THE THEORY OF CONVEX HOMOGENEOUS CONES"”
E. B. VINBERG

CONTENTS
INErOAUCTION ..oiiiiiiiiiiii it st en s 340
Chapter 1. General properties and geometry of convex cones .........cccoeevennene. 345
S 1. IDEEOAUCTION «ovorverveiicecieeeeeceesieeeesa e essesesaeesesansessensensneas 345
§2. The characteristic fUNCTION «.eeeerrerrrriimriiiiitettie e eraraeseseenas 347
§3. The canonical Riemannian geometry «......cocveeririeeeneeicieniesinesece 350
§4. The correspondence between the points of adjoint cones = 351
§5. Convex homogeneous dOmAIns ..........o...orvrreererrerrmmierieessenssessenesesss 354
§6. Stability and simply transitive groups of automorphisms ..........c...... 357
Chapter II. The application of left-symmetric algebras .........cccooeiiiiniiinn 360
§1. The algebra of a convex homogeneous domain «......ccooovveveniniincienns 360
§2. The construction of a convex homogeneous domain from its clan ... 364
§3. Principal decomPOSItION ... ... ......cceviiiiieiieeeeeeces e 369
§4. Normal deCOMPOSITION ..oiviiiiiiiiiiiiiiie ittt e e eeeeeeeaa e 373
Chapter III. Matrix CalCulus - eoeerimmimemiies s s 379
S1. T-algebras « et 379
§2. The convex cone connected with a T-algebra .......cccccoouurverierrrireriennnnes 383
$3. The equation of the cone ¥ () oot 385
§4. The calculation of the invariant MEASULe ........ccccovuiiiriereiiiimiieinneeeens 387
§5. The calculation of the algebra of connectedness ..............cccceevnnn. 388
$6. The AdJOINt CONE w.ovvrvvreririenrieeiieesseesees i eese s s eeesenens 390
§7. The nilpotent part of a T-algebra ..........o.cocooovveveeveeeeereeeeeeeeeeereen. 391
§8. Convex homogeneous cones of rank 3 ...........cccoooooveviveveeeeeeerereersnie, 396
§9. Proof of univerSality .........o.cocooiiiveivieeeeeeeeieeeeeeeeseese e eeeeeeeseeeeeeee 397
§10. Convex homogeneous domains ........cccccceeiiiiiiiiiiiiiiiiiiee e 400
BAbLIOGIAPRY -:-rvrevviceseiisiitiesteesi ittt 402
Introduction

A convex cone in a real finite-dimensional space R is said to be homogeneous
if the group of automorphisms of R that leave the cone invariant acts transitively

on it.

1) The main results of this paper were presented at the meetings of the Mc;scow Mathe-
matical Society on April 26, 1960 and April 10, 1962.
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"The need for studying convex homogeneous cones arose in the theory of auto-
morphic functions on bounded homogenéous domains in n-dimensional complex
space. In this theory it turned out to be convenient to consider unbounded models
of bounded homogeneous domains, in which a certain group of complex affine
transformations acts transitively. Models of this type are connected with convex
homogeneous-cones. If V is a convex homogeneous cone in real n-dimensional

space, then the domain

D={x+iy:y €V}

in n-dimensional complex space is analytically equivalent to a bounded homo-
geneous domain. This is the so-called ‘‘generalized upper half-plane’ or *‘Siegel
domain of the first kind.”” It is homogeneous. with respect to the group of complex
affine transformations generated hy the linear transformations

x + iy — Ax + idy,
where A is an automorphism of the cone V, and the translations
x+ iy — (x + @)+ iy.

Not all bounded homogeneous domains are equivalent to Siegel domains of
the first kind. In 1957 I. L. Pjatecki\i'-gapiro devised a more general construction,
the so-called *‘Siegel domains of the second kind’’ (cf. [15], [18]), which are also
connected with convex homogeneous cones. At the same time, at E. B. Dynkin’s
seminar on the theory of Lie groups, he posed the problem of classifying all con-
vex homogeneous cones. (I. L. Pjateckii'-gapiro’s investigations on the theory of
bounded homogeneous domains led, in particular, to the construction of examples
of nonsymmetric domains [17]. In addition, it was proved that every bounded homo-
geneous domain is equivalent to a Siegel domain of the first or second kind. This
was done in 1962 by I. L. Pjateckif-gapiro, S. G. Gindikin and the author of the
present article (cf. [7]).)

Before 1960 apparently only the following convex homogeneous cones were
known:

1) the cone of positive-definite symmetric matrices;

2) the cone of positive-definite Hermitian complex matrices;

3) the cone of positive-definite Hermitian quaternion matrices;

4) the 27-dimensional cone of, in a certain sense, ‘‘positive-definite’’ Her-

mitian octavic matrices of third order;

%>/ x§1+~--+x’2'.

All these cones are selfadjoint in the appropriate Euclidean metric. To each

5) the spherical cone
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of them there corresponds one of Cartan’s symmetric domains [9]. In 1960 the
author succeeded in constructing a large number of new examples of convex homo-
geneous cones and in establishing a one-to-one correspondence between all the
convex homogeneous cones and nonassociative algebras of a special form, the so-
called compact left-symmetric algebras, or clans [3], [5]. (A similar algebraic
apparatus was proposed by Koszul [13].) Pjateckii-Sapiro’s results on the classifi-
cation of bounded homogeneous domains [19]-[21] made it possible to classify
compact left-symmetric algebras as well. This was done by B. Ju. Veisfeiler and
the author. However, it should be noted that this classification does not have the
definite nature of, say, the classification of semisimple Lie algebras, and it

opens up the possibility of further investigations in different directions.

In the present article we shall use the classification of compact left-symmetric
algebras as a basis for constructing the apparatus of generalized matrix algebras,
the so-called T-algebras, which will allow us to consider any convex homogeneous
cone as a cone of “‘positive definite Hermitian matrices.’”’ This is the most sub-

stantial part of the whole work.

The apparatus of T-algebras is well adapted for the description of convex
homogeneous cones and for the solution of problems of different kinds. In particu-
lar, it has been used successfully to find the complete group of automorphisms of
an arbitrary convex homogeneous cone. This result was formulated in general

terms in the note [6] and will soon be published in full.

By the use of T-algebras it is not difficult to classify all the selfadjoint
homogeneous cones. Each such cone splits into the direct sum of cones of the
five types listed above. We observe, however, that the selfadjoint homogeneous
cones can be described by an independent theory of their own, based on their con-
nection with semisimple Jordan algebras (K&cher [11], [12], Vinberg [3], Hertneck
(24]).

M. Kécher introduced a special kind of convex cone, the domains of positivity
[10]. These are convex cones that are selfadjoint in some Euclidean or pseudo-
Euclidean metric, which is called the characteristic. All the theorems proved by
Kécher [10] and Rothaus [22] for domains of positivity carry over without any dif-
ficulty to arbitrary convex cones (cf. [2], and also Chapter I of the present article).
Apparently it is not worth while to single out the domains of positivity from all
the convex cones. The following considerations argue to this end. If V is a con-
vex cone and V' is its adjoint cone, then it is easy to see that the direct sum
V + V' is a domain of positivity, which is homogeneous if the cone V is homo-
geneous. Therefore, it is unlikely that the domains of positivity can have some
remarkable properties that are not shared by arbitrary convex cones. Of course,

I am not referring here to domains of positivity with a positive-definite characteristic.
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We shall now give a brief account of the contents of the article.

Chapter I is introductory. In it we give the fundamental definitions and con-
struct the geometry of convex cones (basically following Kécher and Rothaus, cf.
above). In addition, we prove some of the simplest properties of the group of auto-
morphism & (V) of a convex homogeneous cone V, in particular, the following: the
stationary subgroup of an arbitrary point x € V is a maximal compact subgroup in
G(V); every maximal connected triangular subgroup of the group G(V) acts simply
transitively on V.

In Chapter II we establish the one-to-one correspondence between n-dimen-
sional convex homogeneous cones and n-dimensional algebras over the real field
that satisfy the following conditions (the sign A denotes multiplication in these
algebras): )

1) aA(bAc) - (aAb)Ac=bA(aAc) - (bAa)Ac (left-symmetry);

2) there exists a linear form s such that s(aAb) = s(bAa) and s(aAa) >0
for a # 0 (compactness);

3) the eigenvalues of the operators L :x — aAx are real;

4) there exists a unit element e: eAa=ale=a

Such algebras are called clans with a unity element. Using them we show
that every convex homogeneous cone V can be regarded as the set of points
(¢, x, u) € R! x R¥ x R™ satisfying the equations

tx — F(u, u) € VO’
t>0,

where V is a convex homogeneous cone in R* and F(u, v) is a bilinear form
on R™ x R™ with values in R¥. Finally, we give the classification of clans
which forms the basis for Chapter III.

In Chapter III we construct the apparatus of T-algebras. In view of the im-
portance of this concept we shall define the T-algebras here. (This definition dif-
fers in form from that given in §1 of Chapter III.)

We consider the square matrices A = (aii) whose elements belong to arbitrary
vector spaces:

a;; € i i
We assume that for every triplet i, j, k there is defined a bilinear mapping
?lij X u,'k = U
This can be considered as multiplication of matrix elements. For any matrices
A= (al. ) and B = (b"i) we can then define the product AB = (c‘-i) in the usual

way, putting
€ij = f‘ %Dy
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Suppose, in addition, that to every pair i, j there is given an isomorphic corre-
spondence @;; <> a;; between the spaces ?I and .
1) ﬁ'ii =8,
2) agby =b,a,.
Then for every matrix 4 = (aii) we can define the ‘‘adjoint’’ matrix A* = (bii) by

jir satisfying the conditions

the formula

b..=a...
ij ji

The mapping A — A" has the usual properties. Thus, we have a meéning for

such concepts as ‘‘Hermitian’’ matrix, etc.

The space U of generalized matrices, with the multiplication and mvoluuon
A — A" considered above, will be called a matrix algebra with involution. The
classical examples of matrix algebras with involution are the algebras of real,
complex and quaternion matrices. All these algebras are associative, but we shall

not restrict ourselves to associative matrix algebras.

A matrix algebra [ with involution is called a T-algebra if the followmg con-
ditions are satisfied:

1) for every i the subalgebra U, is isomorphic to the algebra of real num-
bers;

2) for every a;; € uii' a.#0,

i
%% > 0
3) the associativity relation

@i (bigep) = (a;b ey,

holds for all a;; € 2[ bl €U, ik» k1 € Uy, if i#k j#1 and the pair of indices
i, k does not dszer (str;ctly) from the pair j, | by a point on the real line;

4y if j lies between i and k, then

7, (ab;) = (@0

ij'J )blk

' i
for any a;; € 21‘.1., bik € ?Il.k,
5) there exist positive numbers n; such that

i l]bl] bz/ i

for any a;; b € ?1

If 2[ is an arbltrary T-algebra, then the set V(%) consisting of those Her-
mitian matrices of the algebra U that can be expressed in the form TT", where
T is a triangular matrix with positive elements on the diagonal, is a convex homo-
geneous cone. We shall show in Chapter III that we can obtain all convex homo-

geneous cones in this way, where isomorphic cones result only from isomorphic
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T-algebras (cf. Definition 5 in Chapter III).

The T-algebra U is convenient for describing the simply transitive group of
automorphisms of the cone V (%), its geometry and its adjoint cone. Also it en-
ables us to write out explicitly the inequalities defining the cone V(). All this
is done in Chapter III.

The indecomposable selfadjoint cones correspond exactly to those T-algebras
in which all the subspaces ?Iii, i # j, have exactly the same dimension.

Throughout the following we shall use the following notation without comment:
if M is a set in a topological space, then its closure will be denoted by M.

Definition, lemmas, propositions and formulae are numbered separately in each
chapter; references to them within a chapter are given without the number of the
chapter being specified. Theorems are nymbered consecutively throughout.

In conclusion I should like to express’ my deep gratitude to my scientific
director E. B. Dynkin for his invaluable help in the writing of this article. I
should like to express my sincere gratitude to I. I. Pjatecki'i'-gapiro, with whom I
had many useful discussions and who constantly kept me informed about his in-
vestigations on the classification of bounded homogeneous domains. I should
also like to thank the participants in E. B. Dynkin’s seminar on the theory of Lie

groups, and in particular S. G. Gindikin, for their interest in my work.

CHAPTER I
GENERAL PROPERTIES AND GEOMETRY OF CONVEX CONES

§l. Introduction

The main object‘ of study in this article will be the open strictly convex
cones in finite-dimensipnal real linear spaces. For simplicity we shall refer to
them as convex cones.

Thus, departing a little from the usual terminology, we adopt the following

Definition 1. A convex cone in a finite-dimensional real space R is a non-
empty set V C R having the following properties:

(C1) if x € V and A is a positive number, then Ax € V;

(C2) if x, yE V, then x+y € V;

(C3) the set V does not completely contain any straight line (not necessarily
passing through 0);

(C4) the set V is open in R.

The condition (C3) is equivalent to the fact that the closure of V does not
contain a subspace of positive dimension.

The convex cones V, CR; and V, CR, are considered to be isomorphic if
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there exists an isomorphism of the linear spaces R1 and R, under which the sets
V, and ¥V, correspond to one another.

For every linear space R we shall denote by R’ the space of lineat function-
als on R and by <x, x'> or (x', x> the value of the linear functional x' € R’ at
the vector x € R.

Definition 2. Let V be a convex cone in the space R. The convex cone ad-
joint to V is the cone V' in the space R’ that is formed by x' € R’ for which
<x, x'> >0 forall x€EV, x£0.

It is well known that V"= V (under the natural identification of the spaces
R" and R; cf. for example [1]).

Definition 3. The direct sum of a finite set of convex cones 'V‘. CR; is the
convex cone %V, in the direct sum ZR; of the linear spaces R, that is formed
by those vectors Exi EXIR;(x; € R,) for which x; € V; for all i.

Clearly (V)" =XV’ (under the natural identification of the spaces (X R))’
and X R'i). It is not difficult to prove )

" Proposition 1. Every convex cone splits in a unique way into the direct sum

of indecomposable convex cones.

The nondegenerate linear transformations A of the space R that leave the
convex cone V invariant in the sense that AV = V are naturally called the auto-
morphisms of V. They form a group, which will be denoted by § (V). It is easy to
see that the group §(V) is closed in the complete linear group. Its Lie algebra
- will be denoted by G(V) and the linear transformations in G (V) will be called

derivations of V.

