8t +7Ta+ of yr+d0+ Ty + 0d
_ (2000 + Br + 16 0B+ py + (2 + 8) T+ oy T+ 1oy + ayT— m)
.. 208, +yr+ 1Y
The element 7= 87 + 78 always lies in A(K) + A(K) + A(K), since 7 =7 this
implies that 7 € 4('(). In the same way we show that yr+ 7y € A(K). Further
a,7 + 10, = 27,0 + 0,7, + 1,0, € AY) + AP,
Finally
E = QyT — Ty = QyTy — T8y = 08, —T = — E,
and, since £€ AY) + A, £€ AY. Thus D x € U,
We now show that the transformation D - (a, + ;) is a derivation of the

quadratic form (11), i.e. that

(D x, x) = (ag + ;) (x, x) (12)
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We have that _ _ _
2(D,x, x) = (ap + Pt + pa + B) 6 + p (yr + 80 + Ty + 09)
— (at + Po + py + ) T— T (yp + 8T + Ta + of)
=(a+ a+8+478) (oo — 1) =2 (a9 + &) (x, %),
which proves the result.

It follows from (12) that the transformations Da’ a € 9, are derivations of
the cone V. Dimensional arguments show that every derivation of the cone V is
obtained in this way.

Let us sum up the results we have obtained.

Let V be an indecomposable homogeneous selfadjoint cone which is not the
exceptional one. Then there exists an associative matrix algebra % and a projec-
tion operator P in the algebra U such that

1) P?—Iij C ?—Ii/'; _

2) Pa* =(Pa)* for any a € 2

3) the subspace U = PU of the algebra ?-[, ‘equipped with the induced grada-
tion and involution and with a multiplication defined by the formula

ab=P(a-b) (a b€,

is a T-algebra corresponding to the cone V.

Further, there exists a subspace O C U such that, for every Hermitian matrix .
x€U Dx=a-x+x-a* €U for every a €Y and the mapping a — D is an
isomorphic mapping of the space 9 onto the algebra of derivations of the cone V.

(For the cones of types 1 and III, © must be taken to be the algebra o itself;
for the cone of type I it must be taken to be the set of complex matrices with

real trace.)

We observe that
[Da’ Db] = Da-b"b-a'
CHAPTER III
Modification of the Matrix Calculus
$1. The decomposition of exceptional algebras

Let 2 be a T-algebra of rank m and U° it kernel. The algebra 2° splits

into the direct sum of T-algebras

QI,,:ZQI,, (a=1,...,p)

ivjeMq
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(cf. the definitions in $4 of Chapter I). Each of the T-algebras U satisfies the

conditions of Proposition 3 and therefore is isomorphic to one of the T-algebras
o Un Um, W, W (v I).

The rank of the T-algebra 2 _ is m  while for i, j € M, i #j, the dimension of

the space ?’[ii is v, .

With every T-algebra ¥ is connected the algebra

A%ee if mg#2 or Vee <2,
Saa =

A%, if mg-2 and veg =%+ 13> 3,
and the mappings

0 Uy~ S,, G, j €M)

in such a way that if, for every A€ § we put

aa’?

A when Sgq = A'aa,
PrA= (1)
Ao+ llwhen Saa = A(x)

(cf. the definitions in $3, Chapter II) then, for i, j, k € M_,

| Pr (07 (a;;) 07% (bjw)), i+ k, 2)
ik (agib]k) - { Re(el]' (a”) /% (b/.)). i =k, (
0/ (aj; ) = 07 (a;) @)

(cf. Chapter II). We denote the inverse image of the unit element of the algebra
Sao under the mapping 6"/ by e
For every B # @ we now define the mapping
O Uy = Uy i, REMa; iy L€ Ms,
by the formula

L -
Oila;) = eyi0;5¢1
(We have not inserted brackets since, in this case, by Proposition 2, we have
associativity.) It is not difficult to show that
L gij _ gi]
quekl 0;74'
This implies that we may take a standard linear space Sa.,B of dimension v, 5
and construct the isomorphic mappings
@' ?Ii,. — Saﬁ’ iEM,; JE Mﬁ,'
so that
Lai _ aii
663 = o
forany i, k€M, j, € M,@’

We assume that m_ # 2 or v,, <2 and introduce into the space Sa.,B the
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structure of a left S, -module so that for any i, jEM, k € Mﬁ,
" .. "
o (aijbjk) = 0"(aii) 0! (bjk)'
Under the above assumptions 6‘1'(?1‘.,.) =S, G, JEM,, i #}) and equation (1)

may be adopted as a definition. However, we must show that it is not inconsistent.

