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ABSTRACT

Title of dissertation: POSITIVE OPERATORS, Z-OPERATORS,
LYAPUNOV RANK, AND LINEAR GAMES
ON CLOSED CONVEX CONES

Michael Orlitzky, Doctor of Philosophy, 2017

Dissertation directed by: Professor Muddappa S. Gowda
Department of Mathematics and Statistics

Given a closed convex cone K with dual K∗ in a finite-dimensional real Hilbert

space, the linear operator L is positive on K if L (K) ⊆ K, and a Z-operator on

K if 〈L (x), s〉 ≤ 0 for all (x, s) ∈ K × K∗ with 〈x, s〉 = 0. If both L and −L

are Z-operators on K, then L is Lyapunov-like on K. These concepts generalize

(respectively) the nonnegative, Z, and diagonal matrices. They appear in various

fields including dynamical systems, optimization, economics, and game theory. Our

contribution is to extend results for proper cones to general closed convex cones.

We extend a result of Tam describing the dual of the cone of positive operators.

We compute its largest linear subspace, and then use the exponential map to connect

the positive and Z-operators. In particular, we show that both families share the

same dimension and polyhedrality.

Motivated by optimization considerations, the Lyapunov rank of K is defined

as the dimension of the space of all Lyapunov-like operators on K. We extend this

concept from proper to closed convex cones, and provide an algorithm to efficiently



compute the Lyapunov rank in that case. We further show that the Lyapunov rank

of K is the dimension of the Lie algebra of the automorphism group of K in the

general setting. We then improve an existing upper bound for the Lyapunov rank.

We introduce linear games on proper cones, and extend some results that

Gowda and Ravindran formulated for self-dual cones. The more-general setting

allows us to place linear games in the framework of conic programming.
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Chapter 1

Introduction

1.1 Background

Positive operators arose from the study of integral operators and matrices with

nonnegative entries [1]. For our purposes, we define the positive operators on K by

π (K) := {L : V → V | L is linear and L (K) ⊆ K} .

The famous Krein-Rutman theorem [25] connects positive operators to the theory

of dynamical systems [34], to game theory [13], and more.

A Z-matrix is a real square matrix whose off-diagonal entries are nonpositive.

Equivalently, a Z-matrix has the form λI −N where N is a nonnegative matrix (a

positive operator on Rn+). Berman and Plemmons [5] cite a number of equivalent

conditions for Z-matrices, connecting them to many different areas.

Throughout the remainder of this chapter, V represents a finite-dimensional

real Hilbert space. If K∗ is the dual of K, then we define the complementarity set

C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0} .

Such a set arises as optimality conditions in convex optimization [6, 7]. We say

that L is a Z-operator on K [18] and we write L ∈ Z (K) if 〈L (x), s〉 ≤ 0 for all

(x, s) ∈ C (K). This definition reduces to that of a Z-matrix when K = Rn+. These

Z-operators appear in dynamical systems [18], complementarity problems [18], game
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theory [15], economics, et cetera.

Schneider and Vidyasagar [35] found an important connection between the

positive and Z-operators. We eventually extend it to closed convex cones.

Theorem (Schneider and Vidyasagar). If K is a proper cone in Rn and if A is a

matrix in Rn×n, then A ∈ Z (K) if and only if e−tA ∈ π (K) for all t ≥ 0.

The set of all Z-operators contains an interesting subset, the set of Lyapunov-

like operators. Rudolf et al. [33] investigated the possibility of expressing the con-

dition 〈x, s〉 = 0 in C (K) as a system of equations 〈Li (x), s〉 = 0 for i ≥ 1. Gowda

and Tao [19] observed that the number of independent equations 〈Li (x), s〉 = 0

can be described in terms of the linear operators L such that 〈L (x), s〉 = 0 for all

(x, s) ∈ C (K). These operators are related to the Lyapunov transformations in the

theory of dynamical systems; hence they are called Lyapunov-like operators on K.

The vector space of all Lyapunov-like operators on K is denoted by LL (K), and it

is easy to see that LL (K) = −Z (K)∩Z (K). The name Lyapunov rank is given to

the dimension of LL (K), and the Lyapunov rank of K is denoted by β (K).

Gowda and Tao connect LL (K) to the Lie algebra [3, 19] of the automorphism

group of a proper cone K. We will extend their result to all closed convex cones.

Theorem (Gowda and Tao). If K is a proper cone and if L is linear, then L ∈

LL (K) if and only if L belongs to the Lie algebra of the automorphism group of K.

Recent work has focused on bounding and computing the Lyapunov rank.

Rudolf et al. [33] computed the Lyapunov rank of the moment cone. Gowda and

Tao [19] derived results for polyhedral and symmetric cones. Gowda, Sznajder, and
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Tao [17] investigated the completely-positive and copositive cones, and Gowda and

Trott [20] have considered special Bishop-Phelps cones. Gowda and Tao were able

to derive the upper bound β (K) ≤ n2− n for a proper cone K in an n-dimensional

space. We improve that bound to (n− 1)2.

We analyze these operators in the context of game theory as well. A classical

zero-sum matrix game [40] involves a matrix A ∈ Rn×n. Two players choose “strate-

gies” x and y, respectively, from the unit simplex ∆ :=
{
x ∈ Rn+ : ∑n

i=1 xi = 1
}

, and

the “payoff” to the first player is yTAx. The existence of optimal strategies for both

players follows from a general min-max theorem [23], and the value of the game is

defined to be the payoff associated with the optimal strategies.

Gowda and Ravindran [15] have shown that we can generalize a zero-sum

matrix game to a linear game whose payoff function is based on a linear operator

and whose strategy sets are compact convex subsets of a self-dual cone K = K∗.

The min-max theorem still guarantees the existence of optimal strategies, and much

of the theory carries over. We are able to extend these results, allowing for K 6= K∗

and for a wider range of strategies. The choice of operator affects the properties of

the game, and we consider games related to Lyapunov-like and Z-operators. Linear

games are then placed in the framework of conic programming.

1.2 Organization of results

We begin Section 2.1 by computing the generators of π (K)∗. Immediately

we have an algorithm for computing π (K) itself when K is polyhedral. The dual
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generators let us characterize the dimension and lineality of π (K), from which we

conclude that π (K) is proper if and only if K is proper. We extend a result of

Tam [38] to show that π (K) is polyhedral if and only if K is polyhedral. Section 2.2

is similar in spirit to Section 2.1. We compute the generators of Z (K)∗, and obtain

an algorithm to compute Z (K) for a polyhedral K. The dimension of Z (K) is

shown to equal that of π (K). As with π (K), it turns out that Z (K) is polyhedral

if and only if K is polyhedral. Section 2.3 is devoted to Lyapunov-like operators.

We extend many of the basic results for proper cones to the closed and convex case.

We are able to show that K is “perfect” in V if and only if β (K) ≥ dim (V ).

Section 3.1 begins by introducing the cone-space pair notation. The new

notation is used in Section 3.2 to derive a formula for the Lyapunov rank of a

closed convex cone in terms of a proper subcone. Gowda and Tao [19] showed that

β (K) 6= dim (V ) − 1, and we show that the same is true for improper cones. In

Section 3.3, an efficient algorithm is derived to compute β (K) for polyhedral K.

Finally in Section 3.4, we extend a result of Schneider and Vidyasagar [35] to show

that the exponential function connects Z (K) to π (K). That fact is then used to

show that LL (K) is the Lie algebra of the automorphism group of K.

Gowda and Tao [19] proved that if K is a proper cone in an n-dimensional

space, then β (K) ≤ n2−n. Chapter 4 is devoted entirely to improving that bound,

and we show that β (K) ≤ (n− 1)2 in the same setting.

Section 5.1 introduces the concept of a linear game. In Section 5.2 we prove

some basic facts about linear games and their values; in particular we state necessary

and sufficient conditions for optimality. Then in Section 5.3, we define completely-
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mixed games and show that they have unique solutions under certain conditions.

Section 5.4 considers the case where the payoff operator is Lyapunov-like, Stein-like,

or a Z-operator on the underlying cone. Section 5.5 concludes by showing that every

linear game can be solved by a conic program.

1.3 Standard terminology

Let V and W be finite-dimensional real Hilbert spaces. The set of all linear

operators from V to W forms a vector space which we denote by B (V ,W ). We

abbreviate B (V , V ) by B (V ). If L ∈ B (V ,W ) is invertible and preserves inner

products, then L is an isometry. If L (X) = Y under some isometry L, then X and

Y are isometric and we write X ∼= Y . If L ∈ B (V ) is invertible and L (X) = X,

then L is an automorphism of X and we write L ∈ Aut (X).

Any L ∈ B (V ,W ) has an adjoint L∗ ∈ B (W,V ) such that 〈L (x), y〉 =

〈x, L∗ (y)〉 for all x ∈ V and y ∈ W . Given two elements x and s in V , we de-

fine s ⊗ x to be the operator y 7→ 〈x, y〉 s on V . For subsets S and X of V , we

will write S ⊗ X := {s⊗ x | s ∈ S, x ∈ X}. The adjoint of s ⊗ x is x ⊗ s, and

s ⊗ L∗ (x) = (s⊗ x) ◦ L is the composition of the operators s ⊗ x and L ∈ B (V ).

The identity operator on V is idV ∈ B (V ). In Rn, the identity matrix of the

appropriate size is denoted by I.

If σ (L) denotes the spectrum of L, we define the trace operator on B (V )

by trace (L) := ∑
λ∈σ(L) λ. Then 〈L1, L2〉 := trace (L1 ◦ L∗2) is our inner product on

spaces of operators. Later we use the fact that trace (s⊗ x) = trace (x⊗ s) = 〈x, s〉.
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The convex hull of a nonempty subset X of V is

conv (X) :=
{

m∑
i=1

αixi

∣∣∣∣∣ xi ∈ X, αi ≥ 0, m ∈ N,
m∑
i=1

αi = 1
}
.

The affine hull is likewise defined,

aff (X) :=
{

m∑
i=1

αixi

∣∣∣∣∣ xi ∈ X, αi ∈ R, m ∈ N,
m∑
i=1

αi = 1
}
.

The topological interior of a set X is int (X), its closure is cl (X), and its boundary

is bdy (X). Let Bε (x) denote an open ε-ball at x. If X is convex, then its relative

boundary is the set of all x ∈ cl (X) such that for any ε > 0, the set Bε (x)∩ aff (X)

intersects both X and V \X nontrivially.

If W is a subspace of V , then the orthogonal complement of W is another

subspace of V defined by W⊥ := {y ∈ V | 〈x, y〉 = 0 for all x ∈ W}, and V has

direct sum decomposition V = W ⊕W⊥. If x = x1 + x2 for x1 ∈ W and x2 ∈ W⊥,

then proj (W,x1 + x2) = x1 defines the orthogonal projection of x ∈ V onto the

subspace W . For x ∈ V , we abbreviate x⊥ := span ({x})⊥. The direct sum of two

orthogonal sets X and S will be denoted by X #⊥S; for example, it is appropriate

to write V = W #⊥W⊥ when W is a subspace of V .

The real n-space Rn comes with the usual inner product and standard basis

e := {e1, e2, . . . , en}. In Rn×n we use the standard basis
{
Eij = eie

T
j

∣∣∣ 1 ≤ i, j ≤ n
}

.

The spaces Rn×n and Rn2 are isometric under the inverse operations vec (·) and

mat (·) which transform a matrix into a long vector and vice-versa. The cardinality

of a set X is card (X); for example, card (e) = n.
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1.4 Cone terminology

Definition 1. A nonempty subset K of V is a cone if λK ⊆ K for all λ ≥ 0. A

closed convex cone is a cone that is closed and convex as a subset of V .

Definition 2. The conic hull of a nonempty subset X of V is

cone (X) :=
{

m∑
i=1

αixi

∣∣∣∣∣ xi ∈ X, αi ≥ 0, m ∈ N
}
.

Clearly cone (X) is a convex cone. If X is finite, then cone (X) is closed [31].

Definition 3. If cone (G) = K, then G generates K and the elements of G are

generators of K. If a finite set generates K, then K is polyhedral.

Definition 4. The dimension of K ⊆ V is dim (K) := dim (span (K)). Its codimen-

sion is codim (K) := dim (V )−dim (K). A convex cone K is solid if span (K) = V .

If S and X are subsets of V , then dim (S ⊗X) = dim (S) dim (X) [32].

Definition 5. The lineality space of a convex cone K is linspace (K) := −K ∩K.

Its lineality is lin (K) := dim (linspace (K)) and K is pointed if lin (K) = 0.

Definition 6. A pointed, solid, and closed convex cone is proper.

Definition 7. A nonempty convex subset F of a convex cone K is a face of K if

x, y ∈ K and αx + (1− α) y ∈ F for 0 < α < 1 together imply that x, y ∈ F .

If in addition we have dim (F ) = 1, then F is an extreme ray of K. The extreme

directions of K are representatives of its extreme rays defined by,

Ext (K) := {x | x belongs to an extreme ray of K and ‖x‖ = 1} .
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If K is a closed, convex, and pointed cone, then K = cone (Ext (K)) by a conic

version of the Krein-Milman theorem.

Definition 8. If K is a subset of V , then the dual cone K∗ of K is

K∗ := {y ∈ V | ∀x ∈ K, 〈x, y〉 ≥ 0} .

The dual K∗ is always a closed convex cone. If K is a closed convex cone,

then (K∗)∗ = K. If K = K∗, we say that K is self-dual.

Any proper cone K orders its ambient space by x <K y if and only if x−y ∈ K.

One writes x �K y to indicate x−y ∈ int (K). Often, the cone K is understood and

the subscript is omitted. Inequality with respect to the dual cone K∗ is abbreviated:

x < y ⇐⇒ x− y ∈ K; x � y ⇐⇒ x− y ∈ int (K)

x
∗
< y ⇐⇒ x− y ∈ K∗; x

∗� y ⇐⇒ x− y ∈ int (K∗) .