It follows from the invariance of the definition of the adjoint cone that if A
is an automorphism of V, then the adjoint operator A’ is an automorphism of V'.
The mapping A — A'"1 induces an isomorphism of G(¥) onto G(V').

Suppose that V = XV, (cf. Definition 3) and that for each i we are given an
automorphism A, of V. The operator X A, wansforming X x; into 4 x; is then
an automorphism of V. The mapping (4) — 2 A; induces an imbedding of the
direct product HQ(Vl-) into (V). If the cones V; are indecomposable, then, by
Proposition 1, the automorphisms of V can only permute the components V‘.

among themselves. Hence we obtain

Proposition 2. If V =XV, is the decomposition of a convex cone V into
indecomposable cones V., then HQ(V‘.) is a normal subgroup of finite index in
g.

Definition 4. A convex cone will be said to be homogeneous if the group
G (V) acts transitively on it.
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Clearly, the direct sum of convex homogeneous cones is also a convex homo-

geneous cone. The homogeneity of the adjoint cone will be proved in $4.

§2. The characteristic function

Let V be a convex cone in the n-dimensional linear space R and let dx’ be
a measure in R’ that is invariant under parallel translations. We put
ov(@) =g (@)= | - ar (1)
v
for every x € V. We shall prove that this integral converges. Let dx'(l) be the
measure on the hyperplanes P _ = {x": {x, x'> = a} of the space R', defined by

the following condition: for any continuous function f of compact support on R’

+ o0
Sf(z’)dz': S daS f(a') dziy).
R’ S Pq
Then
(p(z)zg e~ da S dz(y).
0 PaNV’

Since x € V = |28 <x, x'> > 0 for every x' € V', 2 4o. Therefore, every ray {Ax'},
where ' € V', x' £0, meets the hyperplane P_, so the cross-section of the cone
V' by the hyperplane P is bounded and the volume v(a) of the set P, N V' CP,
is finite. Since the hyperplane Pa is obtained from Pl by a similarity transforma-
tion with coefficient a,

v(a) = a" " Lp(1).

Finally,

¢ (z) =v(1) 3 e da = (n—1)! v (1) < .
0

In the integral (1) the exponential may be replaced by any sufficiently rapidly
decreasing function of <x, x'> . An argument similar to the above shows that in

this case the integral is multiplied by a quantity independent of x. More precisely,

(o)

\ F(2)an-tda
(@ e de' = —o ().
v
Definition 5. The function ¢V defined on the convex cone V by the formula
(1) is called the characteristic function of V.
The characteristic function is defined to within a constant positive factor,

because this degree of arbitrariness is present in the definition of the measure dx’.

Proposition 3. The characteristic function grows without limit on approach to
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any point on the boundary of V.

Proof. Suppose that the sequence of points x, (k=1, 2, «++) of ¥ converges

<xk,x’>

to the boundary point Xy- The functions Fk(x )= are noanegative

<x0,x >

and converge to F (' ) = uniformly on any bounded set in the space

R". Therefore,

limg (z,) = lim { 7, (") do’ > (£, (@) az,
v v

so it is sufficient to show that the integral [}, F (x")dx" diverges. There exists
a vector x € V', x # 0, such that <xo, x0> = 0. In fact, for the vector xo
we may take the lmear functional defined by the hyperplane of support of V pass-
ing through %,- Further, we take a closed ball K lying entirely within V' and

consider the set

L=K + {Az},,,CV".
Let ¢ = mmx'eK FO (x"). Clearly, ¢>0 and ¢ = min_ e ;. FO (x"). We have
(@) de > g Fy(@)dz’ >\ di' = oo,
v’ L L
as required.

Proposition 3 shows that the function ¢, really does characterize the cone
V. For results of the following kind are valid: if V, and V, are open convex
cones in the space R, V, n V, #£4, and by, = qSVZ on Vi N V,, then V=V

For, if under these assumptions the cone Vl’ for example, were to lie pardy out-

2%

side VZ’ then there would exist a point %y, € R iaterior to V, and a boundary
point of V,, and the equation q‘)V (xo) = ¢V (x ) would not be possible, because
by what has been proved above, qSV (x ) = oo, whereas q.‘)V (x ) < 0.

Let us clarify how the charactensuc function behaves under the automorphisms.
Let A be an automorphism of V; then

¢ (Az) = S e—<AX, T dg! — S e—<x, A’ dop’

v v
If we make the change of variables y' = A'x’, y'€ V', we find that

¢ (4z)=22 . (2)

This immediately implies

Proposition 4. The measure ¢(x)dx is invariant under all the automorphisms

of V.
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The characteristic function of a convex cone has a remarkable differential
property.

‘We-recall that a continuous function f defined on a convex subset M of an
affine space is said to be (strictly) convex if, for any %, %y € M and for any point
x lying on the interval joining %, and x, and dividing it in the ratio p: g (p + ¢ =
1; p, ¢>0),

f(x) < pf(x)) + gf(x,).

If the function f is twice differentiable and the set M is open, then a necessary
and sufficient condition for f to be convex is that the quadratic form d2f should
be positive-definite at all the points of M (cf., for example, [23], Chapter III).

Préposition S. Let V be an open convex cone in the linear space R. The
function In, is a convex function on V.

Proof. Clearly
di d2 d 2
dlng=29 41 =—"’_<J’_>.
ne ? ne P P

If we differentiate the integral (1) with respect to x, we obtain the following ex-
pressions for the differentials of py=¢patx€V:

(@ (2)) (0) = — (e=x2 (a, 2") do,

v
(@ () (@) = { == (a, 2')2dw,
v
where a is an arbitrary vector in R.
Ve put

1<x, x>

F(z')=e 2 , G(z')=e¢ 2 (a, z').

Then, for a # 0,
. _ —i_ 2 ’, 2 [ ’ 2
(d”lxlw(x))(a)—(q)(a))z[SFdx GRE (SFde) ]>o,
\% v N
since the functions F and G are not proportional.

We observe that not only lnc but also ¢ itself is convex, because
&g = gd? In g + - (dg)* > 0.

However, there are reasons for which it is preferable to consider Iln ¢ rather than
¢ itself. One of these reasons is the fact that, while ¢ is determined to within
a constant factor, In¢ is determined to within an additive constant and its dif-
ferentials are uniquely determined. This circumstance will be important in what

follows.
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§3. The canonical Riemannian geometry

We shall regard the cone V as a differentiable manifold. By means of a paral-
lel translation we shall identify the tangent space to V at any of its points with

the containing linear space R.
The quadratic differential form on ¥ that coincides with d’In ¢ in any affine
coordinate system defines the structure of a Riemannian space on V. In an affine

coordinate system the components of the metric tensor g are given by the formula

gii = aii In ¢. (3)
We denote by I' the object of the canonical torsion-free linear connection de-
fined by the Riemannian metric g; it is well known that

I = %g“ (9;8r1 + 0r8j1— 0i&;5n)s

where g” is the tensor inverse to Bijs i.e., giigl.k = 3;‘. In our case it follows

from (3) that in any affine coordinate system
i 1
th=7g”6j,¢lln(p. (4)

The object I is not a tensor, but its components transform like the components
of a tensor under affine coordinate transformations.

Let,x  be any point in V. We identify the space R with the tangent space
to V at Xy and in it we define an operation of multiplication [}, where in any
affine coordinate system we put

(@1 b) = =T (z,)ad’b*  (a, b€ R). (5)

This multiplication is commutative, since the connection [ is torsion-free, i.e.,
l"i _ r\i
jk = " kj
Definition 6. Let V be a convex cone in a linear space R and let x, € V.
The space R, equipped with the operation of multiplication [ | by the formula (5)
is called the algebra of connectedness of V at X
It follows from (2) that for any automorphism A of V

In(Ax) = ln ¢ (x) — lndet A.

Therefore, the linear differential form dln¢ and the quadratic differential form
d?1n ¢ are invariant under the automorphism 4 of V.

Proposition 6. The canonical Riemannian geometry defined on the convex
cone V by the quadratic differential form d?la¢ is invariant under all its auto-
morphisms. Every automorphism of the cone V that leaves the point x, €V

fixed is an automorphism of the algebra of connectedness of V at X,

I
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$4. The correspondence between the points of adjoint cones

" Let V be a convex cone in an n-dimensional linear space R and let ¢ be
its characteristic function. If x is any point of V and the tangent space to V at
x is identified with R, then the differential dlnc(x) of the function ln¢ at the
point x can be considered to be an element of R’ We put

s* = —dlng(z) = —‘f;*’(‘f)’eﬂ'. (6)

Let us examine the geometrical significance of the mapping *. If we differen-
tiate the formula (1), we find that

d(P (.’E) —_— K e—<x, x>y’ dy’
. v',
(where a vector function stands under the integral sign). Therefore,

S e—(x, x’)zl dz’
v

\' e-—(x, x> dz’

v
If we use the same notation as at the beginning of §2, we find that

¥ =

@
Xe_“da {2 dzfy
0

z* = PaIV”
<o
\ e %da S dz(),
0 PNV’
Clearly -
‘. a ’ ’
u) (T) z dx(w
PaﬂV’ nﬂV
a ’
‘ d‘zu) (T) S dxm'
PgNV’ PNV’
Therefore o5
\ e”%n da- § ' dz(y, {2’ dagy,
.Z*= v PnﬂV' =fnn‘.” ’
T e . , S dz(y
n e %n-tda. { dzj, POV

PNV’
i.e., x* is the center of gravity of the cross-section of V' by the hyperplane
= {x": (x, x'> = n}. In particular, x* € V' and
(z, z*) =n. (7)
Moreover, this implies that

(hayr == (8)
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for every A > 0.

There is another possible geometrical interpretation of the mapping *. We con-
sider the hypersurface

S:={yeV: o) =9@)}
in the space R. We denote by () the tangent hyperplane to S, at x. Clearly
Q. ={z€R: (dg(2)(z—2)=0}={z€R: (z* z) = (2", 2)}.
Finally, using (7) we find that
Q.={z€R:(x* z)=nj.
This condition can be taken as the definition of the element x* € R'.
Proposition 7. The mapping x — x* sets up a one-to-one correspondence be-
tween the points of the cones V and V'
Proof. We showed above that x* € V' it remains to show that for every
x' € V' there exists a unique element x € V for which x* = x’
) Let ' € V'. We consider the cross-section of ¥ by the hyperplane
Q=1{zeR:(z', z)=n}.
If there exists a point x € V such that x* = x/, then it lies on the hyperplane (
(cf. (7)) and for every z € (

(dlng(2))(z—z)=(z*, z—z)=n— (', z2) =0;

since d?ln¢ (%) > 0, this means that the restriction of ¢ to Q | V attains a
minimum (at least, locally) at x. On the other hand, if the restriction of ¢ to

Q N V attains a minimum at x, then, for every z € (),

O0=(dIng(z))(z—zx)= — (2%, 2)+n

and x* = x'
Thus, the problem reduces to showing that ¢, considered on Q | V, has a
" unique minimum. By Proposition 3, on approaching -any boundary point of the set
Q N V CQ the function ¢ tends to + . Since () ] V is bounded, this implies
that ¢ has a minimum on () [} V. Let us prove that it is unique. Let Xy, x) €
Q N V be two minimum points. Since ¢ is convex (cf. the remark on Proposition
5), the value of ¢ at all interior points of the interval connecting %, and x, is
less than maxld)(xl), ¢(x2)f; this follows at once from the definition of a convex
function. Let us assume for definiteness that qS(xl) > ¢(x2); then x; cannot be
a minimum, even locally.
Ptoposition 8. If A is an automorphism of the convex cone V, then for every
x€V
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(Ax)* = A"~ 1 &%,

Proof. It follows from the invariance of the linear differential form dlng¢
(cf. $3) that for any a € R

(d1n ¢ (4x)) (4a) = (d1a ¢ (%)) (a),
which can be rewritten as follows:
{(Ax)*, 4a) = (x", a).
This is clearly equivalent to Proposition 8.

Proposition 9. The convex cone V' adjoint to a convex homogeneous cone V
is homogeneous. Moreover, if the group G C §(V) acts transitively on V, then
the group G'={A": A€ G} C Q(V') acts transitively on V'.

Proof. Let x, y' € V'. By Proposition 7, there exists vectors x, y € V such
that x' = x°, y' = y*. Further, there exists a transformation 4 € § such that
Ax = y. Thus

A'y' = A'y* = A" (Ax)" = 2* = &'
(cf. Proposition 8). Since x', y' are arbitrary points of V', this means that §'
acts transitively on V'

If V is homogeneous, ther the mapping * has several simple properties which

it does not have in the general case. First of all,
¢y (x)py . (x*) = const(x € V). 9

In fact, for every x € V and for every automorphism A of V

@v (42) gy ((42)*) = gv (4z) gv- ((4') " z¥)
Py (2) Py (z¥)
= Tova-det (a1~ 9V (@) v (27).

Since V is homogeneous, this implies (9).

In the same way as we defined a mapping* of V onto V' we can define a map-
ping of V' onto V, inasmuch as V"= V. We shall denote this mapping by the
same symbol *,

Proposition 10. Let V C R be a convex homogeneous cone. For every x € V

x** =,

Proof. Let g be the tensor (more precisely, the tensor field) of the cadonical
Riemannian metric on V. For x € V the tensor g(x) can be regarded as a symmet-
ric bilinear form on R. It follows directly from the definitions (cf. formulae (3) and
(6)) that for any a, b € R

(d {x*, a)) (b) = - (g(2)) (a, b), (10)
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where the differential on the left-hand side is taken with respect to x. From (9)
we find that

In gy (z) + In @y- (z*)=const (z€V).
Differentiating this relation with respect to x we find that (cf. (10))

—(z*, a)+(g(2)) (z**, a) =0 (11)
for every a € R.

On the other hand, if we differentiate the relation (7) with respect to x we
find that (cf. (10))

(z*, a)—(g(2)) (=, a)=0 (12)
for every a € R. It follows from (11) and (12) that for all a € R

(8 (z)) (=**, a)=(g(2)) (z, a), (13)
whence x** = x.