We only consider the following, most difficult case:
. i " ik
where we must show that

ik ik
0 (aijbjk) =0 (gjihik)'
We first observe that

*
g =2(eja;) e~ al,
since

0/4(2 (eja;j) e;; — aj;) =2(e, 69 (a;;)e — 04 (@) = 04 (ail)-
(cf. Chaﬁter I1, (4)). We now have that
giihin=2 ((ejiaiy) e;;) (e;;b;) — aly (e;;bix)
= 2(e;a;) bj, — aj; (€:jbe) = € (a;;0;8),
which proves the result. There is no difficulty in verifying the axioms for a

module.

If v =8, i.e. S, isa Cayley algebra, then the space Sa.B must be zero-

dimensional for all 8+# a, since the Cayley algebra is nonassociative and does

not admit nontrivial linear representations.

We shall say that a T-algebra ¥ and the corresponding cone are classical

if the T-algebras 2L contain no T-algebras of the type ?I%.
From the above it is clear that we have

Theorem 1. Every homogeneous convex cone splits into the direct sum of a

classical homogeneous convex cone and some exceptional 27-dimensional cones.

§2. The “‘skeleton’’ of a T-algebra

Let 2 be a classical T-algebra. We consider the direct sum

S=2 S
a,f a8

and continue the constructions of the previous section so as to make S a matrix

algebra with involution in such a way that the following relations hold:
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0 (@)0r b, it o) £,
0% (a;;0;) = { Pr(0¥(a;)) 0% (b)), if a (i) =a(k), but ik,
Re (67 (a;) 0% (b)), if i=k,
0/ (a;) = 04 (a;)

and so that the subalgebra’ X5_  should belong to the "‘associative center’’ of the

a
algebra S, i.e. so that u(vw) = (uv) w if at least one of the elements u, v, w lies

in £S_ .

We have already done this in part in Chapter II, where we defined an opera-
tion of multiplication in the spaces § , and in §1 of this chapter, where the
space Sa.,B was provided with the structure of a left S, -module for m, £2 or
Voo <2 and B#a. v

Suppose now that m, =2, v, =k + 1, k > 2. As in Chapter Il let p, -+~

*, P, be the generators of the algebra S, = AR, Multiplication by p,«++, p,
in the space Saﬁ is defined by the relation (2). (That it is noninconsistent is
proved in the same way as in §1.) To define the structure of an A®K)-module in

the space Saﬁ we must have the following for u € S 5:

p,(pju) = ~u,

pi(Pj") = —P/’(pi") G #
Let us verify the first of these identities, for example. Let M, = ir, s}, s € MB
and

&) =p, os‘(bst) =u.
Then 6°"(a’) = -p, and
P (piu) = —0% (ats (arsbsr)) =— 6% ((a:sars) bst) = — 0 (bst) = —Uu.

Thus in all cases the space Sa.B has the structure of a left S, _-module. In
the same way it can be proved with the structure of a right Sﬁﬂ-module and we
easily verify the identity

Aup) = (Au)p
forall AES_ , p€ S/i,@ and u € Sa/i'

We must still define the multiplication of elements in Sa./3 (a # B) by ele-
ments in Sg., (B #y), the result lying in S_.,, in such a way that the relation

ay?
(2) and the identities

Auv) = (\) v, (4)
u (po) = (up) v, (5)
u(vy) = (wo)v (6)
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hold for u € Saﬁ, v € Sﬁy» AES,,, n€ SB,B’ v E Syy. All this is done very
simply, except in the case when a =y and Saa is a Clifford algebra. We now
consider this case.