We will make use of the ordering’s transitivity; if x <K y �K 0, then x �K 0.

Definition 9. A self-dual cone K is symmetric if the automorphism group Aut (K)

acts transitively on int (K). That is, if for all x ∈ int (K) and all y ∈ int (K), there

exists an L ∈ Aut (K) such that L (x) = y.

A few cones will appear often. We collect them here for convenience.

Definition 10. The nonnegative orthant in Rn is

Rn+ := {x ∈ Rn | xi ≥ 0 for 1 ≤ i ≤ n} .

Definition 11. The symmetric positive semidefinite cone is

Sn+ :=
{
A ∈ Rn×n

∣∣∣ AT = A and 〈Ax, x〉 ≥ 0 for all x ∈ Rn
}
.

8



Definition 12. The Hermitian positive semidefinite cone is

Hn
+ :=

{
A ∈ Cn×n

∣∣∣ A∗ = A and 〈Ax, x〉 ≥ 0 for all x ∈ Cn
}
.

1.5 Some classes of linear operators

Definition 13. An L ∈ B (V ) is a positive operator on a set K ⊆ V if L (K) ⊆ K.

The set of all such operators is denoted by π (K). If K is a closed convex cone, then

L ∈ π (K) ⇐⇒ 〈L (x), s〉 ≥ 0 for all (x, s) ∈ K ×K∗.

The requisite property of a Z-operator is similar, but it need only hold for

pairs of orthogonal vectors in K ×K∗.

Definition 14. The complementarity set of K is

C (K) := {(x, s) ∈ K ×K∗ | 〈x, s〉 = 0} .

In many optimization problems, membership in the complementarity set is

a condition for optimality. One strategy for solving those problems is to replace

the single equation 〈x, s〉 = 0 by an equivalent system of two or more independent

equations. Some examples are given in Section 1.6.

Definition 15. The operator L ∈ B (V ) is a Z-operator on a set K ⊆ V if

〈L (x), s〉 ≤ 0 for all (x, s) ∈ C (K) .

By Z (K) we denote the set of all Z-operators on K.

When K = Rn+, the complementarity set C
(
Rn+
)

contains all pairs of distinct

standard basis vectors. The requirement on Z
(
Rn+
)

gives rise to matrices whose

off-diagonal elements are nonpositive—the Z-matrices.
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Definition 16. If K = cone (G1) and K∗ = cone (G2), then we refer to the set

C (K) ∩ (G1 ×G2) as a discrete complementarity set of K.

If K is polyhedral, it has a finite discrete complementarity set. Our next

example takes advantage of the fact (proved later, in Proposition 19) that L ∈ Z (K)

if and only if it satisfies Definition 15 on a discrete complementarity set.

Example 1. If K = Rn+, then K = cone (e) and thus

C (K) ∩ (e× e) = {(ei, ej) ∈ e× e | i 6= j} .

If L ∈ Z
(
Rn+
)
, then the condition 〈L (ei), ej〉 ≤ 0 associated with each (ei, ej)

implies that Lji ≤ 0. Since i and j range over all indices where i 6= j, all of the

off-diagonal entries of L are nonpositive. This is also sufficient for L ∈ Z (K), since

every such L will have 〈L (ei), ej〉 ≤ 0 when i 6= j.

Definition 17. The operator L ∈ B (V ) is Lyapunov-like on a set K ⊆ V if

〈L (x), s〉 = 0 for all (x, s) ∈ C (K) .

By LL (K) we denote the set of all Lyapunov-like operators on K.

Lyapunov’s theorem [12, 14] characterizes the stability of a dynamical system

in terms of the Lyapunov transformation X 7→ AX +XA∗. Damm [8] showed that

the Lyapunov-like operators are nothing other than Lyapunov transformations when

K is Sn+ or Hn
+. The set LL (K) is a vector space and LL (K) = linspace (Z (K)).

In other words, L ∈ LL (K) if and only if both L ∈ Z (K) and −L ∈ Z (K).

Example 2. If K = Rn+, then L ∈ Z (K) if and only if the off-diagonal entries of

L are nonpositive. But −L ∈ Z (K) if and only if its off-diagonals are nonnegative.
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Thus L ∈ LL (K) if and only if L is a diagonal matrix. The space of all diagonal

matrices is an n-dimensional subspace of Rn×n, so dim (LL (K)) = n.

Finding and counting linearly-independent Lyapunov-like operators is an inter-

esting problem. Rudolf et al. [33] introduced the Lyapunov rank under the name bi-

linearity rank and computed it for a few cones of interest. Their work is continued by

others [17, 19, 20, 27, 28]. Each Lyapunov-like operator in a linearly-independent set

produces an additional equation from the complementarity condition (x, s) ∈ C (K).

The number of independent equations that we can obtain therefore depends on the

dimension of LL (K). In a sense, dim (LL (K)) measures how easy it is to solve an

optimization problem by solving its complementarity condition.

Definition 18. The Lyapunov rank of K is β (K) := dim (LL (K)).

Stein’s theorem [14, 36] is a discrete analogue of Lyapunov’s theorem in con-

tinuous dynamical systems; it describes the so-called Stein transformations [18] that

correspond to the Lyapunov transformations in continuous systems. We generalize

the Stein transformations to Stein-like operators [15] in the same way that we have

generalized the Lyapunov transformations to Lyapunov-like operators.

Definition 19. The operator L ∈ B (V ) is Stein-like on a set K ⊆ V if L = idV −A

for some A ∈ cl (Aut (K)).

Example 3. If K = Sn+, then Aut (K) consists of operators of the form X 7→ AXA∗

where A ∈ Rn×n is invertible [17]. Since the invertible matrices are dense in Rn×n, its

closure is cl (Aut (K)) = {X 7→ AXA∗ | A ∈ Rn×n}. Stein’s theorem [36] concerns

operators of the form X 7→ X − AXA∗, namely Stein-like operators on K = Sn+.
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Example 4. If K = Hn
+, then we can replace R by C in Example 3 to conclude

that Stein transformations are Stein-like on Hn
+ and vice-versa.

Our last family of operators arises in linear complementarity problems. The

problem in Example 5 is feasible for all q ∈ Rn if and only if M is an S-matrix [7];

that is, if M (d) ∈ int
(
Rn+
)

for some d ∈ int
(
Rn+
)
. The S-operators are a straight-

forward generalization of S-matrices to cones other than the nonnegative orthant.

Definition 20. The operator L ∈ B (V ) is an S-operator on a set K ⊆ V if there

exists a d ∈ int (K) such that L (d) ∈ int (K). The set of all S-operators on K is

denoted by S (K).

Duality is often reflected in these families; the following fact is easily proved.

Proposition 1. If K is a closed convex cone, then L ∈ π (K) if and only if L∗ ∈

π (K∗). Analogous statements hold for Z (K), LL (K), and Aut (K).

1.6 Examples

Example 5. For q ∈ Rn and M ∈ Rn×n, the linear complementarity problem is to

find x ≥ 0

such that q +Mx ≥ 0

and (q +Mx)T x = 0.
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If s := q +Mx and K := Rn+ = K∗, then this can be rewritten as

x ∈ K

s ∈ K∗

〈x, s〉 = 0


(x, s) ∈ C (K) . (1.1)

In other words, the problem description is captured by the complementarity set

C (K). We note that 〈x, s〉 = 0 can be rewritten as a system of n equations,

x1s1 = 0; x2s2 = 0; · · · ; xnsn = 0. (1.2)

In this case, the system is easier to solve than the single equation 〈x, s〉 = 0.

Example 6. A linear program [6] is an optimization problem with a linear objective

function and some linear constraints. In the primal problem, we are asked to

minimize 〈b, x〉

subject to L (x) ≥ c

x ≥ 0.

This problem has an associated dual problem, to

maximize 〈c, y〉

subject to L∗ (y) ≤ b

y ≥ 0.

The dual optimal value exists and equals that of the primal under certain conditions.

If (x̄, ȳ) is a pair of solutions to the primal and dual problems, respectively, then
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necessarily 〈Lx̄− c, ȳ〉 = 0. This requirement is called “complementary slackness”

and it amounts to (Lx̄− c, ȳ) ∈ C
(
Rn+
)
.

It is known [19] that K = Rn+ has Lyapunov rank n. This is reflected in

the fact that the condition 〈x, s〉 = 0 in (1.1) can be rewritten as a system of n

equations (1.2). By combining that system with the n equations s = q + Mx, we

obtain 2n equations in the 2n variables xi, sj for 1 ≤ i, j ≤ n.

These examples extend to cones other than the nonnegative orthant, and solv-

ing that type of problem is one of the goals of Chapter 5. Linear programs and

certain matrix games are known to be equivalent. We demonstrate a similar con-

nection between conic programming and a new concept called a linear game.
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Chapter 2

Special linear operators on closed convex cones

The theory of positive, Z, and Lyapunov-like operators has so far concentrated

on proper cones. However, there are no technical impediments that require a posi-

tive, Z, or Lyapunov-like operator to be defined on a proper cone. In this chapter,

we extend the theory of these operators to any closed convex cone. We will see that

the added generality reveals some connections between the positive and Z-operators.

The next three results are well-known and are given as Rockafellar’s [31] The-

orem 14.6, Corollary 16.4.2, and Corollary 19.2.2, respectively.

Proposition 2. If K is a closed convex cone in a finite-dimensional real Hilbert

space, then K is pointed if and only if K∗ is solid. Moreover linspace (K) =

span (K∗)⊥ and lin (K) = codim (K∗).

Proposition 3. If K1 and K2 are convex cones in a finite-dimensional real Hilbert

space, then (K1 +K2)∗ = K∗1 ∩K∗2 and (cl (K1) ∩ cl (K2))∗ = cl (K∗1 +K∗2). If K1

and K2 are closed, then it follows that the dual of cl (K∗1 +K∗2) is K1 ∩K2.

Proposition 4. The dual of a polyhedral convex cone is polyhedral.

Sometimes we will need to find elements x ∈ K and s ∈ K∗ having 〈x, s〉 > 0.

If K is solid, we can choose x in its interior and s ∈ K∗ nonzero but otherwise arbi-

trarily. That approach fails when K has no interior, motivating the following con-

sequence of Proposition 2. Its proof is immediate from linspace (K) = span (K∗)⊥.
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Corollary 1. If K is a closed convex cone in a finite-dimensional real Hilbert space

and if x ∈ K \ linspace (K), then there exists an s ∈ K∗ such that 〈x, s〉 > 0.

We will also need to find nontrivial orthogonal pairs of vectors in K and its

dual. We restate Fenchel’s [11] Corollary 2 in more convenient terms.

Proposition 5. If K is a closed convex cone and if x ∈ bdy (K), then there exists

a nonzero s ∈ K∗ such that 〈x, s〉 = 0.

2.1 Positive operators

The set of all positive operators on a closed convex cone K itself forms a closed

convex cone. The three properties—that π (K) is closed, convex, and a cone—are

easy to verify and depend on the same properties of K.

Proposition 6. If K is a closed convex cone, then so is π (K).

If K is proper, then both π (K) and its dual are proper [35]. To determine if

some linear operator belongs to π (K), it suffices to check positivity on a generating

set of K. This follows easily from the linearity of the operator.

Proposition 7. If K = cone (G) in a finite-dimensional real Hilbert space V and if

L ∈ B (V ), then L ∈ π (K) if and only if L (G) ⊆ K.

Tam found a simple expression for the generators of the dual of π (K) when

K is proper [38]. He uses the fact that cone (K∗ ⊗K) is closed to prove that

π (K)∗ = cone (K∗ ⊗K) if K is proper.
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This fact requires a new proof when K is merely closed and convex. In that setting,

we define T := cone (K∗ ⊗K) to be the cone of Tam’s generators. Note that any

φ ∈ T can be written φ = ∑m
i=1 si ⊗ xi without the scalar factors, since they can be

absorbed into si ⊗ xi. Our first step is to decompose T into two components [31].

Proposition 8. If K is a convex cone in a finite-dimensional real Hilbert space,

then K has an orthogonal direct sum decomposition into two convex cones,

K = K ∩ linspace (K)⊥#⊥ linspace (K).

Its first factor K ∩ linspace (K)⊥ = proj
(
linspace (K)⊥ , K

)
is pointed.

We will ultimately apply this decomposition to T := cone (K∗ ⊗K). The crux

of our argument is that T is closed even if K is not proper. This next result reduces

the burden of proof to the pointed component of T obtained from Proposition 8.

Proposition 9. If K is a convex cone in a finite-dimensional real Hilbert space,

then K is closed if and only if proj
(
linspace (K)⊥ , K

)
is closed.

Proof. If K is closed, then proj
(
linspace (K)⊥ , K

)
= K ∩ linspace (K)⊥ is the

intersection of two closed sets by Proposition 8.

If proj
(
linspace (K)⊥ , K

)
is closed, then Proposition 8 shows that any conver-

gent sequence (v + w)n contained in K will decompose into orthogonal parts vn+wn

where (v)n converges in proj
(
linspace (K)⊥ , K

)
and (w)n converges in linspace (K).

Thus (v + w)n converges to a point of K.

To exploit Proposition 8, we require the generators of its pointed component.
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Proposition 10. If K = cone (G) in a finite-dimensional real Hilbert space V and

if W is a subspace of V , then proj (W,G) generates proj (W,K).

Proof. Since proj (W,K) = {proj (W,∑m
i=1 αigi) | αi ≥ 0, gi ∈ G, m ∈ N}, the lin-

earity of the projection gives proj (W,K) = cone (proj (W,G)).

We want to apply these results to T , but we are missing two pieces of infor-

mation: we lack a description of linspace (T )⊥, and also the form of the projected

generators. We can compute linspace (T ) explicitly, but we need an easy result first.