. Proposition 10 has an interesting geometrical interpretation. Let x € V and
let Sx be the level surface of the characteristic function of V passing through x.
The hyperplane

Q.={z€R: (z*, z)=n}, (14)

where n is the dimension of R, passes through x and is tangent to S_ at this
point (cf. above). On the other hand, the center of gravity of the set O NV CQ,
coincides with x**, and therefore with x if V is homogeneous. Thus, the convex
homogeneous cones have the following remarkable property: every hyperplane
cross-section is tangent at its center of gravity to the level surface of the charac-
teristic function. We observe that this property does not hold, in general, for con-
vex.nonhomogeneous cones, as is shown by the example of a tetrahedral angle in

three-dimensional space.

§S. Convex homogeneous domains

In §6 of the present chapter and also in Chapter II it will be natural to con-
sider more general objects than homogeneous cones. We shall adopt the following
Definition 7. A convex domain in an affine space P is any nonempty open

convex set U C P not completely containing any straight line.

The convex domains U, C P| and U, C P, are regarded as isomorphic if
there exists an isomorphism of the affine spaces Pl and P, under which U; and

U, correspond to one another.

Clearly, a convex cone is a special case of a convex domain. The vertex of

o

the cone defines a “‘center’’ in the affine space and converts it into a linear space.
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The affine transformations of the space P that leave U invariant are called
its automorphisms. They form a group which will be denoted by G(U). It is easy
to see that §(U) is closed in the group of all nondegenerate affine transformations
of the space P. If U is a cone with vertex o, then all’the automorphisms of it
leave the point o invariant and are consequently linear transformations of the lin-

ear space that is obtained from P by taking the point o as center.

Ve shall denote the Lie algebra of §(U) by G(U) and refer to its elements
as derivations of U. The elements of G(U) are “‘infinitesimal affine transfor-
mations.”” We need a digression here to explain how this term is to be understood

and to establish the rules of operating with infinitesimal affine transformations.

Let P be an affine space. We denote the linear space of free vectors of P
by Rp. If we consider P as a differentiable manifold, then the tangent space to it
at any point can be identified in a natural way with the space Rp. For x € P,
a € Rp we agree to use x + a to denote the point of P that is the end of the vec-
tor a when its initial point is transferred to x; for x, y € P, x — y will denote the
element of Rp that can be represented by the vector with initial point at y and
end point at x.

If we now choose some point x, in P, then every affine transformation C

0
can be written in the form

Cx=é(x—xo)+c (15)

where ¢ € P and C is a linear transformation of RP that does not depend on the
choice of x, and is called the linear part of the transformation C. An infinitesi-
mal affine transformation may be thought of as a vector field on P, namely the
velocity field of some one-parameter group of affine transformations. In other
words, every infinitesimal affine transformation D is a mapping of P into Rp.

It can be written in the form

D(x) = A(x - xo) + a, (16)

where a € Rp and A is a linear transformation of Rp that does not depend on

the choice of x, and is called the linear part of the infinitesimal transformation D.

It is easy to derive the following commutation law for infinitesimal affine

transformations:
(D, D,)(x) = 4,D, (x) — A4,D, (x), (17

where Ai (i =1, 2,) is the linear part of the transformation D;. The exponential
mapping of the Lie algebra of infinitesimal affine transformations into the group

of nondegenerate affine transformations is given by the formula

> Ak
(expD)x:x—}—z ~—(k+1)(])(ar), (18)
k=0
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where A is the linear part of D.

Definition 8. The convex domain U is said to be homogeneous if the group
G(U) acts on it transitively.

We observe for later use that if some group § C §(U) acts transitively on U,
then the connected component of the unit element of § also acts transitively on
U. This follows from the fact that U is connected. Also, we easily establish the
following

Proposition 11. Let the affine group § act transitively in the convex domain
U of the affine space P. If the subspace R, C Rp is invariant under the linear
parts of all the transformations in G, then for any xy € U the cross-section of U
by the linear manifold x, + R) is a convex homogeneous domain in xy + R;.

Proof. Let Ql be the subgroup of § formed by the automorphisms C € § of
the domain U that leave the linear manifold x, + R, invariant. Since the sub-
space R, is invariant, it follows that every transformation C € § for which
on € x, + R, belongs to Ql. It is now obvious that Ql acts transitively on
Un(xy+Ry).

Every convex domain U in the n-dimensional affine space P can be put into
correspondence with a convex cone V(U) in the (n + 1)-dimensional linear space
R. To do this we imbed the space P in R as a hyperplane not passing through
0 and we put

VIU)={xx: x€ U, A\>0}. (19)

Clearly V(U) is a convex cone. Isomorphic convex domains correspond to iso-
morphic cones.

Definition 9. The convex cone V(U) is said to be the cone fitted onto the
convex domain U.

Conversely, every nonempty cross-section of a convex cone by a hyperplane
not passing through 0 is a convex domain. However, different cross-sections may
be nonisomorphic as convex domains.

If the domain U is homogeneous, then so is the cone V(U). For the automor-
phisms of U can be continued by linearity into automorphisms of V(U). If we
then add the similarity transformations we obtain a group that is transitive on V(U).

Definition 10. The characteristic function ¢, of a convex domain U is the
restriction to U of the characteristic function of the cone V (V).

With this definition Propositions 3, 4 and 5 remain valid for convex domains;
the quadratic differential form d?1n ¢U defines the canonical Riemannian metric
on the convex domain U, which is invariant under all the automorphisms of U.

We shall give one example of a convex homogeneous domain which, in a
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c'ertailibsense, is typical. We consider the domain
Jco>:cf+---+x$l (20)

(the interior of a paraboloid) in (n + 1)-dimensional space. This domain is convex,
contains no straight line and is invariant under the following two types of affine

transformations:
1) z;—>z,+a (i=1,...,n); zo—> 2o+ > (2a,7;+a});
i=t
2) z,— Az (i=1, ..., n); z,— A%z,.

It is easy to see that the group generated by these transformations is transi-
tive in the domain (20). The convex cone fitted onto this domain is isomorphic to
the spherical cone in (n + 2)-dimensional space (cf. the Introduction).

6. Stability and simply transitive groups of automorphisms

Proposition 12. Let U be a convex homogeneous domain in the affine space
P and let G be a closed subgroup of the group G(U) that acts transitively on U.
The stability subgroup X C§ of any point x, € U is a maximal compact subgroup
of the group G.

Proof. Since the transformations in K leave the point X invariant, we may
consider K as a group of linear transformations of RP (cf. §5). Its compactness
can be deduced either from the invariance of the positive-definite quadratic form
d?1n ¢y (%) or from the invariance of the bounded set (U - xy) N (x, - U) C Rp.

Suppose now that Kl is an arbitrary compact subgroup of §. We take a
bounded open set M C U and consider the set

K M={Cz: Ce#, z€M),

which is invariant under all the transformations in Kl' Since Kl is compact, the
set KIM is bounded. Its center of gravity x, lies in U and is a fixed point for
Kl' (The center of gravity of a bounded open set in a real n-dimensional space
is an affine invariant.) Thus, K, lies in the stability group of the point x; and
therefore is conjugate to a subgroup Kz of XK. We now take Kl to be a maximal
compact subgroup of §. The subgroup KZ is then also a maximal compact sub-
group and coincides with K. This proves the proposition.

Corollary. Under the conditions of Proposition 12, the number of connected
components of the group G is finite.

Proof. Since § acts transitively on U, so does its connected component of
the unit element QO' Therefore, every connected component of @ has a nonempty
intersection with K and the number of connected components of § does not
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exceed the number of connected components of K. Our result now follows from the

fact that the number of connected components of a compact group is finite.

We shall denote the connected component of the unit element of §(U) by
Go (0.

Proposition 13. If U is a convex homogeneous domain, then gO(U) coincides
with the connected component of the unit element of its normalizer in the com-
plete affine group.

Proof. We denote the normalizer of QO(U) by M. Clearly, J1> G(U). Let
x, € U and let the transformation C € JU be so close to the identity that Cx, € U.
Then

CU = CQO(U)xO = QO (U)C:A:0 =U,
i.e., C € §(U). Thus, there exists a neighborhood of the identity in the complete
affine group within which the groups Jl and §(U) coincide. This implies that
these groups have identical connected components of the unit element, which is
.what we had to prove.

Definition 11. The group § of affine transformations of an affine space P
is said to be triangular if the linear parts of the transformations in § can be
written as (upper) triangular matrices with respect to some basis.

When we imbed P in a linear space of one more dimension (as in the construc-
tion of the cone V(U) in §5), then G is imbedded in a group of linear transforma-
tions of R. The group § is triangular if and only if the corresponding group act-
ing in R is triangular.

It was proved in [4] that the maximal connected triangular subgroups of an
arbitrary Lie group are intrinsically conjugate. By virtue of the remark made above,
this theorem carries over to affine Lie groups.

It was also proved in [4] that if a linear group § is the connected component

of the unit element of an algebraic linear group, then it can be decomposed in the

form
G=K7, (21

where K is a connected compact subgroup and J is a connected triangular sub-

group of . This theorem also carries over to affine groups, if we adopt
Definition 12. An affine group is said to be algebraic if it is selected from

the complete affine group by polynomial equations connecting the coefficients of

an affine transformation in an affine coordinate system.
It is easy to see that an affine group is algebraic if and only if the linear
group corresponding to it in the space of one more dimension is algebraic. This .

allows us to carry the decomposition (21) over to affine groups.
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We shall make a few additional remarks about the decomposition (21). We
first prove that the intersection of any compact subgroup Kl of § with any of its
triangular subgroups :Tl consists of the unit element only. The transformations in
Kl are semisimple; their eigenvalues are equal to 1 in modulus. On the other
hand, the transformations in ffl have positive eigenvalues. These three conditions
can only be satisfied simultaneously by the identity transformation, which is what
we had to prove. This implies that in the decomposition (21) the groups Kand I
intersect only in the unit element, that X is a maximal compact subgroup, and
that J is a maximal connected triangular subgroup of Q Further, the group J
can be replaced by any subgroup conjugate to it. In fact, for every g =kt € §
(k€K, t€J) we have

§=Gg = HT g1 = (Hk)(LT) g =K (8T ¢).

This means that for J in (21) we can take any maximal connected triangular sub-
group of ©. In the same way we can show that X can be taken to be any maximal
compact subgroup of §.

The basis for the application of the results of [4] to the group of automor-
phisms of a convex homogeneous domain is

Proposition 14. If U is a convex homogeneous domain, then the group QO(U)
coincides with the connected component of the unit element of an affine algebraic
group.

Proof. Let JU be the normalizer of QO(U) that occurs in Proposition 13. We
shall show that J{ is an algebraic group, which will imply Proposition 14. The
affine transformations C € JU are characterized by the fact that

G, () €71 C Gy (D).

We denote by Ad the associated linear representation of the group of nondegener-
ate affine transformations in the Lie algebra of infinitesimal affine transforma-
tions. Then the transformations C € Jl can also be characterized by the fact that

(Ad O) G (D) c G(U). (22)

(We recall that G(U) is the Lie algebra of §(U).) It is easy to see that the repre-
sentation Ad is rational (in the linear case (Ad C)D = CDC™1), and therefore in
coordinate form the condition (22) can be written as a number of polynomial rela-
tions between the coefficients of C.

Propositions 12 and 14 and the results of [4] referred to above lead us to the
following theorem.

Theorem 1. Let U be a convex homogeneous domain in an affine space,
G(U) the group of all its automorphisms, X (U) the stability subgroup of some
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point %) € U, T (U) a maximal connected triangular subgroup of G(U) (cf. Defini-
tion 12). Then

G =XKW I (),
where K(U) N T (V) = {e}. The group T (U) acts simply transitively in U.

We observe that if U =V is a convex cone, then J (V) contains all the simi-
larity transformations with positive coefficients. In fact, the group generated by
these transformations and J (V) is connected and triangular and therefore coin-
cides with J (V).

Corollary. For every convex homogeneous cone V there exists a convex homo-
geneous domain U of dimension one less such that V is isomorphic to the cone
fitted onto U (cf. Definition 9).

Proof. By Theorem 1, there exists a triangular group J C §(V) that acts
transitively on V. Like every triangular linear group, it has an invariant subspace
R1 of codimension 1. Let x, be any point of V. It follows from Proposition 11
that the convex domain U=V ) (x, + R;) is homogeneous. Since 3x0 =V, the

subspace R1 cannot contain x, and the hyperplane x, + R, does not pass
through 0. Therefore V > V (V).

CHAPTER II
THE APPLICATION OF LEFT-SYMMETRIC ALGEBRAS

§1. The algebra of a convex homogeneous domain

Ve shall use the notation introduced in §5 of Chapter 1.

Suppose that in an affine space P we are given a convex homogeneous do-
main U. By Theorem 1, there exists a triangular affine group J (U) that acts sim-
ply transitively on U. We denote its Lie algebra by T(U). If x, is any point of U,

then the mapping
D— D(x)) (D€ TW)

is an isomorphism of the linear space T(U) onto Rp. Let D be the inverse im-
age of the vector a € Rp under this mapping, i.e.,
D, (xo) = a. (1)

Let L denote the linear part of the operator D,. Ve now define an operation of
multiplication A in Rp by the formula

aAb= L. 2)

Definition 1. The space Rp with the operation of multiplication A defined
by (2) is called the algebra of the convex homogeneous domain U with respect to
the point %, € U and the transitive connected triangular group J (U). .

Since U is a homogeneous domain and transitive connected triangular groups
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are conjugate, it follows that a different choice of the point x, and the group

J (U) would lead us to an isomorphic algebra. Therefore we may simply speak of
the algebra of the convex homogeneous domain U, regarding it as an abstract alge-
bra. We shall denote this algebra by 2 (U). Clearly, isomorphic domains corre-
spond to isomorphic algebras.

It follows from (1) and (2) that for any a € Rp, x € P
D,(x)=aA(x-x) + a. (3)
The domain U is the orbit of the affine group J (U) generated by the infinitesimal
transformations D . Therefore, it is completely determined where the algebra
(V) is specified.

In the particular case when the domain in question is a convex homogeneous
cone V in a linear space R, we shall regard the structure of Q(V) with respect to
any point x, € V and the group J (V) to be defined within R itself. (The space
of free vectors in R is naturally identified with R.) The infinitesimal transforma-
tions D are then linear and they can be identified with their linear parts L .