Thus, let S = A(K), k > 2. The relation (2) is not enough for us to be able
to define an operation of multiplication of elements in the space SaB by elements
in the space Sﬂa.' For u € SaB’ v € SBa. the relation (2) only defines the projec-
tion of the element uv € A% onto Ag() - A(IK); in particular it defines Re uv. If
p is an arbitrary element of the algebra A(K), then (4) implies that the following

equation must hold:
Re p(uv) = Re (pu) v.
Since the right-hand side of this equation is known from (2) it may be taken as a
definition of the element uv.
We now show that this definition agrees with (2) for iv;é k. Let
u=09(a;), v=0%0b;) (i, k€ Ma; j€ Mp).
To prove the equation

ik
6 (aiibi

it is sufficient to verify thatfor s =1,-++, «

Re Psgik(“i,‘bjk) =Re (p u)v.

k) = Pr(uv)

Let p = d‘i(c“). Then
Re p,0% (a;;b;,) = 0% (cy; (a;;b;4)) = O%* ((cyayy) by
= Re 0¥ (cya;;) 0% (byy) = Re (pu)v
We now verify that the identity (4) holds. For any p € A'%;
Rep (1 (ur)) = Re (01 (ur) = Re (01) w) v = Re (p (o)) 0 = Rep () ),
which implies that A(uv) = (M) v.

To establish the identity (5) we first observe that (2) and the associativity

relations in the algebra 2 imply that
Re u (pv) = Re (up) v
for all u € S,5 v €Sy, € Syy. Therefore, for any p€ 4K
Rep (u (pv)) = Re (pu) (pv) == Re ((pu) p) v = Re (p (up)) v = Rep ((up)v),
so that u(pv) = (up)v. The identity (6) may be checked in the same way.

We define an involution in the algebra S as follows: for A € S, we put
A* =\, and for u € Saﬁ’ a # B, we define u* by (3). It is easy to check that

this definition is not inconsistent and has the properties of an involution.

Clearly the algebra S and the numbers m, uniquely determine the T-algebra
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2. We shall call S the skeleton of the T-algebra L
The results we have obtained, together with the identity (1) of Chapter I,

“allow us to prove the following interesting theorem which, however, we shall not
use later.
Theorem 2. If m, =2 and v,, >4 then S ,5=0 forall B <a or forall
B >a. The same is true for v,, =4 if at least one of the S, -modules S 4
(B #a) is exact.
We observe that the factor algebra of the algebra A3 by any of its non-

trivial ideals is isomorphic to the algebra of quaternions.

§3. The completion of a T-algebra

As before we shall assume that the T- algebra ‘Y is classical. We imbed
each of the subspaces 2. C in the linear space ?I,, of the same dimension

as S (i) a(j) and extend the mapping 6"/ to an isomorphic mapping of the space

ij onto Sa(‘) a(j)’ (Clearly, ?L fails to coincide with U only when a(i) =
a(j).) We next form the direct sum of the linear spaces

ﬁ:Xﬁw

For any elements a;; € ﬁij' bik €, ik we define their product a; blk €U ik S©
that

-k X .. .k
@ (aii . bik) - 0"(a‘.’.) a1 (bik)'
For a, b € 2 we put
a-b =Ea‘.l. . b/‘k'

where L bpq are the projections of the elements a, b onto U 7 and we thus

convert the space I into a matrix algebra. We provide this algebra with an invol-

ution” by the formulae

_— =
6/i(a}) = 6(a,),
*
= ?al'l' (a =Eai]- € ).
The algebra U is included in U as a subspace. Also
?Iii C gli]';
the involution in U is the restriction of the involution in* 2[; as regards multipli-

cation, it is clear from (2) that there exists a projection P of the space U onto

the subspace 2 so that
a-b=P(a-b)
for any a, b € 2. The projection P is defined as follows:
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8/ (ay), it a(i)+af()),
Blf(Pa‘.,) ={ Pro¥ (@), if a(i)= a(j), but i 5],
Re0¥(a;;), if i=j.
Clearly
k] i
Pa* = (Pa)* (a € ).
The matrix algebra with involution U will be called the completion of the T-

algebra .
The subalgebra

U= 3

i,j€Mg

is isomorphic to the associative matrix algebra i[’:za (cf. Chapter II). The T-alge-

bra ¥ is identified with the T-algebra 2 *® under this isomorphism.
a 8 Mg Ofp
We put
U = ZU;
then
ﬁ = ?—Ic + ?Iu,
where
A = > QIi .
lé] (mod R) 1
It follows from the results of $2 that the subalgebra ue belongs to the associa-
tive center of the algebra 2. We have the following inclusions
UL AL CUY, UL U C U,
Further, if a € A°, p € UA*, then

a-p=ap, p-a=pa. (7)
We provide the algebra 2 with a Euclidean metric by means of the formula
(a, b) =Sp P (a- b*).