Proposition 11. If K is a closed convex cone in a finite-dimensional real Hilbert

space and if T = cone (K∗ ⊗K), then T ⊆ π (K∗).

Proof. If L = ∑m
i=1 si ⊗ xi ∈ T and t ∈ K∗, then L (t) = ∑m

i=1 〈xi, t〉 si ∈ K∗.

Proposition 12. If K is a closed convex cone in a finite-dimensional real Hilbert

space and if T = cone (K∗ ⊗K), then linspace (T ) = U1 + U2 where

U1 := span (K∗ ⊗ linspace (K)) ; U2 := span (linspace (K∗)⊗K) .

Proof. Any u ∈ U1 +U2 is a linear combination of terms like si⊗ xi where (xi, si) ∈

K × K∗ and either xi ∈ linspace (K) or si ∈ linspace (K∗). Thus we can write

±u = ∑±αi (si ⊗ xi) for ±αi ∈ R. Group the coefficient ±αi with the appropriate

lineality space element to see that ±u ∈ T , or that u ∈ linspace (T ).

For the other inclusion, suppose that L := ∑
i=1 si ⊗ xi ∈ linspace (T ) with

(xi, si) ∈ K × K∗. Then both L ∈ T and −L ∈ T , so −L + ∑
i>1 si ⊗ xi =

− (s1 ⊗ x1) is the sum of two elements of T , and is therefore in T itself. Conclude

that s1 ⊗ x1 ∈ linspace (T ). Suppose x1 /∈ linspace (K) and s1 /∈ linspace (K∗) so
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that by Corollary 1, we obtain a t1 ∈ K∗ such that 〈x1, t1〉 > 0. In that case, we

apply ± (s1 ⊗ x1) ∈ T to t1 and use Proposition 11 to show that ±s1 ∈ K∗. Then

s1 ∈ linspace (K∗) is a contradiction, so we conclude that either x1 ∈ linspace (K)

or s1 ∈ linspace (K∗), and thus s1⊗ x1 ∈ U1 +U2. Reason similarly about the other

si ⊗ xi with i 6= 1 to show that L ∈ U1 + U2.

We can now compute lin (T ) and subsequently find linspace (T )⊥.

Proposition 13. If K is a closed convex cone in a finite-dimensional real Hilbert

space V and if T = cone (K∗ ⊗K), then

lin (T ) = lin (K) dim (K∗) + dim (K) lin (K∗)− lin (K) lin (K∗) .

Proof. Use Proposition 12 and apply the dimension formula to linspace (T ),

dim (linspace (T )) = dim (U1) + dim (U2)− dim (U1 ∩ U2) .

Clearly dim (U1) = lin (K) dim (K∗) and dim (U2) = dim (K) lin (K∗). And since

linspace (K∗) ⊗ linspace (K) ⊆ U1 ∩ U2, we have dim (U1 ∩ U2) ≥ lin (K) lin (K∗).

Yet any u1 ∈ U1 and u2 ∈ U2 satisfy

u1
(
linspace (K)⊥

)
= {0} and u2 (V ) ⊆ linspace (K∗) ,

so dim (U1 ∩ U2) ≤ dim (B (linspace (K), linspace (K∗))) = lin (K) lin (K∗) giving

equality. Substitute into the dimension formula to obtain the result.

This next fact lets us compute the orthogonal complement in Proposition 12.

Proposition 14. If V is a finite-dimensional real Hilbert space and if {x, s, t, y} is

a subset of V , then 〈s⊗ x, t⊗ y〉 = 0 if and only if 〈x, y〉 = 0 or 〈t, s〉 = 0.
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Proof. Let L := (s⊗ x) ◦ (y ⊗ t) so that 〈s⊗ x, t⊗ y〉 := trace (L). Note that

L (v) = 〈t, v〉 〈x, y〉 s = 〈x, y〉 (s⊗ t) (v), and so L has at most one nonzero eigenvalue

λ = 〈x, y〉 〈s, t〉. The equivalence follows from trace (L) = λ.

Proposition 15. If K is a closed convex cone in a finite-dimensional real Hilbert

space V and if T = cone (K∗ ⊗K), then linspace (T )⊥ is equal to

span
(
(K∗)⊥ ⊗ linspace (K)

)
#⊥ span

(
linspace (K∗)⊥ ⊗ linspace (K)⊥

)
#⊥ span

(
linspace (K∗)⊗K⊥

)
.

(2.1)

Proof. Proposition 14 shows that the spans in (2.1) are mutually orthogonal to each

other and to linspace (T ). If the dimensions of (2.1) and lin (T ) sum to dim (B (V )),

then (2.1) must be linspace (T )⊥. To justify that assertion, note that the dimension

of (2.1) is equal to

codim (K∗) lin (K) + dim (K) dim (K∗) + lin (K∗) codim (K) .

Using Proposition 13, add lin (T ) to that expression, and then eliminate the two

codimension terms; for example,

codim (K∗) lin (K) + lin (K) dim (K∗) = dim (V ) lin (K) .

Further simplification yields dim (V )2 = dim (B (V )).

Corollary 2. If K is a closed convex cone in a finite-dimensional real Hilbert space

and if T = cone (K∗ ⊗K), then

proj
(
linspace (T )⊥ , T

)
⊆ span

(
linspace (K∗)⊥ ⊗ linspace (K)⊥

)
.
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Proof. Using Proposition 14, it is easy to see that span (T ) is orthogonal to two of

the three subspaces that constitute linspace (T )⊥ in Proposition 15. Therefore the

projection of T onto linspace (T )⊥ lies entirely in the third subspace.

Corollary 2 shows that without loss of generality, the projection of T onto

linspace (T )⊥ is onto span
(
linspace (K∗)⊥ ⊗ linspace (K)⊥

)
instead. This allows us

to bring the following proposition and its corollary to bear, providing a description

of the generators that appear when Proposition 10 is applied to T .

Proposition 16. Let V be a real Hilbert space with basis v := {v1, v2, . . . , vn}. If

W1 and W2 are subspaces of V , then the linear operator

Π (vi ⊗ vj) := proj (W1, vi)⊗ proj (W2, vj) (2.2)

defines the orthogonal projection of B (V ) onto span (W1 ⊗W2).

Proof. The existence and uniqueness of such a projection is guaranteed, because

span (W1 ⊗W2) is a subspace of span (V ⊗ V ) = B (V ). A dimension argument

shows that v⊗ v is a basis for B (V ), so (2.2) is well-defined, and clearly linear.

Observe from (2.2) that Π (B (V )) ⊆ span (W1 ⊗W2) and that Π (φ) = φ for

any φ ∈ span (W1 ⊗W2). If instead one takes any φ ∈ span (W1 ⊗W2)⊥, then

φ ∈ span
(
W⊥

1 ⊗ V
)

+ span
(
V ⊗W⊥

2

)
and Π (φ) = 0 by Proposition 14. The only

such operator is the orthogonal projection onto span (W1 ⊗W2).

Corollary 3. Let V be a finite-dimensional real Hilbert space and let W1 and W2

be subspaces of V . If P ⊆ V × V , then

proj (span (W1 ⊗W2) , cone ({s⊗ x | (x, s) ∈ P}))
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is equal to

cone ({proj (W1, s)⊗ proj (W2, x) | (x, s) ∈ P}) .

Proof. Use Proposition 10 and then Proposition 16.

It will be be convenient to work with bounded generating sets of cones like

cone ({s⊗ x | (x, s) ∈ P}) from Corollary 3. We construct such a set explicitly.

Proposition 17. Let V be a finite-dimensional real Hilbert space. If P ⊆ V × V

is nonempty and such that (x, s) ∈ P implies that both (λx, s) ∈ P and (x, λs) ∈ P

for all λ ≥ 0, then

cone ({s⊗ x | (x, s) ∈ P}) = cone ({s⊗ x | (x, s) ∈ P, ‖x‖ = ‖s‖ = 1}) .

Proof. One set is clearly a subset of the other, so suppose that we are given a

φ ∈ cone ({s⊗ x | (x, s) ∈ P}). Pull out nonnegative factors so that

φ =
m∑
i=1

αi (si ⊗ xi) =
m∑
i=1

αi ‖si‖ ‖xi‖
(
si
‖si‖

⊗ xi
‖xi‖

)
.

The latter belongs to cone ({s⊗ x | (x, s) ∈ P, ‖x‖ = ‖s‖ = 1}).

The set P in Proposition 17 simply generalizes the two sets K×K∗ and C (K).

Lemma 1. If K is a closed convex cone in a finite-dimensional real Hilbert space

and if T = cone (K∗ ⊗K), then T is closed.

Proof. It suffices by Proposition 9 to show that proj
(
linspace (T )⊥ , T

)
is closed.

We will construct a generating set G of that projection such that cone (G) is closed.

First, use Corollary 2 to show that proj
(
linspace (T )⊥ , T

)
is equal to

proj
(
span

(
linspace (K∗)⊥ ⊗ linspace (K)⊥

)
, T
)
. (2.3)
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Then, from Corollary 3 and the fact that T = cone (K∗ ⊗K), the set (2.3) is

cone
(
proj

(
linspace (K∗)⊥ , K∗

)
⊗ proj

(
linspace (K)⊥ , K

))
. (2.4)

If either projection in (2.4) is {0}, then the entire cone is the closed set {0} and the

proof is complete. We can therefore assume that both projections contain nonzero

elements. And since they are both closed convex cones by Proposition 9, they

contain elements of unit norm. Thus we have two nonempty compact sets,

J1 :=
{
x ∈ proj

(
linspace (K)⊥ , K

) ∣∣∣ ‖x‖ = 1
}

J2 :=
{
s ∈ proj

(
linspace (K∗)⊥ , K∗

) ∣∣∣ ‖s‖ = 1
}
.

Use Proposition 17 to see that cone (J2 ⊗ J1) is equal to (2.4), and let G := J2⊗J1 6=

∅. The set G is also compact, since it is the image of the continuous mapping

(x, s) 7→ s⊗ x on the compact set J1 × J2. It follows that conv (G) is compact [1].

For cone (G) to be closed, it suffices [31, 38] to show that 0 /∈ conv (G). Suppose on

the contrary that

0 = λ1g1 + λ2g2 + · · ·+ λmgm, where gi ∈ G, λi > 0, and
m∑
i=1

λi = 1.

This can be rearranged to −λ1g1 = λ2g2 + · · · + λmgm ∈ T , contradicting the fact

that g1 ∈ linspace (T )⊥ unless g1 = 0. The elements of G were constructed to have

nonzero norm, so that cannot happen.

Theorem 1. If K = cone (G1) is closed in a finite-dimensional real Hilbert space

and if K∗ = cone (G2), then π (K)∗ = cone (G2 ⊗G1).

Proof. Expand the elements of K and K∗ in terms of G1 and G2 to verify that

cone (G2 ⊗G1) = cone (K∗ ⊗K). Since K is closed, we have (K∗)∗ = K, and
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thus L ∈ π (K) if and only if 〈L (x), s〉 ≥ 0 for all (x, s) ∈ K × K∗. The identity

〈L (x), s〉 = 〈L, s⊗ x〉 is a property of the trace, so it follows that

〈L, s⊗ x〉 ≥ 0 for all (x, s) ∈ K ×K∗ ⇐⇒ L ∈ cone (G2 ⊗G1)∗ .

Therefore π (K) = cone (G2 ⊗G1)∗, and Lemma 1 shows that cone (G2 ⊗G1) is

closed. Take duals on both sides.

Example 7. If K = {0} in V , then there are no nonzero generators of K, so

π (K)∗ = {0}, and thus π (K) = B (V ). Likewise if K = V and K∗ = {0}.

Example 8. If K = cone ({e1,±e2}) is the right half-space in V = R2, then K∗ =

cone ({e1}) and Theorem 1 gives

π (K)∗ = cone
({
e1e

T
1 ,±e1e

T
2

})
; π (K) = cone

({
e1e

T
1 ,±e2e

T
1 ,±e2e

T
2

})
.

This result is verified using Proposition 7.

Using extreme directions, Tam proved the following for proper cones [38]. We

extend the result to all closed convex cones.

Theorem 2. If K is a closed convex cone in a finite-dimensional real Hilbert space,

then π (K) is polyhedral if and only if K is polyhedral.

Proof. Necessity follows directly from Theorem 1 and Proposition 4, so suppose

that π (K) is polyhedral. Then π (K)∗ is polyhedral as well by Proposition 4. From

Theorem 1 we have π (K)∗ = cone (G2 ⊗G1) for generating sets G1 and G2 of K

and K∗ respectively. Since π (K)∗ is polyhedral, it is generated by a finite set P .

Each p ∈ P belongs to π (K)∗, so by Carathéodory’s theorem, it is a finite conic
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combination of elements of G2 ⊗ G1. Collect these elements—a finite number for

each p in the finite set P—to construct a finite subset F1×F2 ⊆ G1×G2 such that

π (K)∗ = cone (F2 ⊗ F1). We show that cone (F2) = K∗ and it follows that both K∗

and K are polyhedral.

If K = linspace (K), then K is polyhedral, so assume otherwise. Choose a

nonzero x ∈ K ∩ linspace (K)⊥ and any s ∈ K∗. Then s⊗ x ∈ π (K)∗, so

s⊗ x =
m∑
i=1

αi (si ⊗ xi) where αi ≥ 0 and (xi, si) ∈ F1 × F2.

Since x /∈ linspace (K), there exists a t ∈ K∗ such that 〈x, t〉 > 0 by Corollary 1.

Apply s⊗ x to t to obtain s = 1
〈x,t〉

∑m
i=1 αi 〈xi, t〉 si ∈ cone (F2).

Proposition 12 and Proposition 13 now have intepretations in terms of π (K).

Corollary 4. If K is a closed convex cone in a finite-dimensional real Hilbert space,

then linspace (π (K)∗) = U1 + U2 where

U1 := span (K∗ ⊗ linspace (K)) ; U2 := span (linspace (K∗)⊗K) .