We shall now establish some properties of the algebra € (U) of a convex
homogeneous domain U. We shall use the following notation:

Lb=apnb, R,b=bAa,
[aAb] ZaAb—bAa'

[anbAcl=an(bic)—(and) Ac.
By the commutation rule for infinitesimal affine transformations (formula (17)

of Chapter I)
[D,, D] (xy) =L,b—Lya=[anb),

whence

[Dar Db] = D[GAU]-

and their linear parts satisfy

[Ls, Lyl = Liann)- (4)

Definition 2. An algebra satisfying the condition (4) is said to be left-sym-

metric.
The condition (4) can also be written in the following equivalent forms:
l[anbAcl=[bAanc], ()
(Lo, Ryl =Razo—RyR,. (6)
Equation (5) explains the term “‘left-symmetric algebra’’ (by analogy with
left-alternative algebras).
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Suppose further that ¢ = ¢>U is the characteristic function of U (cf. §5 of
Chapter I).

We shall calculate the first few terms in the Taylor series expansion of ln¢
in the neighborhood of x; € U. We may assume that d)(xo) = 1. Further, for every
a€Rp

¢ ((exp D,)zo) = (det exp L) ¢ (z,) = e=5P La,

since exp L  is the linear part of the affine transformation exp D . Taking loga-
rithms we find that

Ing((expD,) zo) = —Sp L.
By virtue of formula (18) of Chapter I
1 1
(expDa):to=xo+Z ((k+1)! a=z,+a+ala+ gal(epa)+ ...,

We put
s(a)=SpL,.

Then
Ing (:co—i—a+ %aAa—}-% an(apa)+ .. )
= (d Ing (z,)) <a+%aAa+%aA(aAa)>
+3 (@) (a+4ana) + 5 (@lng(z)(@)+ ... = —s(a).

If we denote by g(xo) the symmetric bilinear form connected with the quadratic
form d? lnqS(xo), then

(dzln(p(zo)) (a—}—% aAa) =(g(z,)) <a+% apa, a—}——,l—a,;a)
= (@109 (z) (@) ++ (@ 0 (r,)) (@ra) + (¢ (2,)) (a, ara).

If we omit the terms of higher than the third order of smallness with respect to a,
we finally obtain

(d10 g (2,)) (@) + 5 (d1n g (z,)) (@Aa)+ (d In g (z,)) ()]

+¢ [(dIng(z) (anr(@anra)) +3(8(2,) (a, apa)+ (@ Ing (z,)) (@) + . .
= —s(a).

Comparing terms of the first order of smallness we find that
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(dln¢(x0)) (a) = - s(a). (7)
Then, by Eomparing terms of the second order of smallness, we’have
(d? ln¢o(x0)) (a) = s(aAa). (8)
It follows from (4) that
s([aAb)]) = 0, (9)
i.e., the bilinear form s(aAb) is symmetric. Therefore
g(xy) (a, b) = s(aAb). (10)

Finally, from the quantities of the third order of smallness we find, using (7) and
(10), that

(d3ln¢(x0)) (@) = - 2s(aA(aAa)). (11)
Since In¢ is convex, (8) implies that
s(aAa)>0 if a#0. (12)

Definition 3. A left-symmetric algebra in which there exists a linear form s
satisfying the conditions (9) and (12) is said to be compact.

Thus, the algebra of U is a compact left-symmetric algebra.

The group J (U) is triangular; therefore the linear transformations L o @€ Rp,
are simultaneously reducible to triangular form and have real eigenvalues.

Definition 4. A compact left-symmetric algebra in which the operators of left
multiplication have only real eigenvalues is called a clan.

To summarize the results we have obtained, we may formulate

Proposition 1. The algebra of any convex homogeneous domain is a clan.

Let U=V be a convex homogeneous cone in the linear space R. Then, for
every a € R

Laxo = alx, = q,

i.e., %, is a right unit element in the algebra of V with respect to x,. It is not

0
difficult to see the effect of the transformation on in the space R. The group
J(V) contains the homothetic transformations with positive coefficients. There-
fore its Lie algebra T (V) contains the identity transformation E of the space R.

Since Exj = x, it follows that on = F and
% Ax - x
for every x € R. This means that %, is not only a right unit but also a left unit

in the algebra of V with respect to %y- This proves

Proposition 2. The algebra of any convex homogeneous cone has a unit ele-

ment.

Finally, we indicate the connection between the algebras of the domain U
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and the cone V (U).
Ve say that an algebra {, is obtained from € by adjunction of a unit ele-
ment if ¢ is imbedded in 81 in such a way that
g =20 +iXel,
where e is the unit element of ..

Proposition 3. The algebra of the cone V(U) fitted onto the convex homogene-
ous domain U is obtained from the algebra of U by adjunction of a unit element.

Proof. Suppose that the affine space P D U is, as usual, imbedded in the lin-
ear space R in the form of a hyperplane not passing through 0. The transforma-
tions in J (U/) can be continued canonically to automorphisms of the cone V(U)CR.
The direct product of the group J (U) and the one-parameter group of homothetic
transformations of the space R is a maximal connected triangular group of auto-
morphisms of the cone V(U). Its Lie algebra T(V(U)) splits into the direct sum

T(V()) =TW) + AEL.

The space Rp is naturally imbedded into the space R in the form of a subspace
of codimension 1. Let x, € U C V(U). If a € Rp, then D, € T(U) and

D,(P) C Rp.
This shows that the structure of the algebra of U with respect to %, is the re-

striction to Rp of the structure of the algebra of V(U) defined on R. Moreover,
R = Rp & 1A%y}

and x, plays the part of the unit element in the algebra of V(U) with respect to

%

§2. The construction of a convex homogeneous domain from its clan

Let £ be a given clan. We choose a point x, € L and consider the infinites-
imal affine transformations

Dyt z——sapN(z—zg)+a=L, (xr—1z,)4a (a,z€L) (13)
of {. By formula (17) of Chapter 1
[D,, Dy](2)=I[L,, Ly (x—xg)+ L,b—Lya= Liapn) (z— 74) + laAb],
whence
(D... Dy)=Dlass).

so that the transformations D, form a Lie algebra. Ve denote it by T({) and the
affine Lie group corresponding to it by J(2). The linear parts L, of the trans-

formations Da also form a Lie algebra. By the definition of a clan the operators
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L o have only real eigenvalues. This implies that they can be simultaneously re-
duced to triangular form ([4], Proposition 2) and this means that the group J(2)
is triangular.

Let U(2) be the orbit of T(2) in € passing through x,. The mapping
C— Cxo of J(2) into € is regular at the unit element of J(Q), because its
principal linear part

D,— D, (x)) = a
is an isomorphic mapping of T({) onto {. Therefore, X, is an interior point of
the set U(2) C {. Since the set U({) is homogeneous under the affine group
J(Q), all its points are interior.

Thus, J(2) acts transitively in the open set U(Z) of { containing x.

If in the above construction we use the point 2’0 instead of x,, then the do-
main U(2) is merely displaced by ;'0 ~ %,. For under the displacement of € by
2’0 - x; the point x goes over into ;'0 and the infinitesimal transformations D,
into the transformations

~

D,: T+ Tyg—Ty—> ap (T —T5)+a

or, if we make the change of variables x + ;'0 - %=
D,: y—ap(y—1z,)+a.

For x, we can take 0, for example. However, this is not always convenient.

If the algebra £ has a unit element e, it is more convenient to put %, = €; then
D, (zx)y=ap(r—e)+a=alz,

i.e., D = L,. We shall show that in this case the domain UQ) =V isacon-
vex cone in Q. First, we observe that for every number A and for every x € V()

(exp Lye) z = (expAE)z = etz € V (8).

Further, let s be a linear form on £, satisfying the conditions (9) and (12). The
subspace

Ty=1L,:s(a) = 0}

of the Lie algebra T(£) contains its derived algebra, by (4) and (9), and is there-
fore an ideal. It follows from (12) that

s(e)=s(eAe) >0.
Therefore T(2) splits into a direct sum of ideals:
T(Q) = Ty + trel.

The group T corresponding to it is simply connected (cf., for example, [4])
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and splits into a direct product of the normal subgroup 3-0 corresponding to TO,
and the one-dimensional normal subgroup {AF}) . o:

J@)= 3'0 x IAEL) S o
We denote the orbit of 3.0 passing through e € V(Q) by S. Clearly

V(&) =J AS. (14)
A>0 .
The tangent hyperplane to S at e is

P={e+a: s(a)=0}={z: s(z)=s(e)}.
For every a € T, we have

(expLu)e=e+a+%aAa+

It follows from (12) that S lies entirely to one side of P in some neighborhood
of e (the same side as the point 2¢). In other words, S is convex at e. Since S
is homogeneous under the linear group 3'0, this implies that it is convex at all
points. Therefore, for every x € S
s(x) > s(e)

and, for any A > 0,

s(Ax) > As(e) > 0.
Therefore

s(x) >0

forall x € V(Q). If C € J(2), then

(C's) (x) = s(Cx) >0

for all x € V(£). The mapping C — C's of J (L) into the space ' adjoint to
€ is regular at the unit element of J (2). For its principal linear part
La - L’a s (a € 8)
is an isomorphism of T(Z) onto ', because for any a € {
(L'as) (a)=s(aAa)>0

and L'a # 0. Therefore, the linear forms of the type C's, C € J (), fill a neigh-
borhood of the form s. All these forms are positive on V(). Therefore the con-
vex hull W of V({) contains no straight line. Clearly, W is invariant under
J(2). We consider the canonical Riemannian metric in the convex cone W (cf. §3
of Chapter I). It is invariant under J (2). The set V(Q) C ¥ is homogeneous and
so is complete in this metric and therefore coincides with W. Thus, V(2) is a

convex cone in {. Incidentally we have proved that

s € (V ()" (15)
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Now let € be an arbitrary clan, not necessarily containing a unit element. We
shall show that U(£) is a convex domain in £. We consider the algebra &, ob-
tained from & by adjunction of a unit element:

81 = 8 - {Ael.

It is easy to see that 81 is left-symmetric and that the operators of left multipli-
cation in it have only real eigenvalues. Suppose further that s is a linear form on

{ satisfying (9) and (12). Let a be the maximum value of s on the unit sphere
s(a A a) = 1. Then, for all a €

(s(a)? < a?s (a Aa).
We now extend the form s to 81 by putting
s(e) =1+ a?,

and we verify that the so extended linear form s still satisfies the conditions (9)
and (12). For any a, b € € we have

s ([(he +a) A (pe + b)) = s ([anb]) = 0.

Further
s ((he 4 a) A (Me+a)) = A%s (e) + 2As (a) + s (aa).
Since, for a# 0

s(e)s(ana)—(s(a))*=(1+a*)s(ana)—(s(a))* >0,
it follows that, for Ae + a £ 0,

s((Ae+a)A(re+a)) > 0.

This proves that the algebra Ql is a clan.
We consider the mapping

X— e +x
of { onto the hyperplane e + ¢ C {,. The infinitesimal affine transformations
D,:x—aAx+a (a€Q)

of { then go over into

e+x—alAx+a=al(e+x),

i.e., into bounded infinitesimal transformations L, a € £, of ¢, onto e + L.
Therefore the set U(2) (constructed for x0'= 0) goes over, under the above map-
ping, into the orbit of the linear group J, generated by the infinitesimal transfor-
mations L, a € €, of 81' Since [Z A Ql] C &, the infinitesimal transformations
L,, a€ ¢, form an ideal in the Lie algebra T({,) and the linear group J gener-
ated by them is a normal subgroup of 3(81). Therefore
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T@) =T xEY 5,

and the orbit of J passing through e coincides with the intersection of the hyper-
plane e + & with the orbit of 3'(81), i.e., with the cone V(Ql). Thus,

e+ U(Q)=(e+ )N V(Ql).

By what we have shown above, V({,) is a convex cone in &,. Therefore U(Z)
is a convex domain in .

Comparison of the formulae (3) and (13) shows that the algebra of U(Q) with
respect to x, and J () coincides with . This proves

Theorem 2. The mapping that assigns to every convex homogeneous domain
its algebra (cf. $1) is a one-to-one mapping of the set of convex homogeneous do-
mains onto the set of clans. Moreover, the convex homogeneous cones, and only
these, correspond to clans with a unit element.

Of course it is assumed in the theorem that the convex homogeneous domains,
and the clans, are considered to within an isomorphism.

The definition of a clan immediately implies that every subalgebra Ql of a
clan € is a clan. Every such subalgebra is connected with a plane cross-section

of U(Q) that is homogeneous under a subgroup of J (2).
Proposition 4. Let &, be a subalgebra of the clan L. The convex domain

(xg+ &) N V@)

of the affine space x,+ L, is homogeneous under a subgroup of J(Q) and is iso-
morphic to U(Z,)).

Proof. The transformations D, a € 81’ form a subalgebra of T(Z), which
we denote by T, (). For any a, x € €., we have

Dy(xg+x)=aAx+a€l. (16)
This implies that the subgroup 3-1 (2) of J(8) corresponding to T, () of T(Z)

leaves the linear manifold %+ Ql invariant. Since J (L) acts simply transitively
on U(Q), for every point x € U(L) the mapping

D,— D, (x) (a € Q)

is an isomorphism of T(2) onto . Consequently, for x € U(2) N (xO + ) the
restriction of this mapping to T, (2) is an isomorphism of T, ({) onto a sub-
space 82 C 53,1. Dimensional arguments show that 82 = 81. This shows that
3-1 (2) acts transitively in the domain (x, + £;) ) U(Q) of the affine space
%y + 4.

The formula (16) shows that 3.1 (Q) acts in Xy + Ql in the same way as
3'(81) in £,. Therefore the domains (xg + ) N U(Q) and U(L,) are isomor-
phic. ‘
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§3. Principal decomposition

Let € be a clan, s a linear form on ¢ satisfying conditions (9) and (12).

The scalar product
(a, b) =s(aAb) (17)

introduces into ¢ the structure of a Euclidean space. There exists a unique ele-

ment u € ¢ such that
s(a) = (u, a) (18)

for all @ € 2. We shall show that the operator Ru of right multiplication by u in

€ is symmetric in the metric (17). For any a, b € € we have

(a, R,b)—(b, Rya)=s(@n(bAu)—bn(anu)=s(L, L)
: = $(Liapny) = ([a A b], u)=s(la A b])=0.
Further, for every a € &
(u A u, a)=(R,u, a)=(u, R,a)=s(R,a)=(u, a),
which implies that u A u = u, i.e., that u is an idempotent of {.