On the subspace 2l it coincides with the metric introduced in §3 of Chapter I.

It is also easy to check that
(a*, b*) =(a, b) (8)

and that the projection P is symmetric in this metric.
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CHAPTER IV

The structure of the full group of automorphisms

§1. Extension of the group of automorphisms

Proposition 4. Let V be a homogeneous convex cone, G a connected transi-
tive group of its automorphisms and %, an arbitrary point of V. Let G, be a con-
nected linear group containing the group G. Let K, denote the set of infinitesimal
linear transformations belonging to the Lie algebra of the group G, and becoming
0 at the point x. If all the transformations in K| have zero trace then all the

transformations in the group G, are automorph;sms of the cone V.

Proof. The orbit V| of the group G, passing through the point x, is a con-
nected open cone containing the cone V. We shall show that V= V.

Let R, be the subgroup of the group @, formed by those transformations
which leave the point x, fixed and let 90 be the connected component of the
unit element of the group Rl' Clearly the Lie algebra of the group KO coincides
with K 1+ Therefore the transformations in QO are unimodular and there exists an

invariant measure in the homogeneous space @1/90.

If V| #V, there exists a connected simply connected open cone V, CV,, containing
the cone V and also at least one point of its boundary. Let 7 denote the natural covering
mappmg of the space Vl = l/ 'QO onto the cone V The covermg 7 is trivial over V
Let V be one of the connected components of the set 7 (VZ) The restriction
of the mapping 7 to V2 is a homeomorphlsm of V2 onto V The invariant mea-
sure on @1/9 induces some measure on V2. We transfer thxs measure onto V,
by means of the mapping = and let iy denote the density of the measure obtained

on V (relative to the measure which is invariant under parallel translations).

Now let x be the inverse image of the point x, € V under the mappmg m,
lying in VZ' The set @x lies in 7 l(Vz) and is connected Therefore, @xo
V The definition of the funcuon ¢ implies that if C € @ then

(Cx) = 28
This equation shows that at the points of the cone V the function ¥ coincides
with the characteristic function of the cone V. It is well known (cf. $2 of
Chapter I) that the characteristic function of a cone V grows without bound on
approach to its boundary; however, the function ¢ is defined and continuous in
the cone V2 containing a boundary point of the cone V. This contradiction shows

that V1 = V.
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$2. The quasitriangular group of automorphisms

Let V be a homogeneous convex cone, ¥ the corresponding T-algebra, U° -

33U, its kernel (cf. the definitions in $1 of Chapter III). The convex cone
ve=vnNue
will be called the kernel of the cone V.

It is easy to see that if ¢t € U is a triangular matrix with positive elements
on the main diagonal and ¢t* € U® then ¢ € U°. This implies that ¥V is a homo-
geneous selfadjoint cone corresponding to the T-algebra U°. It splits into the
direct sum of cones V_, corresponding to the T-algebras U (a=1,---, ph

We now assume that the cone V is classical and let U be the completion of
the T-algebra U (cf. §3 of Chapter III). For every a € M we construct the sub-

space 9 C ﬁa according to $3 of Chapter II and we form the direct sum

=39, U
For a € @ we put
Dax=a-x+x-a" (x € X). (1)
Clearly
(Dg Dyl =D pp.q (a b €D). (2)

We denote the Lie algebra formed by the transformations D, a € 9, by G°.
The restriction of the algebra G° to the invariant subspace X¢ = X 2 coincides

with the algebra of derivations of the cone V°.
We denote the space of Hermitian matrices of the algebra U by X

Lemma 1. Forevery a € 9 the transformation

D: x—a-x+x-a" (x € %)

of the space ¥ commutes with the projection P (cf. $3 of Chapter III).

Proof. For a € 9, «x, y € i we have, by virtue of the formula (8) of Chapter
III, that

(@a-x, y) = (x*-a*, y*) =SpP(x"-a"-y) = (+*, y*-a) = (x, a*-y),
(x-a*, §) = SpP (x-a"-4") = (x, y-a),

hence
(D% y) = (x D .y, €)

i.e. the transformation Da" is adjoint to Da. Since the transformations Da and
Da' leave the subspace X = PX invariant, this implies that they also leave the

orthogonal complement invariant and, thus, commute with p.