Proof. Combine Proposition 12 with Theorem 1.

Corollary 5. Let K be a closed convex cone in a finite-dimensional real Hilbert

space V . If n = dim (V ), m = dim (K), and ` = lin (K), then lin (π (K)∗) =

` (m− `) +m (n−m).

Proof. One form of lin (π (K)∗) is given by Theorem 1 and Proposition 13. Use

Proposition 2 to achieve the desired form.
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Lemma 2. Let K be a closed convex cone in a finite-dimensional real Hilbert space

V , and let n = dim (V ), m = dim (K), and ` = lin (K). Then,

dim (π (K)) = n2 − ` (m− `)−m (n−m) .

Proof. Apply Corollary 5 to codim (π (K)) = lin (π (K)∗).

Example 9. If K = {0} in V , then m = ` = 0, and dim (π (K)) = n2 which agrees

with the obvious fact that π (K) = B (V ).

Example 10. If K is proper, then in Lemma 2, we have m = n and ` = 0. Thus

dim (π (K)) = n2 and π (K) is solid.

Example 11. Example 8 has n = m = 2 and ` = 1 giving dim (π (K)) = 3.

Lemma 3. If K is a closed convex cone in a finite-dimensional real Hilbert space

V , then

lin (π (K)) = dim (V )2 − dim (K) dim (K∗) .

Proof. By Proposition 2 we have lin (π (K)) = dim (V )2 − dim (π (K)∗), and from

Theorem 1 it follows that dim (π (K)∗) = dim (K) dim (K∗).

Example 12. If K = {0} in V , then dim (K) = 0, and lin (π (K)) = dim (V )2 in

agreement with the fact that π (K) = B (V ).

Example 13. If K is proper, then dim (K) = dim (K∗) = dim (V ). Lemma 3 gives

lin (π (K)) = 0, showing that π (K) is pointed.

Example 14. In Example 8, we have lin (π (K)) = 4− 2 · 1 = 2.
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These corollaries and examples reaffirm that if K is proper, then π (K) is

proper [34]. Lemma 3 allows us to prove the converse.

Theorem 3. If K is a closed convex cone in a finite-dimensional real Hilbert space,

then π (K) is proper if and only if K is proper.

When K is polyhedral, Theorem 1 allows us to compute a generating set of

π (K). Algorithms to compute the dual generators of a polyhedral cone are known,

and the inverse operations vec () and mat () are isometries.

Algorithm 1 Compute generators of π (K)
Input: A closed convex cone K

Output: A generating set of π (K)

function pi(K)

G1 ← a finite set of generators for K

G2 ← dual (G1) . a finite set of generators for K∗

G← G2 ⊗G1

return mat (dual (vec (G)))

end function

2.2 Z-operators

We now move on to the Z-operators introduced in Definition 15. Every Z-

operator is the negation of some cross-positive operator—the class introduced by

Schneider and Vidyasagar [35]. As before, we begin by pointing out that the set of

all Z-operators on K forms a closed convex cone. Verification of the three criteria
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is straightforward, but in this case, none of them depend on properties of K.

Proposition 18. Z (K) is a closed convex cone for any set K.

If the ambient space is nontrivial, then Z (K) contains the nontrivial subspace

LL (K) and is never proper in contrast with Theorem 3.

Proposition 19. If K = cone (G1) is closed in a finite-dimensional real Hilbert

space and if K∗ = cone (G2), then L ∈ Z (K) if and only if

〈L (x), s〉 ≤ 0 for all (x, s) ∈ C (K) ∩ (G1 ×G2). (2.5)

Proof. Clearly, if L ∈ Z (K), then L satisfies (2.5). So suppose that L satisfies (2.5)

and let (x, s) ∈ C (K). Since G1 generates K and G2 generates K∗, we can write x =

∑`
i=1 αixi and s = ∑m

j=1 γjsj. By expanding 〈x, s〉 = 0 and noting that 〈xi, sj〉 ≥ 0,

we see that each (xi, sj) ∈ C (K). Linearity gives 〈L (x), s〉 ≤ 0.

As with π (K)∗, we will eventually want to find a generating set of Z (K)∗ and

use that to prove some results about Z (K). Recall the cone of Tam’s generators

T := cone (K∗ ⊗K) from Section 2.1. There we showed that T = π (K)∗, and a

similar set will generate Z (K)∗. When K is a closed convex cone, we will now define

TC := cone ({s⊗ x | (x, s) ∈ C (K)}) .

Proposition 20. If K is a closed convex cone in a finite-dimensional real Hilbert

space V and if TC = cone ({s⊗ x | (x, s) ∈ C (K)}), then we can express TC as the

intersection of T := cone (K∗ ⊗K) and a subspace, namely TC = T ∩ id⊥V .

Proof. Clearly TC ⊆ T , and if L = ∑
si ⊗ xi ∈ TC , then 〈L, idV 〉 = 0 because each

si ⊗ xi has trace zero and the trace is linear. So TC ⊆ id⊥V .
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On the other hand, if L = ∑
si ⊗ xi ∈ T with 〈L, idV 〉 = trace (L) = 0, then

the linearity of the trace and the fact that trace (si ⊗ xi) = 〈si, xi〉 ≥ 0 imply that

each 〈si, xi〉 = 0. Thus L ∈ TC .

Lemma 4. If K is a closed convex cone in a finite-dimensional real Hilbert space

and if TC = cone ({s⊗ x | (x, s) ∈ C (K)}), then TC is closed.

Proof. Use Proposition 20 to write TC as the intersection of a cone and a subspace.

Lemma 1 says that the cone is closed.

Theorem 4. If K = cone (G1) is closed in a finite-dimensional real Hilbert space

and if K∗ = cone (G2), then Z (K)∗ = cone (G) where G is defined to be G :=

{−s⊗ x | (x, s) ∈ C (K) ∩ (G1 ×G2)}. In particular, if K is a closed convex cone,

then Z (K)∗ = cone ({s⊗ x | (x, s) ∈ C (K)}).

Proof. Follow Theorem 1. Let TC = cone ({s⊗ x | (x, s) ∈ C (K)}); we will show

that cone (G) = −TC which by Lemma 4 is closed. Obviously, cone (G) ⊆ −TC , so

let h ∈ −TC be given with h = ∑`
i=1−si⊗ xi where each (xi, si) ∈ C (K). Take any

term −t⊗ y in this sum, and write t and y in terms of G2 and G1,

−t⊗ y = −
(

n∑
k=1

γkhk

)
⊗

 m∑
j=1

αjgj

 =
n∑
k=1

m∑
j=1

αjγk (−hk ⊗ gj) .

Expand 〈y, t〉 = 0 and note that each 〈gj, hk〉 ≥ 0 implying (gj, hk) ∈ C (K). Thus

each −t ⊗ y ∈ cone (G), and so h ∈ cone (G). Conclude that cone (G) = −TC . By

definition, L ∈ Z (K) if and only if 〈−L (x), s〉 ≥ 0 for all (x, s) ∈ C (K). By a

property of the trace we have 〈−L (x), s〉 = 〈L,−s⊗ x〉, so it follows that

L ∈ Z (K) ⇐⇒ 〈L,−s⊗ x〉 ≥ 0 for all (x, s) ∈ C (K) ⇐⇒ L ∈ cone (G)∗ .
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Take duals on both sides of Z (K) = cone (G)∗.

There is no corresponding result for proper cones, so we include the classical

case along with some improper cones as examples of Theorem 4.

Example 15. If K = Rn+ in V = Rn, then C (K) = {(ei, ej) | i 6= j}. Form

G :=
{
−ejeTi

∣∣∣ i 6= j
}

to find that Z (K)∗ = cone (G) is the set of matrices whose

diagonal entries are zero and whose off-diagonal entries are nonpositive. Its dual is

the cone of Z-matrices.

Example 16. If K = {0} or K = V , then Z (K)∗ = {0} and Z (K) = B (V ).

Example 17. IfK is the half-space from Example 8, then Theorem 4 gives Z (K)∗ =

Z (K)⊥ = span
({
e1e

T
2

})
. This result is verified by Proposition 19.

Now that we know that Z (K)∗ = −TC , we can find the dimension of Z (K).

Proposition 21. Let K be a closed convex cone in a finite-dimensional real Hilbert

space V . If T = cone (K∗ ⊗K) and if TC = cone ({s⊗ x | (x, s) ∈ C (K)}), then

linspace (TC) = linspace (T ).

Proof. Use Proposition 8 to T and Proposition 20 to show that linspace (TC) =

linspace (T )∩ id⊥V . If L = ∑
si⊗xi ∈ T , then 〈L, idV 〉 = ∑ 〈si, xi〉 ≥ 0 and ±L ∈ T

would imply that 〈L, idV 〉 = 0. Thus linspace (T ) ⊆ id⊥V .

Theorem 5. If K is a closed convex cone in a finite-dimensional real Hilbert space,

then dim (Z (K)) = dim (π (K)).

Proof. Theorem 1, Proposition 21, and Theorem 4 show that linspace (Z (K)∗) =

linspace (π (K)∗). Proposition 2 gives codim (Z (K)) = codim (π (K)).
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The trivial cone, half-space, full space, and nonnegative orthant all corroborate

Theorem 5. Our next result is an analogue of Theorem 2 and its proof is similar.

Theorem 6. If K is a closed convex cone in a finite-dimensional real Hilbert space,

then Z (K) is polyhedral if and only if K is polyhedral.

Proof. Refer to the proof of Theorem 2. Necessity follows immediately from The-

orem 4 and Proposition 4, so suppose that Z (K) is polyhedral. Without loss of

generality, Z (K)∗ = cone (−F2 ⊗ F1) for finite sets F1 ⊆ K and F2 ⊆ K∗. If

dim (K∗) = 1, or if K∗ is a (half) subspace, then K is polyhedral. Fenchel’s Theo-

rem 13 lets us assume that K∗ is generated by its relative boundary rays [11].

Let s be any nonzero relative boundary ray of K∗. Define the closed convex

cone J := K∗+ linspace (K) which by Proposition 2 equals K∗#⊥ span (K∗)⊥. Then

s lies on the boundary of J , and by Proposition 5, there exists a nonzero x ∈ J∗

such that 〈x, s〉 = 0. Proposition 3 gives J∗ = K ∩ linspace (K)⊥, so this pair

satisfies (x, s) ∈ C (K) and thus −s⊗ x ∈ Z (K)∗. The argument used in the proof

of Theorem 2 can be repeated to show that s ∈ cone (F2).

This result is confirmed by the polyhedral cones we have examined—all have

polyhedral cones of Z-operators.

Corollary 6. If K is a closed convex cone in a finite-dimensional real Hilbert space,

then Z (K) is polyhedral if and only if π (K) is polyhedral.

There are no simple characterizations of Z (K) for nonpolyhedral K. One

sees an example in the work of Stern and Wolkowicz [37] who characterize the Z-
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operators on the Lorentz “ice cream” cone. We close this section with an algorithm,

based on Theorem 4, to compute Z (K) for polyhedral K.

Algorithm 2 Compute generators of Z (K)
Input: A closed convex cone K

Output: A generating set of Z (K)

function Z(K)

G1 ← a finite set of generators for K

G2 ← dual (G1) . a finite set of generators for K∗

G← {−s⊗ x | x ∈ G1, s ∈ G2, 〈x, s〉 = 0}

return mat (dual (vec (G)))

end function

2.3 Lyapunov-like operators

Using what we now know about Z-operators, we can extend the theory of

Lyapunov-like operators to all closed convex cones.

Proposition 22. If K = cone (G1) is closed in a finite-dimensional real Hilbert

space and if K∗ = cone (G2), then L ∈ LL (K) if and only if

〈L (x), s〉 = 0 for all (x, s) ∈ C (K) ∩ (G1 ×G2). (2.6)

Proof. Apply Proposition 19 to ±L.

Proposition 22 and a generating set for K will often allow us to describe

LL (K) and determine β (K). We illustrate this with an example.
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Example 18. Let K be the xy-plane in V = R3. Then K∗ is the z-axis, and they

have the respective generating sets

K = cone ({±e1,±e2}) ; K∗ = cone ({±e3}) .

Using Proposition 22, one can verify that neither E31 nor E32 is Lyapunov-like on

K but that the remaining seven Eij are. Thus, β (K) = dim (LL (K)) = 7.

Finding a tight upper bound for the Lyapunov rank of a proper cone is an

open problem that we address in Chapter 4. The following example shows that, in

general, there can be no similar bound for closed convex cones.

Example 19. Suppose K = V = Rn. Then K∗ = {0} and C (K) = K × {0}, so

every L ∈ B (V ) is Lyapunov-like on K and dim (B (V )) = n2.

The following two results generalize known results [33] for proper cones.

Proposition 23. If K is a closed convex cone in a finite-dimensional real Hilbert

space, then the Lyapunov ranks β (K) and β (K∗) are equal.

Proof. It follows from Definition 17 that L ∈ LL (K) if and only if L∗ ∈ LL (K∗).

The map L 7→ L∗ is bijective, so dim (LL (K)) = dim (LL (K∗)).

Proposition 24. Let V and W be two finite-dimensional real Hilbert spaces. If K is

a closed convex cone in V and if A ∈ B (V ,W ) is invertible, then β (K) = β (A (K)).

Proof. We first observe that A (K)∗ = (A∗)−1 (K∗). Then it is evident that L ∈

LL (K) ⇐⇒ ALA−1 ∈ LL (A (K)). The result follows from the fact that L 7→

ALA−1 is an invertible linear operator from B (V ) to B (W ).
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Recall the linear complementarity problem of Example 5. There it was implied

that β
(
Rn+
)

= n which led to a possible means of solution to the problem via the

system (1.2). That possibility exists whenever the complementarity set can be

decomposed via a large number of Lyapunov-like operators.