Definition 5. The element u defined by (18) is called the principal idempo-
tent of the clan .

If ¢ has a unit element e, then u = e, because
(e, a) = s(e A a) = s(a).
The identity (16) implies that
(L, R]=R,-R2
The operator P =R - Rlz‘ is symmetric and commutes with R . Further,

SpP*=Sp(L,, RJP=SpL,[R,, P]=0.

Therefore P =0 and so

R2 = R, (19)
(L, R,]=0. (20)

The equation (19) means that Ru is an orthogonal projector onto a subspace
80 C 2. Thus, £ can be split into the sum of orthogonal subspaces,

=2, +7, (21)
in such a way that the operator Ru is the identity on 80 and annihilates all the
vectors in 1. The decomposition (21) is called the principal decomposition of

the clan . Clearly, if the idempotent u lies in ¢, so ¢( # 0. In a clan with a
unit element 80 = Q.
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We now find the operator L . Forall a, b € € we have
(L,a, b)+(a, L,b)=s(Lypab-+ L,L,b)
= s (Lapub+ L,L,b) = (R,a, b)+(a, b).
If we denote by L:, the operator adjoint to Lu with respect to the metric (17),

then
*
Lu+Lu=Ru+ E.

This means that the operator
K=~ (R + E)—
is skew-symmetric. It follows from (20) and the fact that the eigenvalues of Lu

are real that the eigenvalues of K are also real. This can only occur if K = 0.
Thus,

L,=5 (R, +E), (22)

- i.e., the operator Lu is the identity on 80 and coincides with %4E on .

Lemma 1. If in a left-symmetric algebra
La=h,a, Lb=M\b, R.a=pa,
for elements a, b, c, then
L.(anb)y=M,+A—p)ab.
Proof. Using the identity (5) we find that

Lianb)y=cn(anb)y=(cAha)Ab+[chanbl=ranb+lancb]
=Mapnbran(canb)—(@arne)ynb=(A,+A,—p)aAb,

which is what we had to prove.
We shall apply Lemma 1 to the case where ¢ = u, the principal idempotent of
the clan {, and the elements a and b are taken from the subspaces 8 and N

in different combinations. Then we obtain the following “‘multiplication table

in Q

L | N
| L | N | (23)
N 0 Qo

From this table it is clear, in particular, that QO is a subalgebra. The idem-
potent u € 80 serves as a unit element for QO' If a, b €N, then

R,[a A b]=Liasyyu=[L,, Lyu=LRb—L,Ra=0,
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i.e., [a A bl €N, On the other hand, (23) implies that [a A b] € ¢, This means
that [a A b] = 0. Thus, in addition to (23), we have

(R A RN]=0. (24)
Finally, forall a € ¢, x €N
[L“, Lx] - Lan'l

since x A a= 0. Applying both sides of this equation to the vector y € It we find
that

Lu(IAy)=L¢Lsz+xL\Luy‘

Therefore

(exp L) (z A y) = (exp L) z A (exp Ly) y (25)

for arbitrary a € ¢, x, y € .

Proposition 5. Let £ = 80 + N be the principal decomposition of the clan 2,
and let u be its principal idempotent. If U(R) and U(L) are the convex domains

in & and £y, respectively, constructed according to the rules of §2 with Xy = U,
then U(QO) = V(Qo) is a cone and

U(8)={z+y: z€ Lo, yeN, z—%yAyEV(So)}

Proof. As we remarked above, the idempotent u is the unit element of QO'
This implies that V(QO) is a convex cone in 80. The group 3(80) acts transi-

tively on V(QO) and is generated by the infinitesimal transformations

x—alx (a,xEQo).

The group J (2) is transitive on U(L) and is generated by the infinitesimal

transformations

D,: 1:+y—-+ﬁA(m—{—y——u)%—a:a{_\a"%—uAy (a, €&, yeN)
and

Dy aty—>bA(r+y—u)--b=bpy+b (z€Xo, b, yeN).

Using. the same notation, we have
(exp D,) (z+y) = (exp L)z +(expL,) y, (26)
1
(expDy)(z+y)=z+y+bAy+b+50A00b

(cf. formula (18) of Chapter I). We rewrite the last relation, combining the terms

in 80 on one side and those in !t on the other:

expD,) (z+y)=(o+bay+5b0b)+(y+). (27)
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We shall show that the affine transformations (26) and (27), and therefore any

transformations in J ({), leave the domain
0@ ={z+y 262, yeR, 2— 3y AyeV (S}

invariant. Let x € Qo, y € R be such that x + y € U (Q). By virtue of (25), for
every a € ¢

(expLy)z — 5 (expLy) yA(exp L, )y—(expLa)(r——y A y)EV(ﬁo)

since V(Qo) is invariant under the transformation exp L ;. Further, using (24), we
find that for every b € N

1 _
z+bAy+%bAb—~2_(y+b)A(y+b)=z—%yA y €V (Lo).

We shall now show that the group 3'(80) acts transitively on U(Q) Let
x€8 ,y €N, x+y€U(Q) Then

(expD_)(z+y)=2—5y AYEV () C U(2).

Further, there exists a transformation in 3'(80) that transforms the point
x =Yy Ay of V() into the point u € ¥ (2 ). It is clear from (26) that this
transformation is the restriction to 80 of a transformation C € J (2). We have

1
(CexpD_))(z+y)=C (x—gyé\ y) =u.
Thus, any point of U@ goes over into u € U(Q) under some transformation of

J(Q). This implies that J (Q) acts transitively on ﬁ(Q)

Thus, the sets U({) and U(2) are both orbits of T (2). Since they have the
point u in common, they must coincide.

Proposition 6. In the notation of Proposition S, for every ¢ € U(Q) the cone
¢+ V(Qo) is the largest cone with vertex at ¢ contained in U(Q).
Proof. Let ¢ = a + b, where aGQ ,bEMN. Then a-%UbAbE V(Qo). For

every x € V(Qo)

a+z—5babEV(R),

so that ¢ + x € U(Q).

Let xeﬂo,ye?n be such that ¢ + A(x + y) € U(L) for all A > 0. This
means that for A > 0

a4+ Az — 5 (b--hy) A (b+Ay) €V (L)
or, if we divide by AZ,
e H(bren)a (orere
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Passing to the limit, as A — o, we find that
—y LAY EV (L)
If s is a linear form on ¢ that satisfies the conditions (9) and (12), then its re-
striction to £ also has these properties. It follows from (15) that s(y A y) <o.
This is only possible if y = 0; but then
x+y=x=hm%(ﬁ+lw—%bAb)EVwﬁ

A+

which proves the proposition.

There was an arbitrary element in the construction of the subalgebra QO c@
connected with the choice of the form s. Proposition 6 shows that the subalgebra
80 and, therefore, the principal idempotent u, which is its unit element, do not,
in fact, depend on the choice of the form s. For the subspace QO C € coincides
with the linear hull of the cone V(QO), and by Proposition 6, the latter has an in-
variant geometrical significance.

Proposition 7. In the notation of Proposition S, for every y € Nt

u A yeV (L)

Proof. It follows from Proposition 5 that

SYL Y +yeU®E).
Since the set U(Q) is convex,

Svar=t[(draven)+(drnv-n)] v

but %y Ay € & and therefore Y3y Ay € V(Q).

§$4. Normal decomposition

In the present section we shall study clans with a unit element. The results
we shall obtain are easily generalized to arbitrary clans, but we shall not need
this in what follows.

Every nonzero element v € & for which v A v = v is called an idempotent.

Definition 6. A normal decomposition of a clan 2 with a unit element is a
decomposition of the space { into the direct sum of subspaces

2=2.21; (i1j=1v~--9m)'
i<i
having the following properties:

1) for every i, { . is one-dimensional and is generated by idempotent €5

i
2) the operators L‘. = Le; and R, = R, leave the subspaces Q,‘k invariant
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and on each of them they reduce to multiplication by a number given by the follow-

ing table:

l Lii | Li(G=i) | Lin (k1) | Ljn (7, k#1)

Ly | 1

1 0 . (28)

=) Nl-a

RN
I I| | 0

Obviously, in the notation of Definition 6, the element X e, is a unit element
of {. Suppose further that s is a linear form on ¢ satisfying the conditions (9)
and (12). It follows from the equation x = 2[e; A 2] for x € Qii (i <)) that

s(QiI.) =0 for i <j. (29)

The main purpose of this section is to prove the existence and uniquéness of
the normal decomposition.

. Lemma 2. Let € be a clan with unit element e. There exist a subalgebra
&, ¢ € and an idempotent v € & such that
22, 4}
(direct sum of subspaces) and the element u = e — v is the principal idempotent
of the clan Ql‘

Proof. By the Corollary to Theorem 1, V({) is isomorphic to the cone fitted
onto a convex homogeneous domain U. If 81 is the algebra of U, then { is ob-
tained from 81 by adjunction of a unit element (Proposition 3). Let u be the prin-
cipal idempotent of the clan 81' We put v = e — u. It is easy to see that 81 and
v satisfy the requirements of the lemma.

Proposition 8. Every clan with a unit element has a normal decomposition.

We conduct the proof by induction on the dimension of the clan. Let ¢ be a

clan with a unit element e. We apply Lemma 2 to it and form the principal decom-
position of the clan 81:

81 = QO + N
(cf. §3). The clan 80 has the unit element u; by the induction hypothesis it has
the normal decomposition

Bo:Ejgij (i, ]'=1,'“,m__1).

1<
Let e; (i=1,+++, m=1) be the idempotent generating the subspace 8‘.‘. and let
L‘- = Lei' It follows from the properties of the principal decomposition that the

operators L leave ! invariant and that for any x, y € %t

Li(zpy)=Lzry+arLy. (30)




THEORY OF CONVEX HOMOGENEOUS CONES 375

Moreover, the operators L‘. commute with one another and have real eigenvalues.
The space N splits with respect to the operators L‘. into the direct sum of
weight subspaces:
N=X %a,

where a = (al’ cee, am_l) are distinct collections of real numbers and the opera-
tors Li -a;E (i=1,+++, m~1) are nilpotent on the subspaces % .

We examine the subspace % A %QC 80. It follows from the definition of
N, and the relation (30) that the operators L; — 2a;E are nilpotent on 2t A% .
Since s(% A R,) # 0, there exists a k such that the projection of % A 3t onto
Qkk is not zero (cf. (29)); but then a; = %8”‘. Moreover, this implies that the
projection of N A ?R onto subspaces . i different from Qkk is zero, because
on these subspaces the operators . L have different eigenvalues (cf. table (28)).
Thus, a can only take the values a(l), vor, alm=1) where a(k) =434, jf> more-
over ma(k) A ?Ra(k) C &

For j <k the operators L’. -W%E, L, -%E, L; (i#], k) are nilpotent on
the subspace N ) AR (k) C $y; it is clear from table (28) that % X0 AR () C
g jk The formula (29) shows that the subspaces I 2 () and N L (k) are orthogonal
thh respect to the metric (17). Therefore the %t L(k) are invariant not only under
the operators L, but also under the adjoint operators L

Using the telatlon (30), we find that for x, y € ma(,,)

(Liz, )+ (2, Ly) = s (L (20y)) = dyps (22 y) = D3y (2, 9).-
This means that on ma(k)
Li + L: = 6”‘E

ie,, L; - %8‘-,‘E is a skew-symmetric operator. Since the eigenvalues of Li are
real, we finally obtain that

1 '
L, = - 0;nE  on N w)- (31)
Finally, it follows from the properties of a principal idempotent u of Ql
and from the equation v = e — u, that
L,=4E, R=F on.%, (32)
L,=R,=0 on &, (33)
We now put e, = v, & ={Ao}, &, = R k) k=1,+++, m-1). It fol-
lows from (31), (32), (33) that the decomposition

8= 2 (ij=1,...,m)

1<

is a normal decomposition of {.
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From table (28) and by means of Lemma 1 we can easily deduce the following

relations which hold for any normal decomposition of :

2,08, =0, if j=+=k 1[I, (3%)
&,-AB,,;CQW (35)
QUAQ;‘) C Q‘h or 8'11,‘ (36)

It follows, in particular, that the subspaces Qij are mutually orthogonal.
When a, b € Qii we have a A b= e, and (g, b) = s(a A b) = As(e;), whence
A = (a, b)/ S(ei)’ SO thﬂt

aNb =

@0 o (a,bEQ,) (37)

s(es)
We observe that s(ei) = (e, ei) > 0.

Proposition 9. In the notation of Definition 6, every idempotent v of ¢ can
be expressed inthe form )

v=¢ej+ ...+ ey (i, <...<ip)
Proof. Let .
v= ke + Dai; (a5 € L))
i<j

We assume that not all the a;; are zero. Let iy, jo be such that %io # 0 but

a;; = 0 for j>j, or j=j,, i>iy. Then the projection of the element v A v onto

QiOiO is equal to
o s Ay A A, +3A;
ettt agits Fhe= (= + by )iy =~ g,
Therefore, if v is an idempotent, then
A; +3A;
_ﬁ;_io_ 1. (38)
Further, the projection onto Qii gives
2 N\ (@i %d) g
Mt 2 S M
i
In particular, A; > )\f, and so
0<A <1 (39)

For i=j, we obtain )\lz = /\io,

of )\io into (38), we find that A; =2 or — 1, which contradicts (39). Thus, ai;‘ =
0 for all i, j. Clearly, in this case the coefficients A; may be equal only to 0

i.e., )\io =0 or 1. If we substitute these values

or 1.
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={zel:

Corollary. For every idempotent v € & we put
. T VAT =1x).
The idempotents e, of the clan Q are the only idempotents for which

dm@ =1.