We now put
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U =SNUs,
(We recall that  is the .sﬁag:e of triangular matrices of the algebra 2[.) The
transformations
Dt: x - tx +xt*, t€ T,

of the space X form a Lie algebra which we shall denote by T,

We consider the sum

Gq = Gc + Tu
and show that it is closed under commutation. This follows from the formula
[Da’ Dz] = Da_‘_t.a ‘(a €9 teTH), (4)

(It is easy to see that the element a -t — ¢ - a belongs to T%.)
For any x € X, Lemma 1 implies that
(D,,D)x=D,P(t-x + x-1*) —P (t-Dyx + D,x-1*)
=P (D, (t-x + x-1*)—1t-Dyx — D x-1') = P ((a-t —t-a)-x
4 x-(t*-@" — @*-1*)) = Dyt—t-a¥»

which is what we had to show.

It is easy to verify that when ¢t € S[1 U the transformation D, of the space
X, understood in the sense of $1 of Chapter I, coincides with the transformation
D, defined by the formula (1) for ¢ an element of the space 9. Therefore, the
Lie algebra G7 contains the Lie algebra

T = {Dz: t € S},
generating the simply-transitive group of automorphisms of the cone V.

Proposition 5. The connected linear group G9, generated by the linear Lie
algebra G9, leaves the cone V invariant and acts transitively on it.

Proof. By virtue of the remark made above, the group G9, contains the trans-
itive triangular group of automorphisms of the cone V. Proposition 5 will follow
from Proposition 4 if we show that every transformation 4 € G for which Ae =
0 has zero trace.

Let a € U°, ¢t € T* and

(D, +D)e=(a+a") +(+1t")=0.
Since a+a* € U°, ¢t +¢* € U, this implies that t =0 or a + a* = 0. By virtue
of (3) D; = —Da, i.e. the transformation Da is skew-symmetric. We have that
Sp(D,+ D) =SpD, =0,
which is what we had to prove.

The group G7 may be called the quasi-triangular group of automorphisms of
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the cone V. It clearly contains the connected Lie group @° generated by the Lie .
algebra G°. The mapping which puts every transformation C € G° in correspond-
ence with its restriction to X° is a homomorphism of the group G° onto the con-
nected component of the unit element of the group of automorphisms of the cone

V€. The kernel of this homomorphism is finite.

§3. Invariance of the kernel

In this section we shall prove

Theorem 3. The kernel of a homogeneous convex cone V, corresponding to
the T-algebra U, is invariant under all the automomhisms of the cone V which

leave the point e (the unit matrix) invariant.

We preface the proof of the theorem by a number of lemmas. We shall assume
throughout that the cone V is classical but, as is easily seen, Theorem 3 holds

for any cone.

For .x, y € X we put

Ry =xoy =~2'—(xy+yx)-

It is easy to check that if x € X° then

Y R,y=—;—(X-y+y-x)
and thus Rx € G° (cf. $2). Let

‘ 'J\E"::{xex: R, € G}

where G is the algebra of derivations of the cone V.

The proof of Theorem 3 will be based on the fact that 'ic = X°.

Let C be an automorphism of the cone V leaving the point ¢ € V fixed. The
transformation C is an automorphism of the connectedness algebra of the cone V

at the point e (cf. 2 of Chapter I) and therefore for any x € X
-1
Rc, =CR,C™
This implies that CX° C X°. Thus the subspace X° C X is invariant under all

automorphisms of the cone V which leave the point e fixed and for our purpose

it is in fact sufficient to prove that X° = X°.

For any Hermitian matrix x = (x‘.j) € U we put

-~ 1
X = ?qu-*- Ex”,

i<y

1
f = -E-Ex“ +Zx”.

i>j

Py e

el ettt ———
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The triangular matrix % corresponds to the derivation
Dp: y — Ry +yx
of the cone V. It is easy to see that
2(D: —R)y=(x—x)y—yx—x)
and that
(D; - Rx)e =0
By virtue of the remarks made above this implies
~
Lemma 2. The subspace X° C X is invariant under the transformations
Key—=(x—x)y—y(x—2x), x€&.
We now put A
Lemma 3. The space X¢ equals the sum of its intersections with the spaces
i
Proof. Let x be an arbitrary element of Yc Let e, denote the dlagonal

matrix with unity at the ith place and zeros elsewhere. Then e; € X° C e, By

virtue of Lemma 2

K. = Z (*; + Xp)— ; (xg + X)) = Yy € e
k<i
Further, for j # 1,

~
Kyei = —(x‘.’. + xi‘-) € X°,
which is what we had to prove.