Definition 21. A closed convex cone K in a finite-dimensional real Hilbert space

V is perfect if there exist dim (V ) linearly-independent Li ∈ LL (K) such that

C (K) =
dim(V )⋂
i=1
{(x, s) ∈ K ×K∗ | 〈Li (x), s〉 = 0}.

If K is perfect, the equation 〈x, s〉 = 0 can be rewritten as a system of dim (V )

equations, 〈Li (x), s〉 = 0, for 1 ≤ i ≤ dim (V ). As the name “perfect” implies, this

is desirable because it may lead to a soluble square system.

Example 20. In the linear complementarity problem of Example 5, the cone K =

Rn+ is perfect. Let Li = Eii for 1 ≤ i ≤ n. Then,

C (K) = {(x, s) | x ≥ 0, s ≥ 0, 〈x, s〉 = 0}

=
n⋂
i=1
{(x, s) | x ≥ 0, s ≥ 0, xisi = 0}

=
n⋂
i=1
{(x, s) | x ≥ 0, s ≥ 0, 〈Li (x), s〉 = 0}.

According to Definition 21, the cone Rn+ is perfect.

We can characterize perfect cones by their Lyapunov ranks. This settles an

open question [19], and provides two conditions by which a cone can be found perfect.

Theorem 7. If K is a closed convex cone in a finite-dimensional real Hilbert space

V , then the following are equivalent:
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(i) The identity operator idV on V can be written as a linear combination of

dim (V ) elements of LL (K).

(ii) K is perfect.

(iii) β (K) ≥ dim (V ).

Proof. Gowda and Tao [19] proved that item (i) implies the others. It remains to

show that if β (K) ≥ dim (V ), then idV is a linear combination of dim (V ) Lyapunov-

like operators on K. But idV is Lyapunov-like on K, so extend the set {idV } to a

basis
{

idV , L2, . . . , Lβ(K)
}

of LL (K). Then idV = idV +0L2 + · · ·+ 0Ldim(V ).

Rudolf et al. gave a codimension formula for the Lyapunov rank [33], and an

analogous formula holds for all closed convex cones.

Theorem 8. If K = cone (G1) is closed in a finite-dimensional real Hilbert space

and if K∗ = cone (G2), then

β (K) = codim (span ({s⊗ x | (x, s) ∈ C (K) ∩ (G1 ×G2)})) . (2.7)

Proof. We know that LL (K) = linspace (Z (K)), so from Proposition 2 we have

LL (K)⊥ = span (Z (K)∗). Note the generators of Z (K)∗ from Theorem 4 and

compute dim (LL (K)) = codim
(
LL (K)⊥

)
.

As an application, we compute the Lyapunov rank of a vector subspace.

Proposition 25. Suppose V is a n-dimensional real Hilbert space. If K is an

m-dimensional subspace of V , then β (K) = n2 −m (n−m).
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Proof. Using Proposition 24, we can assume that V = Rn with the standard basis

and that K = Rm. Now G1 := {±ei}mi=1 and G2 := {±ei}ni=m+1 generate K and

K∗ = Rn−m respectively. Thus,

C (K) ∩ (G1 ×G2) = {(±ei,±ej) | i ≤ m; m+ 1 ≤ j ≤ n} .

As span ({s⊗ x | (x, s) ∈ C (K) ∩ (G1 ×G2)}) reduces to the span of some Eji, it

follows from (2.7) that β (K) = n2 −m (n−m).

Note that this agrees with Example 18 where n = 3, m = 2, and β (K) = 7.

Proposition 26. Let V be an n-dimensional real Hilbert space. If K = cone ({v})

for some nonzero v ∈ V , then β (K) = n2 − n+ 1.

Proof. Without loss of generality, we can take K to be cone ({e1}) and V to be Rn.

Then K∗ is the right half-space containing e1 in Rn. It is obvious that G1 := {e1}

generates K and G2 := {e1}∪{±ej | j > 1} generates K∗. Consider the pairs (e1, e2)

through (e1, en) in (2.7) to conclude that β (K) = n2 − (n− 1).

Corollary 7. The Lyapunov rank of any ray, half-space, line, or hyperplane in an

n-dimensional real Hilbert space is n2 − n+ 1.

Proof. The half-space is dual to a single ray, and we can apply Proposition 26

to the set containing a single ray. The line/hyperplane are also duals, and their

complementarity sets differ only in sign from those of the ray/half-space.

Proposition 9 of Rudolf et al. [33] shows that Lyapunov rank is additive on a

Cartesian product when its factors are proper cone-space pairs.
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Proposition 27 (Rudolf et al.). If K and J are proper cones in a finite-dimensional

real Hilbert space, then β (K × J) = β (K) + β (J).

Surprisingly, this does not hold in general. If K = cone ({e1}) in Rn, then

informally, K can be written as the product cone ({e1}) × {0} where cone ({e1})

lives in R and {0} lives in Rn−1. Apply Proposition 27 to that product:

β (cone ({e1})× {0}) = β (cone ({e1})) + β ({0}) .

Proposition 25 and Proposition 26 give β ({0}) = (n− 1)2 and β (cone ({e1})) = 1,

respectively, so β (K) = 1 + (n− 1)2. Now apply Proposition 26 directly to K to

obtain β (K) = n2−n+1. These two results disagree when n ≥ 2, and this example

can be formalized to show that Proposition 27 is invalid for improper cones.
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Chapter 3

Lyapunov rank and the exponential connection

In this chapter, we connect the Lyapunov-like operators on a closed convex

cone to the Lie algebra of its automorphism group. The analogous result for proper

cones was derived by Gowda and Tao [19], inspired by the earlier work of Schneider

and Vidyasagar [35] on positive and Z-operators.

To simplify the notation, we first introduce the concept of a cone-space pair.

We then find the Lyapunov rank of a closed convex cone in terms of a proper subcone.

We present an algorithm to perform the computation, and then finally make the

connection between a cone’s Lyapunov-like operators and its automorphism group.

3.1 Cone-space pairs

Many operations that we have performed on cones so far have depended implic-

itly on the ambient space V . When K is a proper cone in V , there is no ambiguity—

no smaller space contains K. In this chapter, if K lives in a proper subspace W

of V , then we will need to (for example) take the dual of K within W . The usual

notation does not allow this: the expression “K∗” is ambiguous when we may think

of K as a subset of more than one ambient space, since “K∗ in V ” and “K∗ in W”

are two different sets. To avert that ambiguity, we make the following definition.

Definition 22. A cone-space pair (K,V ) is a closed convex cone K paired with a
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finite-dimensional real Hilbert space V containing K.

We avoid the cumbersome pair notation with the following device.

Definition 23. If (K,V ) is a cone-space pair and if W is a subspace of V , then we

define a new cone-space pair KW := (K ∩W,W ). We extend this “operation” to

cone-space pairs by (KW )U = (KU)W = KUW := (K ∩ U ∩W,U ∩W ).

Note that KV = (K ∩ V , V ) = (K,V ) whenever K is contained in V ; this

motivates an abuse of notation when we say “let KV be a cone-space pair” to mean

“let (K,V ) be a cone-space pair.”

The “space” in “cone-space pair” (that is, the subscript) is mainly a bookkeep-

ing tool. Any operation defined on a closed convex cone K in a finite-dimensional

real Hilbert space V can be defined on the cone-space pair KV in an obvious way:

think of K as a subset of V , perform the operation, and (if necessary) pair the result

with the appropriate space. Here are a few examples.

Definition 24. The dual cone-space pair of KV is another cone-space pair,

K∗V := ({y ∈ V | ∀x ∈ K, 〈x, y〉 ≥ 0}, V ) .

We define codim (KV ) in terms of the orthogonal complement of K in V :

codim (KV ) := dim ({y ∈ V | ∀x ∈ K, 〈x, y〉 = 0}) .

Proposition 28. If KV is a cone-space pair and if W is a subspace of V containing

K, then (KW )∗ = (K∗V )W .

We will freely perform operations on cone-space pairs that we defined on sub-

sets of Hilbert spaces. There is no ambiguity if the space is treated as an annotation.
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For example, any φ ∈ B (V ,W ) acts on a cone-space pair by φ (KV ) = φ (K)W .

Subspaces are closed convex cones, but we will not belabor the notation. If W is a

subspace of V , we write W⊥ and not W⊥
V for its orthogonal complement in V .

Definition 25. Two cone-space pairs KV and JW are isometric if there exists an

isometry φ : V → W with φ (K) = J .

One should beware of terms like “solid cone” that implicitly refer to an ambient

space. Those definitions will now refer to the explicit space component of the pair.

If K lives in a subspace W of the ambient space V , then the cone-space pair KW is

solid if span (K) = W and not if span (K) = V .

3.2 The Lyapunov rank of an improper cone

The failure of the product formula in Proposition 27 motivates us to find a

similar formula that works for all closed convex cones. In that counterexample, we

informally wrote K as a product of two cones. The first factor was solid in span (K),

and the second factor was trivial in span (K)⊥. Once we formalize that procedure,

it will become a major tool used in the remainder of this chapter.

Proposition 29. If KV is a cone-space pair and if W is a subspace of V containing

K, then V is isometric to W ×W⊥ and KV
∼= KW × {0}W⊥.

Proof. Suppose {fi}mi=1 and {gj}nj=m+1 are bases for W and W⊥, respectively. Define

the isometry φ : V → W ×W⊥ by φ (fi) = (fi, 0)T and φ (gj) = (0, gj)T .

Proposition 29 and Proposition 24 show that we can find β (KV ) by computing
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β (KW × {0}W⊥) instead. When KV is non-solid, the latter is simpler.

Proposition 30. If KV is a cone-space pair and if S = span (K), then

π (KS × {0}S⊥) =
{[
A B
0 D

] ∣∣∣∣∣ A ∈ π (KS)
}
,

Z (KS × {0}S⊥) =
{[
A B
0 D

] ∣∣∣∣∣ A ∈ Z (KS)
}
, and

LL (KS × {0}S⊥) =
{[
A B
0 D

] ∣∣∣∣∣ A ∈ LL (KS)
}

where B ∈ B
(
S⊥, S

)
and D ∈ B

(
S⊥
)

are arbitrary.

Proof. The argument for the positive operators is straightforward and will be omit-

ted. In each case, both B and D are easily seen to be arbitrary. The fact that the

operator in B
(
S, S⊥

)
must be zero follows from the fact that KS is solid and that

we could construct a counterexample if the operator were nonzero.

The difficulty for the Z-operators is in showing that A ∈ Z (KS) necessarily.

This however follows from the relationship,

(x, s) ∈ C (KS) ⇐⇒
(
(x, 0)T , (s, t)T

)
∈ C (KS × {0}S⊥) for all t ∈ S⊥.

The result for LL (KS × {0}S⊥) then follows from LL (H) = linspace (Z (H)).

Lemma 5. If KV is a cone-space pair and if S = span (K), then

β (KV ) = β (KS) + codim (KV ) · dim (V ) .

Proof. Using Proposition 29, we work with KS × {0}S⊥ instead of KV . For L ∈

LL (KS × {0}S⊥), we are free to choose A, B, and D in Proposition 30 from their re-

spective spaces having dimensions β (KS), dim
(
S⊥
)

dim (S), and dim
(
S⊥
)2

. Thus,

β (KV ) = β (KS) + dim
(
S⊥
) (

dim (S) + dim
(
S⊥
))
.
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Using duality we have an immediate consequence.

Lemma 6. If KV is a cone-space pair and if P = span (K∗V ), then

β (KV ) = β (KP ) + lin (KV ) · dim (V ) .

Proof. Apply Lemma 5 to K∗V to obtain

β (K∗V ) = β ((K∗V )P ) + codim (K∗V ) · dim (V ) .

Now (K∗V )P is solid and, by Proposition 28, equal to K∗P . Take its dual and ap-

ply Proposition 2 to show that KP is pointed. Substitute β (K∗V ) = β (KV ) and

β (K∗P ) = β (KP ) by Proposition 23 to obtain the result.

The preceding lemmata combine to handle any closed convex cone.

Theorem 9. If KV is a cone-space pair with S := span (K) and P := span (K∗S),

then KSP is proper and

β (KV ) = β (KSP ) + lin (K) · dim (K) + codim (KV ) · dim (V ) .

Proof. Apply Lemma 5 to KV so that we have

β (KV ) = β (KS) + codim (KV ) · dim (V ) (3.1)

where KS is solid. Now apply Lemma 6 to KS:

β (KS) = β ((KS)P ) + lin (KS) · dim (S) (3.2)

where (KS)P = KSP is pointed. The lineality of KS and dimension of S are the

same as those of K itself, so combining (3.1) and (3.2), we have

β (KV ) = β (KSP ) + lin (K) · dim (K) + codim (KV ) · dim (V ) .

Since KS was solid, the cone-space pair KSP is solid (thus proper) as well.
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The literature states that idV is Lyapunov-like on any proper cone-space pair

KV , and that therefore β (KV ) ≥ 1. However, the trivial cone in the trivial space is

both solid and pointed with Lyapunov rank zero. We caution that the KSP obtained

in Theorem 9 can be trivial, as our next example shows.

Example 21. If K = Rm in V = Rn, then lin (K) = dim (K) = m, codim (KV ) =

n−m, and KSP is trivial. Theorem 9 then gives β (KV ) = n2 −m (n−m).

Example 22. If K = cone ({v}) in the n-dimensional space V (cf. Proposition 26),

then lin (K) = 0, dim (K) = 1, and codim (KV ) = n − 1. If S = span ({v}),

then the solid cone-space pair KS is just cone ({v})S which is self-dual in S. As a

result, P = span (K∗S) = S and so KSP = KS. Corollary 7 and Theorem 9 give

β (KV ) = n2 − n+ 1.

Example 23. If KV is proper, then S = P = V , so KSP = KV and lin (K) =

codim (KV ) = 0. Theorem 9 reduces to β (KV ) = β (KSP ).