Proof. It is clear from (28) that if
V=€t te,

where i) <... < i, then
. 3
Q= Z Rigie-
8t

If dim Qv =1, then necessarily & =1
This Corollary gives an invariant characterization of the idempotents e
which will play a very important part in the proof of the uniqueness of the normal
decomposition. But first of all we obtain from it the invariance of the number m
Definition 7. The number m in the normal decomposition of a clan { with

unit element (cf. Definition 6) is called the rank of the clan £ or the rank of the

convex homogeneous cone V().
’(The rank of a convex homogeneous cone could also have been defined as the
dimension of its maximal connected commutative group of automorphisms, consist-
ing of semisimple transformations with real eigenvalues.)
Proposition 10. Let £ be a clan with a unit element and let
2P (r=1,2)

Q —
~ Z
I<igjsm
Then there exists a permutation i — i of the set

be two normal decompositions
, m such that

ofindic«s 1 .
1) fi<j, z <], then 8(2)—8(1)
i

2) 1" i<j, but i >], then Q(z) - 8(1)
]l
Further, for i <
il

Pro f. It follows from the Corollary to Proposition 9 that there exists a per-

{z €g: o”’A r~e“’4\.r—17x},

l»|-—‘

=

;

mutatios i — i, such that el2)= e(l) Clearly, ¢(2) - )

V= z€l: e‘z’AI~(§”/\l— z} =

which implies that 8(2)— 8(1) if 7 <] and 8(2)— 8(1) if i >]. In the latter
o = 9w Qo — 9w,

ro 8 C

case we have
U Uy
but, on the other hand
AU U el U1



378 E. B. VINBERG

Therefore, 8512) A 8(5.) =0 and 8(5.) =0 (cf. formula (37)).
We now establish some properties of clans which will be important in Chapter

III. We use the notation of Definition 6 and we take G;i» b.., oo

ij to be arbitrary

elements of Q‘.,..

Since { is left-symmetric, it follows that if i < j <k,

(a3, bjh Acp)=s (Lﬂiijjhcik) =S ((Lbjh La'.j T Lla,-]Abjh]) Cin) =S (Laiijbjhcik).

i.e.,

(ay;, bjhA"ik)=(aijAbjkv Cin)- (40)

In the same way we derive the formula
(a;, e O bjh) =(a;; A bjr, cq)- (41)
The formulae (40) and (41) show that the products of the form b,’k A ¢;, and
cir A bik are uniquely determined once we are given the products of the form
Further
(ai! AN bih) A (aij A bjk) = [(aij A bjk) AN a”] AN bjh
T O (a5 A bjy) A bjy) =a;; A (lag; A by A byy)
=5 O (@ A by A b)) — a5 A (b A (ag; A b))
. (b]kv b]k)
ey G O (@A) —ag A (b A (4 A b))
- (aij, aij) (bjn, bjy)
o s (e3) s (ej) € O (bi’i A (ai;‘ A b;h))»

whence, by (40),

(a;, I\ bjly ay; I\ byy)

iir @i;) (Biny b;
_ (o aii) (Biwr bjn) (s byn O (@55 O b))

s (e5)
_ (@i, aii)(ij;u. bin) (a;; A big, ag; A by,
so that, if i <j <k,
(@5 2 bjne a5y 8 b3) = 5.5 (@450 04,) (b By (42)

The next formulae are the identity (5) written out in two special cases when,

by (34), it takes a particularly simple form:
lag; AN b el =0 (< k), (43)
lai; A b N e l=0  (F#k, ). (44)
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CHAPTER III
MATRIX CALCULUS

§1. T-algebras
In this section we shall construct a formalism which will be convenient for
describing and studying convex homogeneous cones.
Definition 1. A matrix algebra of rank m is an algebra 2 bigraded by sub-
spaces QI‘.I- (i, j=1, +++, m) such that
Uiy Ujn  Uin

and, for j £ 1,
mijﬁm = 0.

It is convenient to represent the element a of 2 by the matrix (aii)’ where
the a;; are the projections of a onto the ?I"i' Here the matrix multiplication is
carried out according to the usual rules.

Definition 2. An involution of a matrix algebra U is a linear mapping * of
% onto itself that satisfies the following conditions:

1) a** =a;

2) (ab)* = b*a*;

3) UL Uy,

In matrix notation an involution is ‘‘transposition and conjugation’’:

(a*);; = aji-
Let 2 be a matrix algebra. We put
i)
The subspace % is a subalgebra of U ; its elements are written in the form of
upper triangular matrices. If we are given an involution in the algebra 2, then we

can define the subspace
X={re¥: z*=1z} (2)
of “‘Hermitian matrices’’ and the subspace

N =(keU: k*= —k) (3)

of ‘‘skew-Hermitian matrices.”” Clearly U = X & ®.
We shall also use the following notation:

[ab] = ab — ba, (%)

{abe] = a (bc) — (ab) ¢, ()

ni)- =dlm91”. (h)
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In a matrix algebra with involution

n‘.’ = nii . (7)

In any matrix algebra % the subspaces U, are subalgebras. It may happen
that they are all isomorphic to the algebra R of real numbers. The unique isomor-
phism of .. onto R will then be denoted by p and the unit element of U;; by

e;. Further, the “trace’” of the matrix a is defined as follows:

Spa= X ne(ay,). (5)
where |
o=t B "
s¥i .

Definition 3. A matrix algebra 9 with an involution * is called a T-algebra
if the following conditions are satisfied (cf. the notation adopted above):

() all the subalgebras 2 . are isomorphic to the algebra R of real numbers;
(II) for every a;; € 21‘.’.

() Sp [ab] = 0;
(IV) Sp [abe] = 0;
(V) Sp aa* >0, if a# 0;
(VD) for any ¢, u, w € T
[tuw] = 0;

(VII) for any ¢, u €

[tuu*] = 0.

By applying the involution * to the identity (VI) we obtain the equivalent con-
dition

(VI') for any ¢, u, w € $

[t*u*w*] = 0.
Further, the condition (VII) can be written in the following polarized form:
(vit’) for any ¢, u, w € S
[tuw*] + [twu*] = 0,

whence, if we apply the involution, we obtain the condition

(VII") for any ¢, u, w € <
[tu*w*] + [ut*w*] = 0.

1) This definition of the numbers n; is essential only for the assertion of Lemma 2,
used in Y94, 5. Everywhere else the n; may be taken to be fixed positive numbers.
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Finally, we note that in a T-algebra

Spa* =Spa, (10)

because for fixed i the involution * induces an isomorphic and, therefore, identi-

1 cal mapping of U;; > R onto itself.
Let 2 be a T-algebra of rank m. We shall refer to the permutation i — 7

of the set {1, -++, m} as admissible if from 1<j, i >] it follows that n;; = 0.

Definition 4. An inessential change in the grading of a T-algebra  is a
change in its grading consisting in the replacement of each subspace ?Iil. by

U, ., where i — i is an admissible permutation.
Ly
The point of the conditions leading to an inessential change in the grading is

that the subspace $ of triangular matrices remains unaltered.

Definition 5. A mapping of a T-algebra U onto a T-algebra % is said to be
isomorphic if, after an inessential change in the grading of [ (or, equally, of QI‘)
it becomes an isomorphism of the bigraded algebras with involution. Two T-alge-
bras are said to be isomorphic if there exists an isomorphic mapping of one of
them onto the other.

Let U be a T-algebra of rank m. For each matrix a = (aij) € U we put

A 1

a=—2—2au+2a”, (11)
i<y

a=— Nay+ Y ay, (12)
i>j

Clearly, @ is an upper triangular matrix, a@ is a lower triangular matrix and

a=a+a. (13)
It is also clear that
@ = (o, =) (14)
In particular, for a Hermitian matrix x,
= (2)*. (15)
We define a bilinear operation A in the space 2 by the formula
aAb=ab+ ba. (16)

Lemma 1. For any a, b € U

~

[anbl=labl, [anb]= —[ab].
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Proof. In view of (13)
[a A b] =&b+b(}—5a—a{)
=ab+ab+ba+ ba—ba—ba— ab— ab = [ab] —[ab].
It is easy to see that [31;] and [gé] are upper and lower triangular matrices,v *
respectively, with zeros on the diagonals. This implies the result.

The space X of Hermitian matrices of  is closed under the operation A.

In fact, for any Hermitian matrices x, y
(@& y)* =@y +ya)* =yz+ay=z Ay
Lemma 2. For any x € X the operator

L:y—zAny (yeX)
in X has only real eigenvalues. Its trace is equal to Sp x.

Proof. For i < we put

Xy =X+ %) (17)
The space X splits into the direct sum of the subspaces xii (i, j=1,+++, m),
where . .
dim ¥ ni; if 1<y,
&I if i</
Further, let
= M Eg+ 2 E (<)) (18)
R<i l<j

If i <j, then xii is naturally isomorphic to the factor space X4/ ¥%bi"1 and
x,.i to the factor space X!/ ¥i7Lm (if we take x0m — o). If y € x,‘jv then
A 1
Lyy=zy+yr=- (e(zy;) +e(z;) (Wi + 1)
- . \
+ 2} T3y + 2‘4 YijT s + 2‘1 Ts;Yji 21 YjiZis-
<i s<j 87j s
Here it is clear that
4 (mod X%77%)  if i</,

Ly =5 @)ty { (mod ¥°%™) if  i=].
Therefore, the eigenvalues of L  are of the form l/z(p(xii) + p(x/.j)). Their sum,
with the corresponding multiplicities, is equal to

1
2 Q(zy;) + 2 n;; (e (z;;)+e(z;;)) =Sp z.
i<)
This completes the proof of the lemma.
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$2. The convex cone connected with a T-algebra

The axiom (VI) in Definition 3 shows that the triangular matrices of U form
an associative subalgebra of it. If the triangular matrix ¢ is such that t;;#0 for
all i, then it is not a divisor of zero in this subalgebra. Therefore the set

T U)={teZ: t; >0 (i=1, ..., m) (19)

is open in © and is a connected Lie group. Its Lie algebra T(2) can be identi-
fied with € when the commutation operation is defined by the formula

(¢, u] = [¢u]. (20)

We consider the mapping

F:it—-tt*e¢X (te%). (1)

Let e denote the unit matrix. The principal linear part of F at e is of the form
dF: t — t - t*

and is an isomorphism of the linear space £ onto X. Therefore, the image of

J(2) under F contains a neighborhood of the matrix F(e) = e in X.

Ve shall show in §3 that every Hermitian matrix can be expressed in the form
tt* in precisely one way, where t € (). In other words, the set

V()= {tt*: te.T (¥)} (22)
is a one-to-one image of T () under F. The transformations

n(w): uu* — (wu) (u*w*) (u, we T (Y)) (23)

of V() correspond to the left translations of J (Y). Differentiating with respect
to w and putting w=e, dw=1t € T, we find the corresponding infinitesimal trans-

formation:
dro(t) : uu* — (tu) u* 4 u (u*t*).

The axiom (VII) for a T-algebra shows that the transformation dr(¢) is the restric-

tion to V() of the infinitesimal linear transformation
Dy:y—ty+yt* (yeX) (24)
of X. Therefore the transformations #(w), w € 3-(91), are also the restrictions to

V() of certain linear transformations of ¥. These transformations clearly act

transitively on ¥V (20).
If x=t+t* t€ T, then
=t x=t*

and the transformation D, defined by (24), coincides with
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Lx ty —xAy.

Therefore, the transformations Lx, x € X, form a Lie algebra. Suppose that
x, y € X and that :

(L, LY=L, (z€ZX).

Applying the last equation to the matrix e we find that

z=Le=|[L,, Le=[zAy].

Thus,
[Ly, Lyl = Lzan,

i.e., the operation A in X satisfies the conditions for left symmetry (cf. $1 of
Chapter II).

By 2(2) we denote the algebra defined on X by the operation A, and we
shall show that (%) is a clan with a unit element.

We have already proved that (%) is left-symmetric. We have also proved
(Lemma 2) that the operators of left multiplication in £ (%) have only real eigen-
values. The unit matrix is the unit element in 2 (). Thus, it remains to show
that the left-symmetric algebra (%) is compact. For this purpose we put

s(x) =Spx (x € X).
By Lemma 1, for any x, y € X,

s(lz & yl) =s(lzyl)—s (zy)) =0.
Further, by axioms (III) and (V) for a T-algebra
s(z A z)=s(§cx—{—:c:c) = s (zz+ zz) = 5 (2%) > 0,

if x# 0.

Clearly

V() = V(&)

(cf. $2 of Chapter II). Therefore V(20) is a convex homogeneous cone.

An isomorphic mapping of T-algebras preserves the property of matrices being
triangular and therefore commutes with the operation " . Therefore isomorphic

T-algebras correspond to isomorphic left-symmetric algebras and hence to isomor-
phic convex cones.

Proposition 1. For every T-algebra U the set V() (cf. 22)) is a convex
homogeneous cone in which, by (23), the group J () acts linearly and transitively

(cf. (19)). Isomorphic T-algebras correspond to isomorphic convex cones.
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§3. The equation of the cone V(%)
In the T-algebra 2 of rank m we consider the subspaces
Y® — 2 q, (k=1,...,m).
i, j=1

With every Hermitian matrix x € 9 we associate a sequence of matrices x(¥) €
Ak (k= 1, «++, m) as follows:

I(m) =2z,

3 kR
,I(h—l) 2 (Q (.’l'(h) (k) Iﬁk)l‘( )).
i, j=1

We can say that the matrix 2¥~1) is formed from the second-order “‘minors’’ of
k), e put

p(@) =) (k=1,..., m). (25)

It is easy to see that p, (2) is a homogeneous polynomial of degree 2™~k in the
coordinates of the vector x € X.

Lemma 3. [f x= tt*, where t €<, then
k
2y =([] p(2) 2 tuti
s>k 1=1

Proof. We prove the lemma by induction, passing step-by-step to smaller
values of k. We assume that for some % the assertion of the lemma has been

proved. Then, for any i, j<k -1,

o= = o afl) o) — =g}
: 2
= ([l po@) 2 tot5i— (1 Py (@) (@ (tn))* tintii
s=hk =1 s>h
) A k—1
- ( Hh DPs (.’E)) (Ei tilt;l - tiht;k) = (812—1}1 Ps (.’II)) l§1 tilt)‘"

8=

since

([, 22 (@) (@) = 2kl = pu (2).
Proposition 2. Let U be a T-algebra of rank m, and X the space of Hermi-
tian matrices of . The cone V() is distinguished in X by the inequalities
Pp(x)>0 (k=1, -m). (26)

A Hermitian matrix x € V() can be written in exactly one way in the form tt*,

where t € T (A).
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Proof. Let x € V(). Then x = tt*, where t € J (). It follows from Lemma
3 that

pu(@)=e(@d) =] 7.(#) @(tw))?

and so
s pr ()

),
1 ro@

Hence we easily deduce by induction on % (from larger values to smaller ones)

that
pe(z) >0 (=1, ..., m).