Lemma 4. If xcﬂx #£0, then ik = Mk forall k #1i, j.

Proof. Let x € ¥en x X # 0. The transformation K, =2(Dg~R)) isa
derivation of the connectedness algebra of the cone V at the point e. Therefore,
for any @k

2 (aj +aj,) 0 K (ap + aj) = K, (a8}, + aja)-
If i, j, k are distinct, then the projection -cvf this equation onto uii yields
(xi010) @ = X1y (@107,) = 0 (@507,) X
Multiplying both sides on the right by x:j we find that

((xij@e) Q) ¥y = (K@) (%01@1)" = p (@;507,) X%y,

p ((x;a;0) (x;ja;0)") = p(@pay,) o (x;5%7) (5)

This equation shows that n, > mige In the same way we show that nik 2N
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Lemma 5. Let i <k <j. Ifxcﬂx #0 and ny #0 then xcﬂx 1 #0 and

xcma j #0.

Proof Let x = Xy + % be a nonzero element in X For every t = b the

transformation
D=2[R,D]+D,,
is a derivation of the cone V. Moreover

De =x(t+t*)+(t+t‘)x—2(tx+xt‘) +ix 4 xt* = xt +t*x =0.
Therefore
— De; = Dyx = tyx;, + x‘-,t,:/ ¢ e,

If t #0, then, as 1s clear from (5), x. t’:i # 0, so that 'ic N X‘.k # 0. In the same
way we show that ¥en Xy ;4 0.

In the terminology of §4 of Olaptcr I Lemmas 4 and 5 may be formulated as fol-
lows: if %°0N X;: ;é 0 then i = j (mod R) and for any k lying between i and j
either ny = Py = 0 or ¥°N X, #0 ) and ¥en X,; #0. From this we easily de-~
duce by mducuon on |i - j| that if XN X;; ;é 0 then i=j (mod R) (cf. §4 of
Chapter I for the inductive definition of the relauon R). This means that Fec xe,

Esmg the opposite inclusion, proved at the beginning of this section, we find that
X¢ = X°. This proves Theorem 3.

$4. Description of the algebra of all derivations

Let V = V(%) be a classical homogeneous convex cone. We denote the Lie
algebra of all its derivations by G. In §2 we constructed the subalgebra G7 of
the algebra G, having the following two properties:

(A) the linear group genérated by G7 acts transitively in V;

(B) every derivation of the cone V¢ can be extended to a derivation of the
cone V, belonging to G9.

Let A be an arbitrary derivation of the Cone V. By virtue of (A) it can be
expressed in the form A= AO + A where A € C 1 0¢ = 0. It follows from
Theorem 3 that A X€ CX°. The restncuon of the transformatlon AO to X% isa
derivation of the cone V¢ and, by property (B), can be extended to some trans-

~ ~ x ~ Ry
formation Aqecq. We put Aq:Aq+Aq, A0=A0—Aq. Then .
A=A4,+ Aq .(6)
where Aq € 69, AOXC =0.

The decomposition (6) is unique. In fact, let A be an element in G7 such
that AX° = 0. Then, in particular, Ae = 0. In proving Proposition 5 we saw that
this implies that A € G°; but then A = 0, since the representation of the Lie
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algebra G° in the space X is exact.

Thus it now suffices to find the derivations of the cone V which annihilate
the space X°. Clearly these derivations form a subalgebra in the Lie algebra G.
We denote this subalgebra by Go-

Proposition 6. The linear Lie algebra G coincides with the restriction to X
of the Lie algebra of the derivations of the T-algebra U which become zero on the

subspace U°.

Proof. Every derivation D of the algebra U leaves the space of Hermitian
matrices invariant and induces a transformation on it which is a derivation of the
cone V. In fact, the transformations C)\ = exp A are automorphisms of the T-
algebra U. For every triangular matrix ¢t € ¥ with positive elements on the main
diagonal i
C)\u*) =(Cyn) (Cy* € V.