Theorem 9 simplifies the computation of β (KV ) when KV is improper. Every

Lyapunov rank computation reduces to that of a proper cone-space pair KSP .

Theorem 10 (Gowda and Tao). For every proper polyhedral cone-space pair KV in

V = Rn, we have 1 ≤ β (KV ) ≤ n and β (KV ) 6= n− 1.

As we noted subsequent to Theorem 9, the trivial cone-space pair is proper

and polyhedral, so we must admit 0 ≤ β (KV ) ≤ n if we allow n to be zero. Doing

so, we extend Theorem 10 to all cone-space pairs.

Theorem 11. If KV is a polyhedral cone-space pair, then β (KV ) 6= dim (V )− 1.
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Proof. If dim (K) = m, dim (V ) = n, and lin (K) = `, then from Theorem 9,

β (KV ) = β (KSP ) + n2 +m (`− n) .

Now we set β (KV ) = n− 1, and rule out all three cases for β (KSP ).

Case 1: m = n and ` = 0.

This gives β (KSP ) = n− 1 which is impossible by Theorem 10.

Case 2: m = n and ` > 0.

Since ` ∈ Z, we find β (KSP ) = n− 1− n` < −1.

Case 3: m < n.

We maximize β (KSP ) = n− 1− n2 +m (n− `) over ` and m by setting ` = 0

and m = n−1. Doing so, we reach the impossible conclusion that β (KSP ) ≤ −1.

3.3 A polyhedral Lyapunov rank algorithm

For polyhedral cone-space pairs, some generating set—and therefore the as-

sociated discrete complementarity set—is finite. This allows us to compute both

LL (KV ) and β (KV ). Our first algorithm computes LL (KV ) for any polyhedral

cone-space pair KV . It is based on the codimension formula (2.7); recall:

L ∈ LL (KV ) ⇐⇒ 〈s⊗ x, L〉 = 0 for all (x, s) ∈ C (KV ) ∩ (G1 ×G2). (3.3)

Given matrix representations for s⊗ x and L, the trace inner product 〈s⊗ x, L〉 is

equal to 〈vec (s⊗ x), vec (L)〉. We leverage this to compute LL (KV ): finding all L
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satisfying (3.3) becomes the computation of an orthogonal complement.

Algorithm 3 Compute a basis for LL (KV )
Input: A cone-space pair KV

Output: A basis for LL (KV )

function ll(KV )

G1 ← a minimal set of generators for KV

G2 ← a minimal set of generators for K∗V . obtainable from G1

C ← {(x, s) | x ∈ G1, s ∈ G2, 〈x, s〉 = 0} . discrete complementarity set

W ← {vec (s⊗ x) | (x, s) ∈ C}

B ← a basis for W⊥ . computed via e.g. Gram-Schmidt

return {mat (b) | b ∈ B}

end function

If dim (V ) = n, then K will be input as a list of generators—essentially ele-

ments of Qn, or n-tuples of rational numbers. The arithmetic in Algorithm 3 should

be exact, so in general it is not possible to normalize the generators that arise.

We have a way to compute β (KV ): simply call ll (KV ) and count how many

elements we get back. In fact this is the best algorithm known for proper cones.

But if KV is not guaranteed to be proper, Theorem 9 provides a more efficient

approach. To use Theorem 9, we need to implement the “restrict to subspace” map

KV 7→ KW . Existing routines assume the dimension of V based on the length n of

the input generators, and make no provision for operating in a subspace (reminiscent

of why we introduced cone-space pairs). The difficulty is described in greater detail

by Orlitzky [27]. We simply present the algorithm, remarking that it is accurate
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only up to a change of basis. By Proposition 24, the change of basis is irrelevant.

Algorithm 4 Restrict KV to W (up to a change of basis)
Input: A cone-space pair KV and a subspace W of dimension m containing K

Output: A new cone-space pair JQm such that β (JQm) = β (KW )

function restrict to space(KV ,W )

B ← a basis for W

G← a minimal set of generators for KV

J ← ∅

for x ∈ G do

w ← the B-coordinates of x . disregarding coordinates for B⊥

J ← J ∪ {w}

end for

return cone (J)Qm

end function

We next describe an efficient algorithm for calculating the Lyapunov rank of a

cone-space pair KV . There are three expensive steps in Algorithm 3. The first is the

computation of the generators of K∗V . The standard approach uses the facet normals

of KV , and that problem grows with the number of generators of KV . The second

expensive operation is the combinatoric construction of the discrete complementarity

set. Finally, there is the basis computation using a relative of Gram-Schmidt. Since

the basis consists of vectorized n× n matrices, that takes place in Qn2 .

Algorithm 5 is often an improvement over Algorithm 3 because each of those

problems is reduced in size. The proper cone-space pair KSP in Theorem 9 will—in
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general—have fewer generators, fewer facets, fewer complementary pairs, and live

in a space of smaller dimension than KV . It is therefore easier to compute the

generators of K∗SP than it is for K∗V . Moreover, the discrete complementarity set of

KSP is constructed from two smaller sets than that of KV . Finally, if KSP lives in a

space of dimension m < n, then the basis computation takes place over Qm2 rather

than Qn2 . To be fair, we must now compute dim (K) and lin (K), and we potentially

call restrict to space() twice. However, those computations are relatively fast.

The efficient algorithm is implemented in the Sage Mathematics [39] system.

Algorithm 5 Compute the Lyapunov rank of KV

Input: A cone-space pair KV

Output: The Lyapunov rank of KV

function beta(KV )

β ← 0; n← dim (V ); m← dim (K); `← lin (K)

if m < n then

KV ← restrict to space (KV , span (KV ))

β ← β + (n−m)n . Lemma 5

end if

if ` > 0 then

KV ← restrict to space (KV , span (K∗V ))

β ← β + `m . Lemma 6

end if

return β + card (ll (KV )) . KV is proper here, so do it the hard way

end function
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3.4 The exponential connection

We restate a theorem of Schneider and Vidyasagar [35] in more general terms.

Theorem 12. If K is a proper cone in a finite-dimensional real Hilbert space V

and if L ∈ B (V ), then L ∈ Z (K) if and only if e−tL ∈ π (K) for all t ≥ 0.

This theorem has been used effectively. Elsner [10] equates exponentially-

positive, resolvent-positive, essentially-positive, quasimonotone, and cross-positive

operators. Damm [8] shows that Lyapunov-like operators on Sn+ and Hn
+ are the

familiar Lyapunov transformations from dynamical systems. Gowda and Tao [19]

characterize the Lie algebra of the automorphism group of a cone. We prove the

general version in two steps.

Lemma 7. If KV is a cone-space pair and if L ∈ B (V ), then e−tL ∈ π (KV ) for all

t ≥ 0 implies that L ∈ Z (KV ).

Proof. Let e−tL ∈ π (KV ) for all t ≥ 0, and take any (x, s) ∈ C (KV ). We show that

〈L (x), s〉 ≤ 0 and it follows that L ∈ Z (KV ). Since e−tL (x) ∈ K,

1
t

〈[
e−tL − idV

]
(x), s

〉
= 1
t

〈
e−tL (x), s

〉
≥ 0 for all t > 0.

Take the limit as t→ 0 to find 〈L (x), s〉 ≤ 0.

To prove the other inclusion, we will ultimately rely on Theorem 12 for proper

cones. To do that, we’ll use the proper subcone that appears in Theorem 9. Recall

that the cone-space pair KS×{0}S⊥ is obtained from KV by isometry. The following

propositions relate its positive and Z-operators to those of KV .
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Proposition 31. If KV is a cone-space pair and if ψ is an isometry, then we have

Z (ψ (KV )) = ψZ (KV )ψ−1 and π (ψ (KV )) = ψπ (KV )ψ−1.

Proposition 32. If KV is a cone-space pair, then L ∈ Z (KV ) if and only if L∗ ∈

Z (K∗V ), and L ∈ π (KV ) if and only if L∗ ∈ π (K∗V ).

The next few results constitute the converse of Lemma 7. The first demon-

strates the converse for the pointed cone-space pair KS × {0}S⊥ . We then do away

with the isometry and show that the converse holds for any pointed cone-space pair.

Using duality, we show the same for solid cone-space pairs, and the general case

follows as a consequence.

Proposition 33. If KV is a pointed cone-space pair, then L ∈ Z (KS × {0}S⊥)

implies that e−tL ∈ π (KS × {0}S⊥) for all t ≥ 0.

Proof. Consider Proposition 30 and expand L ∈ Z (KS × {0}S⊥),

e−tL =
∞∑
k=0

(−t)k

k!

[
A B
0 D

]k
=
[
e−tA B̃

0 e−tD

]
.

Note that KS is pointed and thus proper, so Theorem 12 applied to A and e−tA

gives the result by Proposition 30.

This result extends to any pointed cone-space pair through Proposition 31.

Proposition 34. If KV is a pointed cone-space pair, then L ∈ Z (KV ) implies that

e−tL ∈ π (KV ) for all t ≥ 0.

Proof. Write φ (KV ) = KS × {0}S⊥ where φ is an isometry and KS is proper. Take

any L ∈ Z (KV ). Then φLφ−1 ∈ Z (KS × {0}S⊥) by Proposition 31, and e−tφLφ−1 =
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φe−tLφ−1 ∈ π (KS × {0}S⊥) for all t ≥ 0 by Proposition 33. Use Proposition 31

again to obtain e−tL ∈ π (KV ) for all t ≥ 0.

It also extends to solid cone-space pairs through Proposition 32.

Proposition 35. If KV is a solid cone-space pair, then L ∈ Z (KV ) implies that

e−tL ∈ π (KV ) for all t ≥ 0.

Proof. The cone-space pair K∗V is pointed by Proposition 2. Apply Proposition 34

to K∗V to obtain L∗ ∈ Z (K∗V ) if and only if e−t(L∗) ∈ π (K∗V ) for all t ≥ 0. Now

apply Proposition 32 to both expressions.

The result for a solid cone-space pair is all we need for the general case.

Lemma 8. If KV is a cone-space pair, then L ∈ Z (KV ) implies that e−tL ∈ π (KV )

for all t ≥ 0.

Proof. The proof of Proposition 33 relies on the fact that KS is proper, or that

KV is pointed. However, using Proposition 35, we can prove Proposition 33 and

Proposition 34 without the assumption that KV and (thus) KS are pointed.

Theorem 13. If KV is a cone-space pair and if L ∈ B (V ), then L ∈ Z (KV ) if and

only if e−tL ∈ π (KV ) for all t ≥ 0.

Proof. Combine Lemma 7 and Lemma 8.

A similar result appears in Hilgert, Hofmann, and Lawson [21]. The first two

items of their Theorem III.1.9 state that L ∈ Z (KV ) if and only if e−tL ∈ π (KV ) for

all t ≥ 0. However, the remaining items suggest some hidden assumptions, and its
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proof relies on another Theorem I.5.27 where the cone is solid. Nevertheless, their

Theorem I.5.17 seems to provide the machinery needed to prove the result.

Examples 7, 8, 16, and 17 corroborate Theorem 13 in simple cases. The next

provides an application to dynamical systems.

Example 24. The system x′ (t) = −L (x (t)) has solution x (t) = e−tL (x (0)). If

L ∈ Z (KV ) for some cone-space pairKV , then Theorem 13 shows that e−tL ∈ π (KV )

for all t ≥ 0. Therefore, x (t) remains in K for t > 0 if x (0) ∈ K.

Recall that linspace (Z (KV )) = LL (KV ). By applying Theorem 13 to both L

and −L, we extend the a result of Gowda and Tao [19] to all closed convex cones.

The equivalence L ∈ Lie (G) ⇐⇒ etL ∈ G for all t ∈ R is a known property of

matrix groups discussed in Section 7.6 of Baker [3].

Theorem 14. If KV is a cone-space pair and if L ∈ B (V ), then the following are

equivalent:

• L is Lyapunov-like on KV .

• etL ∈ Aut (KV ) for all t ∈ R.

• L ∈ Lie (Aut (KV )).

Thus, LL (KV ) is the Lie algebra of Aut (KV ). Hilgert, Hofmann, and Lawson

derive the same result from their Theorem III.1.9, but the aforementioned caveats

still apply. When K = V = Rn, this confirms the fact that the n× n real matrices

are the Lie algebra of the general linear group of degree n over R.

Corollary 8. If KV is a cone-space pair, then β (KV ) = dim (Lie (Aut (KV ))).
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Chapter 4

Bounding the Lyapunov rank of a proper cone

4.1 An improved upper bound

Since β (K) := dim (LL (K)), we have β (K) ≥ m if we can exhibit m linearly-

independent Lyapunov-like operators on K. In determining β (K), it is therefore

useful to have an upper bound on its values; if one can achieve the upper bound,

then the bound is equal to β (K). Certainly we have the bound β (K) ≤ dim (B (V ))

in the ambient space V , but this can be improved when K is proper.

Notice from the codimension formula (2.7) that LL (K)⊥ consists of operators

of the form s⊗x where (x, s) ∈ C (K). By definition we have β (K) = dim (B (V ))−

dim
(
LL (K)⊥

)
, so if we can construct m linearly-independent s ⊗ x from C (K),

then we improve the upper bound to β (K) ≤ dim (B (V )) − m. In this manner,

Gowda and Tao [19] showed that β (K) ≤ dim (B (V ))− dim (V ).

Theorem 15 (Gowda and Tao). If K is a proper cone in a real Hilbert space V of

dimension n ≥ 2, then 1 ≤ β (K) ≤ n2 − n.

Proof. We supply the proof of Gowda and Tao because we will use the details

later. Since K is proper, Fenchel’s Theorem 13 guarantees that K is generated

by its boundary [11]. There must exist n linearly-independent vectors on bdy (K),

because otherwise, dim (K) < n. An invertible change-of-basis operator sends those
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n vectors to an orthonormal basis {x1, x2, . . . , xn} of V , so by Proposition 24, we

suppose that {x1, x2, . . . , xn} ⊆ bdy (K).