L =0Q(Eer) € = ‘/[—I—mp(rT)I) s (27)

s>k

Further

and, by Lemma 3, for any ; <k

I(ilh;) - ( H' Ps (‘T)) Q(thh) tilu
s>k

whence

(h
zik)

w=——h (i<k), (28)
I '/ Hh ps (2)

This shows that ¢ is uniquely determined by x.

t

Conversely, if a Hermitian matrix x satisfies the inequalities (26), then we
can construct the triangular matrix ¢ € J (%), defining its elements by (28). We

consider the Hermitian matrix % = tt*. Arguing as in the first part of the proof, we
find that

Therefore
7R (k)
ETY z

I
W‘@Ps () I/:Uh ps (2)

In particular, if i = k, we find that

(i < k). (29)

@ ()
n ps (z) ” ps ()
s>k s >h

which implies that for any &
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Pg (%)= py (D).
It then follows from (29) that, for i < j,

T = ()
2 = x{i . (30)
Suppose that i < and that for some k> j
~(k—1 h—1
zy V= ;"
Then
~(h—1) | (k) Sk h—1 (R) (1
St _ %ij "z @R )'*"’ih)(zi".)):—i(u)
iy = — - N

pr (@) B (@) g
This argument allows us to raise the upper index in (30) one step at a time till we
reach m and obtain the equation
~
X .o =%X:.0
U 7]

Thus, ¥ = x and x € V().

Proposition 2 (more precisely, its first part) may be called Sylvester’s criter-
ion for the cone V().

§4. The calculation of the invariant measure
We consider the subgroup
To={wes (0): [[e@)" =1
of T (). Its Lie algebra T is formed by the triangular matrices ¢ for which

2 ne(t;)=Spt=0.
By Lemma 2, for every matrix ¢t € TO

Sp Dy =Sp Lyt~ =Sp (t4t*) =0

(cf. (24)). Therefore, for every matrix w € 3'0
detm(w) = 1
(cf. (23)).

For every A> 0
n(he)z=MAr (z€X),

so that

det 7t (he) = A",

where

n=dim¥ = > n,. (31)

Every matrix ¢ € J (2) can be expressed in the form ¢t = Aw, where A > 0,
weE 3'0. The number A is determined from the condition
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[Tee ()™ =1 (e (wy))" = 2™
We have
det 7t (Aw) = det 7 (Ae) det 7 (@) = A2" = [] (o ()™
Thus,

mn;

deta (1) =[] (e ()™ (32)
Now we have everything ready to calculate the density ¢(x) of the invariant
measure in the cone V(). If we take
ple) =1,
then, for every t € J (%),
@ (tt*) =@ (n(t)e) = (det 7 (2))".
Let x = tt* € V(). By formula (27)

_ -/ pril
e(ty)= 1—1 p_ s-_(l) .

8§>1
Therefore

det 7 (t)= H ( HP;(J‘()I) )"i _ H (p: (I))"i-"ifl*‘ L—ny

i

s >1
and

¢ (2) =[] (p; (z))"H - HiT™ (33)

Since the numbers 2n; are integers, @2 is a rational function; in some cases b
itself is rational.

§5. The calculation of the algebra of connectedness

In $3 of Chapter I we defined a Riemannian metric on a convex cone. In $1
of Chapter II we calculated the first few terms in the Taylor series expansion of
In¢ in the neighborhood of %, that was chosen for the construction of the clan;
in particular, we found the values of the metric tensor g and of the object of the
linear connection I' at this point. We shall now apply these results to the convex
cone V() corresponding to the T-algebra 9[. In this case the role of x, will be
taken by the unit matrix e.

For brevity we put
(g(e) (@, )= (z,y) (z, y€X¥).
The formula (10) of Chapter II yields
(x, y) = s(xAy),

where, by virtue of Lemma 2,

s(z2)=SpL,=Spz (z€X).
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Since . :
Sp(zAy) = Sp (zy + yz) = Sp (zy + zy) = Sp xy,
it follows that
(x, y) = Spxy. (34)
The algebra of connectedness of the cone V() at e is defined by specifying
the multiplication operation [ | in X:
(0 y)' = —Tin(e) 2'y*
(formula (5) of Chapter I). By formula (4) of Chapter I
~i 1 i
in(e) = 58 “(€) 0, Ing (e).
We put '
Q(z,y,2)=(0;, Ing(e) @Yz (z,y, 2€X).

" The operation [ | can then be determined from the condition

@0y 2)= —5 Q2 9,2). (35)
In fact,
@0y 2)= — g (&) T () 274" = — 5 (O In @ (e)) 292"

The cubic form d>ln¢(e) corresponds to the symmetric trilinear form (. By
formula (11) of Chapier I

Q(z, z, z)=(d’lng (e)) () = — 2Sp (zA(z/ z)). (36)
Theorem 3. Let U be a T-algebra and V(20) the corresponding convex cone
in the space X of Hermitian matrices. The structure of the algebra of connected-
ness of the cone V() at the point e € V(%) is given in X by the formula
z [ y=v}(1y+y-’t)-
Proof. By virtue of (35) it suffices to show that for any x, y, z € X
(zy +yz, 2)= —Q (2, y, 2).
This relation will be proved if we show that the trilinear form
R(x, y, z) = (xy + yx, 2)
is symmetric and that
R(x, x, x) = 2 Sp(x A (x A %)) (37)
(cf. (36))-

Clearly, the form R is symmetric in the first two arguments. Further, by vir-
tue of (34) and axioms (III) and (IV) for T-algebras
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R(z, z, y) = (2z+ 2z, y) = Sp ((a2) y + (22) y)
= Sp((yx)z + (2y) 2) = (zy + yz, z) = R (, y, 2).
This implies that R does not change under any permutation of the arguments.

We now prove the relation (37). Since Sp(x A y) = Spxy for any x, y € X, it
follows that

Sp(zA(zA2)) = Spz (22 + 22)
=Spa?(z+ ic):Sp(:c"‘)x:(xz, z):—;—R(x, z, ).

§6. The adjoint cone

Let U be a T-algebra of rank m. We consider the matrix algebra with involu-
tion ¥’ which differs from 2 only in its grading, and we put

Uii=Wpori, mary; (GJ=1,....,m).
If $' is the subspace of upper triangular matrices of U, then
g =g (38)

Therefore the axioms (VI') and (VII”) for 2 correspond to the axioms (VI) and
(VIl') for U'. It is easy to see that the trace of a matrix does not depend on
whether it is considered as an element of 2 or of 2'. All this implies that 2’
is also a T-algebra.

The cone V(') is the orbit in X' = X of the linear group J (') generated
by the infinitesimal transformations

Di: z—t*z4at, tel
(cf. (24)). With respect to the metric (34)
| (Diz, y) = Sp (t*z + zt) y = Sp (yt* + ty) x = (Dyy, 7).

Thus, the transformation D', is adjoint to D, with respect to the metric (34).
Therefore J (') consists of the transformations that are adjoint, with respect to
the metric (34), to the transformations of J (), and this means that it acts trans-
itively in the cone (V())’ adjoint to V() with respect to the metric (34) (Propo-
sition 9 of Chapter I). Thus,

') = (v (39)

It now follows from (38) that

(V () ={t*t: teT (%)} (40)
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§7. The nilpotent part of a T-algebra

The scalar product
(a, b) = Spab” (41)
introduces the structure of a Euclidean space into the T-algebra 2, since, by
axiom (V), the quadratic form (a, a) = Sp aa* is positive-definite. The subspaces
?Iii are orthogonal with respect to the metric (41).
We consider the graded subalgebra

i<j

of 2.
Definition 6. The graded algebra ft with the Euclidean metric (41) is called
the nilpotent part of .

The axioms for a T-algebra allow us to recover it from its nilpotent part. For,
~since . .
dim®;; =dim%;;, dim%;=1, (43)

it follows that 9 is uniquely recovered as a graded linear space. The involution *
is also uniquely recovered, since we know that it is the identity on the subspaces
21“ and maps ?‘[z’j (i <j) isomorphically onto ?Il-i.
Further, we can choose nonzero vectors e; arbitrarily in the one-dimensional
subspaces U and make them idempotents. This uniquely defines the multiplica-
tion of diagonal matrices and also, by virtue of axiom (II), the multiplication of

diagonal matrices by any others.
The space U splits into a direct sum:

A=N*+H+N, (44)
where © is the subspace of diagonal matrices. We know already how to multiply
matrices in 1 by one another and also matrices in § by any matrices in N. The
relation A

a*b’ = (ba)* (a, bERN) (45)
defines the operation of multiplication in N*. Thus, it remains to “‘learn’’ how to
multiply matrices in it by matrices in R*, in both orders. Before doing this we
extend the metric (41) to the whole space 2, using the facts that the subspaces
N, H and N are orthogonal, that (e;, e) = n;, and that

(a*, b*) = Spa*b = Sp ba* = (a, b). (46)
For any a, b €

— . i, bi'
prpab* = 2 a;;blj= 2_ (%4 2us) e.. (47)

. T
n;

In the same way

(@i, bij
prpa*b = 2 ajjb;; = Z (@is» b)) €. (48)

Il]'
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These relations define the diagonal part of the matrices ab” and a*b. Further,
by axioms (III) and (IV), the following relations hold for any ¢ € 0:
(ab*, c*) =Sp (ab*) c = Sp(ca) b* = (ca, b), (49)
(a*b, c*) = Sp (a*b) ¢ = Sp (be) a* = (be, a). (50)
This defines the projections of ab® and a*b onto N*. Finally, for any ¢ €
we have

(ab*, c) = (ba*, c*)=(cb, a), (51)
(a*b, ¢) = (b*a, c*) = (ac, b), (52)

which defines the projections of ab* and a*b onto 1. So the operation of multi-
plication in Y is completely recovered.

If we omit the middle terms in (46)—(52) and alter the formulation accordingly,
then the above argument can be regarded as the construction of a graded algebra
9 with an involution from the graded algebra %t equipped with the Euclidean met-
ric. However, there is no guarantee in this case that [ will be a T-algebra. Let
us consider the limitations that the axioms of a T-algebra impose on the original
algebra N.

The axioms (I) and (II) of a T-algebra are satisfied by construction.

Let us verify axiom (III). For any a, b € U we have, by virtue of (47) and
(48), that

beiabl = Z (ai;b;i'” b;;a;;) + >_: (ajibij —bjiay;)
i<i ' i<i

_ Z (aij, b

)
i<j i<j

) bij, af) (afis bij)— (b}, aij)
ij i %ij \ Jir v Jir Yy
e; + E n e

)' ]
so that

‘Sp[ab] = 2 [(a5;, bi‘i)“(bi;v a;i)+(“;iv bi;‘) (b3, a;;)1 =0

i<j

By our construction of the Euclidean metric in [ it coincides with the met-
ric defined by (41). In fact, for any a, b €

Pr&)ab* 2 a”bu—{- 2 @by + 2 a“b,,

i<j i<j

(a,-~.b,“) lo t)
=2 e+ S o) 0 (byy) e+ 3 G0

i<j i<y

and
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Spab*= B (ai;, biy) + F e (@) @ (bio) + 3 (e, b7)

i<j i<

= Z.(aii' bij) + 2 (@35 by;) + 2‘, (aj;, b,) =(a, b).
<7 i<j
The relation (45) is satisfied by construction for a, b € . It is not difficult
to show that, in fact, it is satisfied for all a, b.
We now verify axiom (IV). If at least one of the matrices a, b, ¢ is diagonal,
then [abc] = 0 and moreover Sp[abc] = 0. Therefore we may assume that each of

the matrices a, b, ¢ is contained either in % or in N*. Since

[x*y*z*] = — [zy2]*
forany x, y, z €N, it suffices to consider the cases in which not more than one of the
matrices a, b, ¢ liesin N*. If a, b, ¢ € N, then [abc] € N and Sp[abc] = 0. If
*a or ¢ belongs to N* and the other two matrices belong to %, then axiom (IV) is

a consequence of (49) or (50). Suppose finally that a, c €N, b € N*. Using
axioms (III) and (IV) in the cases in which they have already been proved we find

that
Spa(bc) =Sp(bc)a=Spb(ca)=Sp(ca)b=Spc (ab) =Sp(ad)c.
Axiom (V) is also satisfied in ¥, since
Sp aa* = (a, a) > 0,
if a#0.
Axiom (VI) is satisfied if and only if the algebra % is associative.
Axiom (VII) imposes the following limitations on 9:
(A) for any G ¢ € ?I,-I-, bi" € ?Il-k (i<j<h)
(@;;br, Ci5b50) = ,_:j'(aijv ¢i;) (bjns Ojn);
(B) if a; € Uy, by €Uy (i <j<k) and (a;, Nb;}) =0 then
(Ra,,, §Rbl.k) = 0.
In fact,

(@;;bjn, ¢;;05) = Sp (ai,'b,-n) (blwct;) = Sp ((aijbjh) b;h)ci‘z,
=Sp (a;; (bjhb?h)) cij = Sp (cija;;) (bjhb;h)

1
= n,Q (cfja;;) @ (brblk) = e (a5, ¢i5) (bjns b))
J
Further, if a, € U, bik (S ?Il.k (i <j<k), then for any x, y € N

(xaik- ?/b,'n) = Ei ('Tsiailu ysjbjh) = ‘;i Sp(fsiaih)<b;ky:f)=
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= ; Sp [((xsiath) b;k) ys‘j + ((xsibjh) ai‘k) y;j]

= E Sp(z,; (a;b5k + bjhai‘k)) ysi= ; Sp (745 (@bik)) s

$<i
If (a;, %bi,‘) =0, then, for any ¢ij
(a5 bk, ¢i;) =(¢;;b;n, azn) =0
and aikb;k = 0. Therefore, in this case
(zay, ?/bjk)=0 (z, y€N).
We now show that if 0l is associative and satisfies the conditions (A) and
(B), then the algebra U satisfies axiom (VII'). We may assume that
t=aijEQ[“-, u=b]-k€91j,“ w=c,h69i,k.
We must show that
laijbjhcs.k]"‘l'[a(jcnkb;k] =0. (53)
We observe that the second term is 0, because s # j. We consider five cases
separately.
1) j= s. In this case the identity (53) is equivalent to the fact that for any
[a“b’.kbfh] =0 (i<j<k). (54)
Clearly [a‘.,.b].kb;k] € ?I'-l.. Suppose that % is an arbitrary element of 21,-1.. Then,
by virtue of (A)
((aiib,'h)b;hv z;)= (a;;b;u' Iijbjh)
1 * .
= n; (a;;, I«,‘)(b,'k» bjh) = (ay;, ;;) @ (b;bjk) = (ay; (b;rbk). ;).
* .
Therefore (aiibi")bi" - aij(bjkbik)'
2) j< s <k. The space ui" splits into the direct sum
U =Y 00+ B,

where B is the orthocomplement of ?Il-scsk. 1f b,‘k € ?Il.scsk, then bjk = Ui Cop

for some ul.s € ujs‘ It follows from the associativity of 7t and (54) that
a;, (bjuch) == ay; ((u;4¢4n) i) = 0y (uy, (canch))
= (a;;,) (concoh) = ((234%55) €5) i = (@ (;5¢,0)) €3 = (@4;0;1) €3k
Now suppose that bik € B. Then
(bjn, Megn) =0
and, by virtue of (B),
(mb,h' ‘Rc“) =0.