This shows that C,\ induces a transformation on X which is an automorphism of
the cone V. Since D = dC/\ /d/\l/\=0 the restriction of the transformation D to X

is a derivation of the cone V.

Now let D be a derivation of the cone V which becomes zero on X°. Then,
in particular, De‘. =0 for any i and D is a derivation of the connectedness alge-

bra. For i # ] the subspace X'ii may be characterized as follows:
;= {x( z: e‘-Dx=e,Dx=-;—x}.
This implies that Dx"i C x‘.’.. Let x =x;; +x;; and y = Yik + Vi be arbitrary
elements in the spaces X‘.i and xi"’ respectively. If i, j, k are distinct, then
1
(%5 + X)) 0(Yje + Yay) = > (Xi1Yjx + YnjXjo)-
If we apply the derivation D to this equation and project onto uik' we find that
(Dx);;yjx + %:; (DY) jx = (D (%Y1 + YriX;))in- (7)
We extend the transformation D to the whole space U by putting
Da” = (D (a,-/ + a;‘/))‘-, (l ¢ j).
Then (7) implies that
(Dayj) b + a;; (Dbjy) = D (a;;by), (8)
for distinct i, j, k and also for i =] and j =k, when it is trivially true.

We prove that the relation (8) also holds when i = k. We have that
(@ +a;) 0 (b + b)) = a,b};, + ayb;.
Applying D and projecting onto ?Iii we find that
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(Daij) b;l. + aij(Db;i) =0,
which is what we had to prove. Thus D is a derivation of the T-algebra 2. Since
DX¢ =0, DU® = 0. This proves the proposition. ‘
If the derivation D of the T-algebra ¥ becomes zero on U then it can be

extended to the completion 2 of the algebra 2 by means of the formulas
0 when a ¢ %,
Da when a ¢ %=,
It is not difficult to verify that D is a derivation of the matrix algebra 2l. How-

Da - |

ever, we shall need only the relations

D (a-b) = a-Db, . be ). 9
D(b-a)=bb-a,} (&%, beW) )

They are obvious for b € °. The second relation is obtained from the first by
involution. Therefore, it suffices to verify the first relation for b € U, If a € U°
then by virtue of the formulas (7) of Chapter III,

D (a-b) = D (ab) = a(Db) = a(Db) = a-Db.
Further, those a for which the first of relations (9) hold_s for all b € U* form a

subalgebra in ue, It is easy to see that U° generates ¢ (with respect to multi-
plication denoted by a dot). Therefore the relations (9) hold for all a € U°.

We show, by means of the formulas (9), that the derivations in G, commute
with the transformations in G°. Let D € G, a €9, Then

[D, Djlx =D (a-x+ x-a")—a-Dx —Dx-a" =0

for every x € X.

Further, for D € G, we see that for all ¢t € 3%, 2 € X,

(D, D,) x = D (tx + xt*) — t (Dx) — (Dx) * = (Dt) x + x (Dt)*
hence
(D, D] =Dp, . (10)

Summing up the results we have obtained, we may formulate the following
theorem:

Theorem 4. The Lie algebra of all the derivations of a classical homogeneous
convex cone V splits into the direct sum

G=Gy+ G+ T

where T* is an ideal and G, aend G° are commuting subalgebras. Moreover, we
have the following properties:

1) the linear Lie algebra T" is triangular;

2) the Lie algebra G° is naturally isomorphic to the Lie algebra of derivations
g £
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of the kernel V° of the cone V.

3) the Lie algebra G, is naturally isomorphic to the Lie algebra of those
derivations of the T-algebra U which annihilate its kernel U°;

4) the subalgebra K CG corresponding to the stationary subgroup of the
point e €V splits into.the direct sum

K =Gy + (KNGO,

Remark 1. The term “‘naturally isomorphic’’ in the statement of the theorem
means that the corresponding isomorphism is attained by the restriction of a lin-
ear transformation.

Remark 2. As a supplement to the theorem cf. the formulas (2), (4) and (10).

Remark 3. The theorem generalizes ttivially to arbitrary homogeneous convex

tones: for an exceptional cone we have only to take G° = G.
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