Proposition 5 implies that for each xi ∈ bdy (K), there exists an associated

nonzero si ∈ bdy (K∗) such that (xi, si) ∈ C (K). Define Ai to be si ⊗ xi. Then

{Ai}ni=1 is a pairwise-orthogonal n-element subset of LL (K)⊥.

If dim (V ) = n, we are able to improve this upper bound to β (K) ≤ (n− 1)2.

The construction of the first n elements of LL (K)⊥ follows Gowda and Tao; we

then proceed to construct an additional n− 1 operators for a total of 2n− 1.

When K is polyhedral, we have β (K) ≤ n and that bound is tight [19]. We

can therefore assume that K is non-polyhedral. Since all closed convex cones are

polyhedral when dim (V ) = n ≤ 2, we will assume that n ≥ 3.

Lemma 9. If K is a proper cone in a real Hilbert space V of dimension n ≥ 2 and if

bdy (K) is contained in a finite union of hyperplanes ⋃mi=1Hi, then K is polyhedral.

Proof. A hyperplane H is a supporting hyperplane to K if H ∩K ⊆ bdy (K) and

H ∩K 6= ∅. Our proof uses induction on the number of hyperplanes Hi which do

not support K. No generality is lost by ignoring the Hi such that Hi ∩K = ∅.

Case 1: base case.

In this case, each Hi supports K and defines a half-space Gi containing K.

The cone C := ⋂m
i=1Gi is polyhedral [31]. We claim that K = C.

Assume on the contrary that K 6= C. Since K is proper and n ≥ 2, every point

of int (K) is a convex combination of two points in bdy (K). We therefore assume
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that there is an x ∈ bdy (C) such that x /∈ K. Suppose y ∈ int (K) ⊆ int (C), and

define S := {(1− α) y + αx | 0 ≤ α < 1}. Since C and K are closed and convex [31],

we have S ⊆ int (C), and there exists an r ∈ S such that r ∈ bdy (K).

Now bdy (K) ⊆ ⋃m
i=1Hi by assumption, and r ∈ bdy (K) implies that r ∈ Hi

for some i. We should have r ∈ S ⊆ int (C), yet r /∈ int (C) because Hi is a

supporting hyperplane to C. This contradiction shows that K = C is polyhedral.

Case 2: inductive case.

Some Hi, which we call H̃, is not a supporting hyperplane to K and must

therefore intersect the interior of K. This H̃ splits K into two proper cones K1 and

K2, each contained in one of the two half-spaces defined by H̃. Both K1 and K2

are proper, since K was. But now H̃ is a supporting hyperplane to both K1 and

K2, so they both have fewer non-supporting hyperplanes than K itself. Apply the

induction hypothesis to conclude that K1 and K2 are polyhedral. As such, K1 and

K2 are finitely-generated. Let,

K1 := cone ({x1, x2, . . . , x`}) ; K2 := cone ({y1, y2, . . . , yk}) .

By appealing to the convexity of K, it is easy to see that

K = K1 ∪K2 = cone ({x1, x2, . . . , x`, y1, y2, . . . , yk}) .

Hence, K is polyhedral.

We will use this lemma to ensure the existence of linearly-independent vectors

on the boundary of K. Those vectors will in turn be used to find pairs (x, s) ∈ C (K)

that form linearly-independent elements s⊗ x ∈ LL (K)⊥.
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Theorem 16. If K is a proper cone in a real Hilbert space V of dimension n ≥ 3,

then 1 ≤ β (K) ≤ (n− 1)2.

Proof. Let xi, si, and Ai for i ∈ {1, 2, . . . , n} be as in the proof of Theorem 15. We

assume that {si}ni=1 is linearly-independent, because that will turn out to be the

worst case. As a result, the si give us n distinct points on the boundary of K∗.

Now, there exists a nonzero b1 ∈ bdy (K∗) such that b1 /∈ ⋃n
i=1span ({si}),

because bdy (K∗) does not consist of only n rays. By Proposition 5, we can find a

nonzero a1 ∈ bdy (K) with 〈a1, b1〉 = 0; that is, with (a1, b1) ∈ C (K). We define

a new operator B1 := b1 ⊗ a1, and claim that the set {B1} ∪ {Ai}ni=1 is linearly-

independent in B (V ). To see this, suppose that B1 = ∑n
i=1 αiAi. Note that

Ai (xj) = 〈xi, xj〉 si =


si if i = j,

0 otherwise.

If αj 6= 0 for some index j, then we apply B1 to xj:

B1 (xj) = 〈a1, xj〉 b1 =
[
n∑
i=1

αiAi

]
(xj) = αjsj.

This contradicts either our choice of b1, or that sj 6= 0.

This procedure can be repeated to produce b2, . . . , bn−1, but it becomes more

difficult with the addition of each successive bi. We therefore assume that we have

(n− 2) such vectors b1, b2, . . . , bn−2 with {b1, b2, . . . , bn−2, sj} linearly-independent

for all j, and proceed to find bn−1. Define the sets,

Fj := span ({b1, b2, . . . , bn−2, sj}) .
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Each Fj defines an (n− 1)-dimensional space, a hyperplane. By Lemma 9, we can

find a bn−1 ∈ bdy (K∗) not contained in any of the Fj. Define Bk := bk ⊗ ak like we

defined B1 previously. We will show that the set

{B1, B2, . . . , Bn−1, A1, . . . , An} (4.1)

is linearly-independent. Suppose that

µn−1Bn−1 +
n−2∑
k=1

µkBk +
n∑
i=1

λiAi = 0

and apply both sides to xj,

µn−1 〈an−1, xj〉 bn−1 + λjsj +
n−2∑
k=1

µk 〈ak, xj〉 bk = 0. (4.2)

If µn−1 6= 0, then this can be rewritten

〈an−1, xj〉 bn−1 = − λj
µn−1

sj −
n−2∑
k=1

µk
µn−1

〈ak, xj〉 bk ∈ Fj. (4.3)

We chose bn−1 /∈ Fj, so the only solution to (4.3) is when 〈an−1, xj〉 = 0. Since

j ∈ {1, 2, . . . , n} was arbitrary, we must have 〈an−1, xj〉 = 0 for all j. But {xj}nj=1

is a basis for V and an−1 6= 0, so this is a contradiction: we cannot have µn−1 6= 0.

But if µn−1 = 0, then equation (4.2) reduces to

λjsj +
n−2∑
k=1

µk 〈ak, xj〉 bk = 0.

We have assumed that {b1, b2, . . . , bn−2, sj} is linearly-independent for all j; thus the

remaining coefficients are λj and µk are all zero as well. As a result, the set (4.1)

is linearly-independent. There are 2n− 1 elements of LL (K)⊥ in (4.1), so we must

have β (K) ≤ n2 − (2n− 1) = (n− 1)2.

The argument fails for bn. If {b1, b2, . . . , bn−1, sj} is linearly-independent in V ,

then {b1, b2, . . . , bn, sj}, which contains n+ 1 elements, cannot be.
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4.2 Applications of the bound

We now give two examples where Theorem 16 can be used to deduce the

Lyapunov rank of a cone. The first is adapted from Theorem 26 of Rudolf et al. [33].

Example 25. The cone of positive polynomials in R3 is

P3
+ :=

{
(x1, x2, x3)T ∈ R3

∣∣∣ ∀t ∈ R, p(t) = x1 + x2t+ x3t
2 ≥ 0

}
.

It consists of coefficient vectors of all nonnegative polynomials p (t) with deg (p) ≤ 2.

Its dual can be expressed [4, 24, 26] in terms of the moment cone in R3,

M3 := cone
({(

1, t, t2
)T ∣∣∣∣ t ∈ R}) ;

(
P3

+

)∗
= cl

(
M3

)
.

Note immediately that any x = (x1, x2, x3)T ∈ P3
+ has x3 ≥ 0 since p (t) ≥ 0 for

large t. And any root of p (t) must be a double root: consider its graph, which lies

on or above the x-axis. If t0 is a (double) root of p (t), then p′ (t0) = 0.

The extreme directions of
(
P3

+

)∗
are known. Rudolf et al. [33] cite sections

2.2 and 6.6 of Karlin and Studden [24] for the following:

Ext
(
cl
(
M3

))
=
{
α
(
1, t, t2

)T ∣∣∣∣ α > 0, t ∈ R
}
∪
{

(0, 0, α)T
∣∣∣ α ≥ 0

}
.

We show that the following four operators are Lyapunov-like on P3
+:

L1 := I, L2 :=

0 1 0
0 0 2
0 0 0

 , L3 :=

2 0 0
0 1 0
0 0 0

 , and L4 :=

0 0 0
2 0 0
0 1 0

 .
To do that, it suffices by Proposition 22 to check the discrete complementarity

set C
(
P3

+

)
∩
(
Ext

(
P3

+

)
× Ext (cl (M3))

)
. The identity is trivially Lyapunov-like.

Suppose that x = (x1, x2, x3)T ∈ P3
+ and s ∈ Ext (cl (M3)) with 〈x, s〉 = 0.
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Case 1: s = (0, 0, α)T .

The equation 〈x, s〉 = 0 implies that x3 = 0. If x2 6= 0, then p (t) has odd

degree and cannot be nonnegative for all t ∈ R. Thus x = (x1, 0, 0)T . Compute

each inner product and verify that 〈Li (x), s〉 = 0.

Case 2: s = α (1, t0, t20)T .

Here 〈x, s〉 = 0 implies that t0 is a double root of p (t) = x1 +x2t+x3t
2. Thus,

(1/α) 〈L2 (x), s〉 = x2 + 2x3t0 = p′ (t0) = 0,

(1/α) 〈L3 (x), s〉 = 2x1 + x2t0 = 2p (t0)− t0p′ (t0) = 0− 0 = 0, and

(1/α) 〈L4 (x), s〉 = 2x1t0 + x2t
2
0 = 2t0p (t0)− t20p′ (t0) = 0− 0 = 0.

In both cases, we have exhibited four linearly-independent elements of LL
(
P3

+

)
,

so we must have β
(
P3

+

)
= dim

(
LL

(
P3

+

))
≥ 4. But β

(
P3

+

)
≤ (n− 1)2 = 4 by

Theorem 16, implying equality.

This example inspires a few corollaries.

Corollary 9. The upper bound β (K) ≤ (n− 1)2 is tight when n = dim (V ) = 3,

and each possible value β (K) ∈ {1, 2, 3, 4} is achieved for some cone K in V .

Proof. The upper bound is tight for n = 3 since it is achieved by P3
+. Other cones

in R3 with Lyapunov ranks 1, 2, 3, and 4 are known [19].

Every symmetric cone is perfect [19], and in nontrivial spaces, there always

exist symmetric cones whose Lyapunov rank exceeds the dimension of the ambient

space. We show that asymmetric cones with the same property exist.
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Corollary 10. For every integer n ≥ 3, there exists an asymmetric cone K in an

n-dimensional Hilbert space having β (K) > n.

Proof. Define the cone K := P3
+ × Rn−3

+ in the space R3 × Rn−3. K is asymmetric

since K∗ = M3 × Rn−3
+ 6= K. Lyapunov rank is additive on proper cones by

Proposition 27, so β (K) = n+ 1 and dim (R3 × Rn−3) = n.
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Chapter 5

Linear games on proper cones

In this chapter, we present a generalization of a two-person zero-sum matrix

game [23, 29, 40]. Classically, such a game involves a matrix A ∈ Rn×n and the

set of “strategies” ∆ := conv (e) from which two players are free to choose. If the

players choose x, y ∈ ∆, respectively, then the game is played by evaluating yTAx

as the “payoff” to the first player. The payoff to the second player is −yTAx.

Each player will try to maximize his payoff in this scenario, or—what is

equivalent—try to minimize the payoff of his opponent. In fact, the existence of

optimal strategies is guaranteed for both players [23]. The value of the matrix game

A is the payoff resulting from optimal play,

v (A) := max
x∈∆

min
y∈∆

(
yTAx

)
= min

y∈∆
max
x∈∆

(
yTAx

)
.

The payoff to the first player in this case is v (A). Corresponding to v (A) is an

optimal strategy pair (x̄, ȳ) ∈ ∆×∆ such that

ȳTAx ≤ v (A) = ȳTAx̄ ≤ yTAx̄ for all (x, y) ∈ ∆×∆.

The relationship between A, x̄, ȳ, and v (A) has been studied extensively [22, 30].

Gowda and Ravindran [15] were motivated by these results to ask if the matrix A

can be replaced by a linear transformation L, and whether or not the unit simplex

∆ can be replaced by a more general set—a base of a self-dual cone. We extend

their generalization to non-self-dual (but still proper) cones.
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5.1 Definition of a linear game

In the classical setting, the interpretation of the strategies as probabilities

results in a strategy set ∆ ⊆ Rn+ that is compact, convex, and does not contain the

origin. Moreover, any nonzero x ∈ Rn+ is a unique positive multiple x = λb of some

b ∈ ∆. Several existence and uniqueness results are predicated on those properties.

Definition 26. Suppose that K is a cone and B ⊆ K does not contain the origin.

If any nonzero x ∈ K can be uniquely represented x = λb where λ > 0 and b ∈ B,

then B is a base of K.

The set ∆ is a compact convex base for the proper cone Rn+. Every x ∈ ∆ also

has entries that sum to unity, which can be abbreviated by the condition 〈x,1〉 = 1

where 1 := (1, 1, . . . , 1)T happens to lie in the interior of Rn+. This motivates a

generalization where Rn+ is replaced by a proper cone.

Definition 27. Let V be a finite-dimensional real Hilbert space. A linear game in

V is a tuple (L,K, e, e∗) where L ∈ B (V ), the set K is a proper cone in V , and the

points e and e∗ belong to int (K) and int (K∗) respectively.

Definition 28. We define the game G and its dual game G∗ by

G := (L,K, e, e∗) , G∗ := (L∗, K∗, e∗, e) .