THEORY OF CONVEX HOMOGENEOUS CONES 395

For every x € 1t
_ (bjncsk, ©) = (bjn, zeg,) =0
so that b[kc:k =0 and
a;; (bjhcs:) =0
On the other hand, for every x € It
((aijb,-k) Cin, T) = (aijbj)n zegy) =0
and therefore
(a;;0;,) ik =0.
3) i <s <j. Clearly [a‘.l.bl.kc'sk] € U;,. Let x;  be an arbitrary element in
?I‘-s. Using case 2), which we have already discussed, we find that
(”ij (bjkc:h)v Iis) - (aij (cshb;h)‘1 xis) = (aij’ (xiscsk) b;h) =
= (aijbjkv sh) - ((a i ;k) Ch,T 13)'
4) s <i. We have
[alJb] "cSk] = Icsk b kal]] 6 m“
For any x_;
'((eh al]) st) - (Cs’ (a;)b]k)" n) - (cah’ si (at]b}h)) _' (Cskv (I.,talj) ka)
= (cshth» znai;) - ((Cshb )alJ» si)'

5) s = i. In this case

Iaub}hCSh] —Q(lal; )kclh])e —_Sp [a‘ll Jhc:hl :0

* Definition 7. An associative algebra 7, graded by subspaces mii (i<j;
i, j=1,+++, m) and equipped with a Euclidean metric is called an N-algebra of
rank n: if the following conditions are satisfied:
M Ry Ry
(Im 9{ W“‘—O 1f j#
(I1I) (W” RNp=0if itkor j#l
(IV) for any a;; € ?2‘.1., bi" € Ertl.,‘

1.
(@b, aijb.nh) = n; (a;, ai,-)(b,,‘. bir),
where 1 1
n].:iq'« 5 Edimm”—f——fzdimm,‘u;l)

s<] §>7]

1) The nj may be taken to be arbitrary positive numbers (cf. the footnote on p. 380).
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(V) if a;, €N, biy € ?tl.k (i <j) and (a,, ?tbl.,‘) =0

then
(?Ra‘.k, Wbik) =0

Axiom (IV) for an N-algebra is equivalent to condition (A), which is obtained
from axiom (IV) by polarization with respect to the a; e Therefore, the nilpotent
part of any T-algebra is an N-algebra. For isomorphic T-algebras to correspond
to isomorphic N-algebras we must give the following definition of isomorphic
N-algebras.

Definition 8. A mapping C of an N-algebra 7 of rank m onto an N-algebra
% of the same rank is said to be isomorphic if it is an algebra isomorphism, pre-
serves the Euchdean metric, and transforms each subspace . i C N into a sub-

space ?f C % where i — i isa permutation of the set {1, +++, m} such that
(' I
i <j, i > 1 imply that W = ?l = 0. Two N-algebras are said to be isomorphic

[ j
if there exists an xsomorplnc mapping of one onto the other.

Summing up the results we have obtained we can formulate
Proposition 3. The mapping that associates with every T-algebra its nilpo-

tent part induces a one-to-one mapping of the set of all classes of isomorphic

T-algebras onto the set of all classes of isomorphic N-algebras.

§8. Convex homogeneous cones of rank 3

T-algebras of rank 3 are the first examples of nonselfadjoint convex homo-
geneous cones. Also they are typical examples: using them we can examine many
of the properties of arbitrary convex homogeneous cones.

By the results of §7, a T-algebra 2 of rank 3 is completely determined by
the numbers s M3, B3 (cf. the notation in $1), by the Euclidean spaces
?112, 2123, 2[13 of corresponding dimensions and by the bilinear mapping (a, b) —
ab of the product U, x U,; into U, ;, satisfying the condition

(ab, ab) = k(a, a) (b, b),

where « is a positive factor of no essential significance. The last condition im-
plies, in particular, that if n , # 0 and nys # 0, then nyy 2 max{nlz, n23!. The
equations of the corresponding cone can be written down without any difficulty
(cf. $3) but, as a rule they do not supply any interesting information. The adjoint
cone is obtained when we interchange the roles of ?IIZ and Uj; (cf. $6).

If Mo =Np3=ny3=v Wecan only have the values v =0, 1, 2, 4, 8, and
once v is given, the T-algebra 2 is uniquely determined. All the corresponding
cones are selfadjoint.

If n,, =0, then the numbers n,; and n,; can be arbitrary and they completely
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determine the T-algebra 9. If in this case 3 My3 # 0, then, as is easy to see,
the cone V() is not selfadjoint (and is not even isomorphic to its adjoint). In
particular, when n,, = ny3 = 1, we obtain the simplest example of a nonselfadjoint

convex homogeneous cone. Its dimension is 5. It is isomorphic to the cone consist-

22 (Y]

ing of all pairs

of positive-definite, symmetric, real, 2nd-order matrices with a common corner
element c¢. The adjoint cone can be described as the set of positive-definite sym-
metric matrices of the form

ayx

y b0

z0c

If Ryp=Np3=2, Ryy= 4, then we obtain a one-parameter family of noniso-

morphic T-algebras. It corresponds to a one-parameter family of nonisomorphic
convex homogeneous cones of dimension 11. It is not difficult to verify that for
lower dimensions there is only a finite number of nonisomorphic convex homogene-

ous cones (of any rank).
§9. Proof of universality
Theorem 4. For every convex homogeneous cone V there exists a unique (up
to isomorphism) T-algebra U such that the cones V and V() are isomorphic.
Proof. The algebra of the convex cone V(%) is a clan 2(2) (cf. §2) which
is given in X by the operation A (cf. formula (16)). By Theorem 2 the problem
reduces to proving that for every clan ¢ with a unit element there exists a unique
T-algebra 9 such that & o Q(90).
Let £ be a clan with a unit element and
2= 2 &
i)
be its normal decomposition (cf. §4 of Chapter II). For every space Qii with i <j
we take the linear space ?Iii of the same dimension and we fix an isomorphic map-
ping
T—>7 < QIU.
of Qii onto ?Iii. We form the direct sum

N= 2 %, (55)

of the linear spaces 91‘.1. and for every
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N
€z = }.;%ES (z; €445
<]
we put

A
xr=

{8

'z €N (56)

,
&

We shall assume that the algebra £ is equipped with the canonical Euclidean

metric
(@, y) =Sp Lxay- ®7)
We equip 9 with a Euclidean metric by putting
PN 1 t
for any x, y € {. We define an operation of multiplication in 1 by the formula
-';!}Z 2 1'”ij‘1 (Iy yEQ) (59)
i<j<k

It follows from (43) of Chapter II that the multiplication defined in this way is
associative.

We shall show that )t equipped with the grading (55), with the Euclidean met-
ric (58), and with the associative multiplication (59) is an N-algebra. The axioms
(I) = (III) for an N-algebra are obviously satisfied. By (42) of Chapter II, for all
%; € Q"i’ Yik € Qi" (i <j< k) we have

~

(#4950 Ti;y50) = (2, 0Y 00 Jiji\yjk)=‘§(fij£‘yj'“ Zi; Y k)

1 LS S S
= s () (), zi;) (Y Yjn) = () (55, 74;) Y0 Yr)s

aP/

where,e. € { .. is an idempotent of ¢ and s(e’.) =Sp L, . Itis not difficult to
see from table (28) of Chapter II that y

< 1 /7 . .
Sp [,,,’_ =1+ 5 (ZJ dim &, + >_‘J dim 8},).

§<j §-)

Thus,

(;i;!}jh' “'i}&,h) = ;17 (»’;i,v ‘;i))(i/jlu.’;)hL
where
n;=1+ l ( E dim %, + Z (lim‘lll_,> ’
s<j .
i.e., N satisfies the axiom (IV) for a T-algebra. We finally verify axiom (V).
Let x,, € Q,,, Yk € Qik (i < j < k) be such that
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(2, Ny )= 0.
Then . Yjn)

(Zins ﬁ;j/_\!/,-n)-——(),
and the relation (41) of Chapter II implies that
X A Yk = 0.
For any z_, (S Qs‘., "sj € QS/ (s <)
(isi‘%ih’ &sj.l;jh)= } (2 ATy Us; AN Yj)-
Using (41) and (44) of Chapter II we find that
(2 ATy U AY ) = (26, DT1) DYjns Us; = (25 0 (T DY), uy;)=0.

Therefore
Ny, Ny;.)=0.

Thus, R is an N-algebra. We construct (cf. $7) the T-algebra

A=D9

ijo
of which 9 is the nilpotent part. We shall prove that & > €(20).

Let X be the space of Hermitian matrices of . With every element

N\ N
o= 2 he,+ 2.z
i<y

. Q
i) (‘l’ij E i;)
of { we associate the Hermitian matrix

un=th+%£w+%&mwx.

(We observe that the idempotents e, € ¢, of ¢ and the idempotents e; € U, of
2l are denoted by the same symbols. This will not lead to confusion, especially
since 0(‘?‘.) = ei.)

It is immediately verified (cf. formulae (34) —(37), (40) —(44) of Chapter 11
and (49) — (52) of the present chapter) that the mapping o is an isomorphism of {
onto £ (20).

Ve now show that if the clans < (21(P)) (p =1, 2) are isomorphic, then so are
the T-algebras 2(P). Let X(P) be the space of Hermitian matrices of 2(P). We
put '
X = XN (U + U).

The decomposition

UM =x"= 3 x¥ (60)

i)
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is a normal decomposition of the clan £(2(P)) (cf. Definition 6 of Chapter II). We
take an isomorphic mapping C of 2(2(1)) onto 2 (2(2)). Proposition 10 of Chap-

ter II allows us to claim that there exists a permutation ¢ — i such that
M _ x@)_
CX{} = X4 3

and i < j, P> ']\' imply that x(‘-ll-)= 0. Let P denote the nilpotent part of (P
and for every x € 3 X(1) put
i<j Y

~

Cz=Cz (61)

(cf. (11)). It is easy to verify that the mapping 6 is an isomorphism of %) onto
N2,

§10. Convex homogeneous domains

The apparatus of T-algebras allows us to describe not only the convex homo-
geneous cones, but also arbitrary convex homogeneous domains.

Let U be a convex homogeneous domain, ¥ (U) the cone fitted onto it and
the (uniquely determined) T-algebra such that V(U) > V(2). The domain U is
then realized as the cross-section of V(%) by a hyperplane P of the space X of
Hermitian matrices of 2. There exists a maximal connected triangular subgroup
J of G(V(A) that splits into the direct product

g = .71 X {}"E}A>Oy

where 3—1 leaves P invariant and acts transitively in U. Since the maximal con-

nected triangular subgroups are conjugate in §(V (%)), we may assume that J =

J(W). We may also assume that P passes through the point e € V(2). Then
P=X,+e,

where Xl is a subspace of codimension 1 and X is invariant with respect to

(). The infinitesimal transformations Dz’ t € S (cf. formula (24)), generate

J () and leave X, invariant. Conversely, if X; C X is a subspace of codimen-

sion 1 that is invariant with respect to the transformations Dz’ t € $, and, hence,

with respect to J (), then the convex domain (X, + e) N V() is homogeneous

(Proposition 11 of Chapter I).

Proposition 4. [f Bios = 0 in U forall s> igs then the convex domain

U={zeV¥): zi,=1} (62)

is homogeneous. All convex homogeneous domains can be obtained in this way.

s

Proof. Suppose that Bigs = 0 in U for all s> ty- Then the space
1‘[:{.1'61‘2 fioiOZO}C.}: (63)
is invariant with respect to the transformations Dt’ t € S; in fact, for any x € X,
and for any t € §
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(Dlx)ioio = (tx + It lolo Z (tlosxuo + I,o.,t,o,, =0.
Therefore the convex domain

(X +e) NV (U)={z€V (¥): zip,= 1}
is homogeneous.

Now suppose that 2 is an arbitrary T-algebra and that Xl is an invariant
subspace of codimension 1 in the space X of Hermitian matrices of the algebra

A If
=+ g};(xi)‘ +z;;) € Xy,

then the Hermitian matrices |,
1
L= P (tht - D“i)‘[

and . -
Ty 4T = Dcil),,jr (i<))
are also contained in xl. Therefore Xl is the sum of its intersections with the
sybspaces xii =X N (91‘.1. + ﬂii). If e; € X 1» then
DX, C ¥,
p\!
since, for any ap; € %Ipi (p <),
Ay +api = Damez

Therefore there exists an io such that €io € X,. Clearly, then

X, ={z€X: zi=0}

For any s > i, and s €« ?Iios we have
((l' 87 at s -
,,l N@igs + alys) = 2aipsais = — —oni — e, € ¥y,
0
whence (aios’ a‘.os) 0 and a5 = 0. Therefore Pigs = 0 forall s> i

Thus, all the invariant subspaces }:l C X of codimension 1 are of the form
(63). In view of the remark made at the beginning of this section, this implies
that any convex homogeneous domain U for which V(U) 2 V(%) is isomorphic to
a domain of the type (62).

We observe that the indices i

0
be characterized by the fact that by means of an inessential change in the grading

satisfying the condition of Proposition 4 can

of 9 the idempotent el-0 can be transferred to the last place.
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