The conditions on V , L, K, e, and e∗ are all implicit when we refer to a linear

game (L,K, e, e∗). The game G is intended to introduce the names L, K, e, and e∗

under those conditions in the statements of our theorems.
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Definition 29. The strategy sets for the game G are,

∆1 (G) := {x ∈ K | 〈x, e∗〉 = 1} ; ∆2 (G) := {y ∈ K∗ | 〈y, e〉 = 1} .

Since e ∈ int (K) and e∗ ∈ int (K∗), these are bases for their respective cones. In the

context of the game G we will usually omit the argument G and write ∆i to mean

∆i (G). However, in a few cases where multiple games are in scope, the dependence

of ∆1 and ∆2 on the game data is unavoidable.

Definition 30. The payoff operator for the game G is (x, y) 7→ 〈L (x), y〉.

To play the game G, the first player chooses an x ∈ ∆1, and the second player

independently chooses a y ∈ ∆2. This completes the turn, and the payoffs are

determined by applying the payoff operator to (x, y). The payoff to the first player

is 〈L (x), y〉, and the payoff to the second player is −〈L (x), y〉.

The payoff operator is continuous in both arguments because it is bilinear and

the ambient space is finite-dimensional. We constructed the strategy sets ∆1 and

∆2 to be compact and convex; as a result, a general min-max principle (originally

due to von Neumann and appearing as Theorem 1.5.1 in Karlin [23]) guarantees the

existence of optimal strategies for both players.

Definition 31. A pair (x̄, ȳ) ∈ ∆1 × ∆2 is an optimal pair for the game G if it

satisfies the saddle-point inequality,

〈L (x), ȳ〉 ≤ 〈L (x̄), ȳ〉 ≤ 〈L (x̄), y〉 for all (x, y) ∈ ∆1 ×∆2. (5.1)

At an optimal pair, neither player can unilaterally increase his payoff by chang-

ing his strategy. The value 〈L (x̄), ȳ〉 is unique by the same min-max theorem.
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Definition 32. The value of the game G is v (G) := 〈L (x̄), ȳ〉, where (x̄, ȳ) is any

optimal pair in the sense of Definition 31.

We thus have an equivalent characterization of a game’s value that does not

require us to have a particular optimal pair in mind,

v (G) = max
x∈∆1

min
y∈∆2

〈L (x), y〉 = min
y∈∆2

max
x∈∆1

〈L (x), y〉 . (5.2)

Example 26. If K = Rn+ in V = Rn and e = e∗ = (1, 1, . . . , 1)T ∈ int (K), then

K∗ = K, and ∆1 = ∆2 = ∆. For any L ∈ Rn×n, the linear game G is a two-person

zero-sum matrix game. Its payoff is (x, y) 7→ yTLx, and its value is

v (G) = v (L) = max
x∈∆

min
y∈∆

(
yTLx

)
= min

y∈∆
max
x∈∆

(
yTLx

)
.

5.2 The value of a linear game

Theorem 17. Let (x̄, ȳ) ∈ ∆1 × ∆2 for the game G. Then L∗ (ȳ)
∗
4 νe∗ and

L (x̄) < νe for some ν ∈ R if and only if ν = v (G) and (x̄, ȳ) is optimal for G.

Proof. Suppose that ν = v (G) and (x̄, ȳ) is optimal for G. The inequality (5.1)

shows that for all y ∈ ∆2, we have 〈L (x̄), y〉 ≥ v (G) = v (G) 〈e, y〉. But ∆2 is

a base for K∗, so the inequality holds for every y ∈ K∗. Rearrange it to obtain

〈L (x̄)− v (G) e, y〉 ≥ 0 for all y ∈ K∗. By definition, L (x̄) − v (G) e ∈ (K∗)∗ = K,

and we write L (x̄) < νe. The proof of the other inequality is similar.

Conversely, suppose that ν, x̄, and ȳ satisfy L∗ (ȳ)
∗
4 νe∗ and L (x̄) < νe.

Work backwards to find that 〈L (x), ȳ〉 ≤ ν for all x ∈ ∆1 and 〈L (x̄), y〉 ≥ ν for all

y ∈ ∆2. Substitute x = x̄ and y = ȳ to obtain ν = 〈L (x̄), ȳ〉 = v (G).
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A number of classical results in game theory are based on an analogue of

Theorem 17. One states that if you multiply the entries of a payoff matrix by a

nonnegative value, then the payoffs are scaled but the optimal strategies remain

optimal. Another says that adding a constant to each entry of a payoff matrix

increases the value of the corresponding game by that constant.

Corollary 11. For all λ ≥ 0, the value of the game (λL,K, e, e∗) is λv (G).

Proof. Let (x̄, ȳ) be optimal for G with value ν = v (G) so that the cone inequalities

in Theorem 17 hold. Multiply both sides of each inequality by λ ≥ 0; the inequalities

remain true with λL in place of L and λν in place of ν. By the converse of the same

theorem, λν = λv (G) is the value of the game (λL,K, e, e∗).

Corollary 12. If (x̄, ȳ) is optimal for G and if λ ∈ R, then (x̄, ȳ) is optimal for the

game H := (L+ λ (e⊗ e∗), K, e, e∗) and v (H) = v (G) + λ.

Proof. Note that 〈L (x̄) + λ [e⊗ e∗] (x̄), ȳ〉 = v (G) + λ 〈e, ȳ〉 = v (G) + λ, and let

ν := v (G) + λ. Now x̄, ȳ, and ν satisfy the conditions of Theorem 17 for the game

H, and therefore (x̄, ȳ) is optimal for H with v (H) = ν = v (G) + λ.

Corollary 13. If (x̄, ȳ) is optimal for the game G, then (ȳ, x̄) is optimal for the

game (−L∗, K∗, e∗, e) with value −v (G).

Proof. Suppose (x̄, ȳ) is optimal for G, and negate the cone inequalities of Theo-

rem 17 so that they reverse. If M = −L∗, C = K∗, and ν = −v (G), then the game

H := (M,C, e∗, e) has M (ȳ) <C νe∗ and M∗ (x̄) 4C∗ νe. Now ȳ ∈ ∆1 (H) and
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x̄ ∈ ∆2 (H), so by Theorem 17 again, the pair (ȳ, x̄) is optimal for H and its value

is v (H) = ν = −v (G).

Theorem 18. If (x̄, ȳ) is an optimal pair for the game G, then

L (x̄)− v (G) e < 0
∗
4 v (G) e∗ − L∗ (ȳ)

and

〈ȳ, L (x̄)− v (G) e〉 = 0 = 〈v (G) e∗ − L∗ (ȳ), x̄〉 .

Moreover, L (x̄) = v (G) e if ȳ ∗� 0 and L∗ (ȳ) = v (G) e∗ if x̄ � 0.

Proof. The nonnegativity and orthogonality relations follow from Theorem 17.

Suppose ȳ
∗� 0. Then 〈x, ȳ〉 > 0 for all nonzero x < 0. In particular,

〈L (x̄)− v (G) e, ȳ〉 > 0, since L (x̄)−v (G) e < 0 from Theorem 17. But we also have

〈L (x̄)− v (G) e, ȳ〉 = 0, so these statements contradict unless L (x̄)− v (G) e = 0, or

L (x̄) = v (G) e. The proof of the other implication is similar.

Proposition 36. If L ∈ π (K) for the game G, then v (G) ≥ 0.

Proof. If (x̄, ȳ) is optimal for G, then L (x̄) < 0, and v (G) = 〈L (x̄), ȳ〉 ≥ 0.

Proposition 37. L ∈ S (K) in the game G if and only if v (G) > 0.

Proof. Suppose L ∈ S (K) with L (d) � 0 for d � 0. From Theorem 17, we have

v (G) e∗
∗
< L∗ (ȳ) implying that

〈v (G) e∗, d〉 ≥ 〈L∗ (ȳ), d〉 ⇐⇒ v (G) ≥ 〈ȳ, L (d)〉
〈e∗, d〉

> 0.

If instead we assume that v (G) > 0, then Theorem 17 gives L (x̄) < v (G) e � 0

since both v (G) > 0 and e � 0. So x̄ is a point such that L (x̄) � 0. However, x̄
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may lie on the boundary of K. In that case, using the continuity of L, we can find

a nearby point d � 0 such that L (d) � 0. Therefore L ∈ S (K).

Proposition 38. −L∗ ∈ S (K∗) in the game G if and only if v (G) < 0.

Proof. Apply Corollary 13 to Proposition 37.

Proposition 39. The function v (G) is continuous in L.

Proof. Use (5.2) to define h (L) = v (G) by

h (L) := max
x∈∆1

min
y∈∆2

〈L (x), y〉 = min
y∈∆2

max
x∈∆1

〈L (x), y〉 .

By the Cauchy-Schwarz inequality, we have |〈M (x), y〉| ≤ δ (M) for all x ∈ ∆1 and

y ∈ ∆2 where

δ (M) := ‖M‖ max
x∈∆1,y∈∆2

‖x‖ ‖y‖ .

From this, deduce two inequalities,

h (L+M) = min
y∈∆2

[
max
x∈∆1

(〈L (x), y〉+ 〈M (x), y〉)
]
≤ h (L) + δ (M)

and

h (L+M) = max
x∈∆1

[
min
y∈∆2

(〈L (x), y〉+ 〈M (x), y〉)
]
≥ h (L)− δ (M) .

It follows that |h (L+M)− h (L)| ≤ δ (M) which goes to zero with ‖M‖.

Proposition 40. Suppose L is invertible and L−1 ∈ π (K). Then,

v (G) = 1
〈L−1 (e), e∗〉 = 1〈

e, (L∗)−1 (e∗)
〉 = v (G∗)

and an optimal pair (x̄, ȳ) for G is x̄ = v (G)L−1 (e) and ȳ = v (G) (L∗)−1 (e∗).
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Proof. Since L−1 ∈ π (K), we also have (L∗)−1 ∈ π (K∗). Define,

u := L−1 (e) , x̄ := u/ 〈u, e∗〉

w := (L∗)−1 (e∗) , ȳ := w/ 〈w, e〉 .

Since u < 0 and e∗
∗� 0, we have 〈u, e∗〉 > 0 implying that x̄ < 0. Likewise, ȳ

∗
< 0.

Furthermore, 〈x̄, e∗〉 = 1 = 〈ȳ, e〉 by construction, so x̄ ∈ ∆1 and ȳ ∈ ∆2. If we

define ν := 1/ 〈u, e∗〉 = 1/ 〈w, e〉, then x̄, ȳ, and ν satisfy Theorem 17.

5.3 Completely-mixed games

A completely-mixed matrix game [22] is one in which no pure strategy is chosen

with probability zero in any optimal strategy. Thus any optimal strategies (x̄, ȳ) for

the players lie in int
(
Rn+
)
. This idea was generalized by Gowda and Ravindran [15]

to self-dual cones, and the extension to non-self-dual cones is straightforward.

Definition 33. A game G is completely-mixed if every optimal pair (x̄, ȳ) for G has

x̄ � 0 and ȳ
∗� 0.

The following lemmata show that two particular line segments through the

interior of K∗ will intersect its boundary at (at least) two points.

Lemma 10. If 0 ∗≺ ȳ ∈ ∆2 and ȳ 6= u ∈ V with 〈u, e〉 = 1, then there exist t > 0

and s < 0 in R such that (1 + t) ȳ − tu ∈ bdy (K∗) and (1 + s) ȳ − su ∈ bdy (K∗).

Proof for t > 0. If ȳ
∗
< u, then 〈ȳ − u, e〉 = 0 implies that ȳ = u (since e � 0)

contrary to our assumption. So ȳ
∗

� u. The ray ȳ + t (ȳ − u) = (1 + t) ȳ− tu passes
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from the interior of K∗ (for small t) to its exterior (for large t); at some point the

ray intersects bdy (K∗). The case where s < 0 is similar.

Lemma 11. If 0 ∗≺ ȳ ∈ ∆2 and 0 6= u ∈ V with 〈u, e〉 = 0, then there exist t > 0

and s < 0 in R such that ȳ − tu ∈ bdy (K∗) and ȳ − su ∈ bdy (K∗).

Proof for t > 0. Since ∆2 is bounded, ȳ − tu /∈ ∆2 for large t. But 〈ȳ − tu, e〉 = 1

for all t, so eventually, ȳ
∗

� tu. The ray ȳ − tu passes from the interior of K∗ (for

small t) to its exterior (for large t); at some point the ray intersects bdy (K∗). The

case where s < 0 is similar.

The next theorem generalizes a result of Gowda and Ravindran [15] which

itself generalizes an earlier result of Kaplansky [22]. Note that if ȳ ∗� 0 for an

optimal (x̄, ȳ), then L (x̄) = 0 from Theorem 18. And since 〈x̄, e∗〉 = 1 requires

x̄ 6= 0, neither ker (L) nor ker (L∗) are trivial in that case.

Theorem 19. If v (G) = 0 and ȳ ∗� 0 for every optimal pair (x̄, ȳ), then

(i) ker (L∗) ∩ e⊥ = {0};

(ii) dim (ker (L∗)) = dim (ker (L)) = 1;

(iii) L (x̄) = 0 and L∗ (ȳ) = 0 for any optimal pair (x̄, ȳ);

(iv) the optimal pair (x̄, ȳ) is unique and x̄ � 0.

Proof of (i). Suppose u ∈ ker (L∗) ∩ e⊥ so that L∗ (u) = 0 and 〈u, e〉 = 0. If u 6= 0,

then by Lemma 11, we can find a y := ȳ− tu ∈ bdy (K∗). But then, we would have
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y ∈ ∆2; and by Theorem 17,

L∗ (y) = L∗ (ȳ)
∗
4 0 = v (G) e∗.

In that case—again by Theorem 17—the pair (x̄, y) would also be optimal. However;

y
∗
� 0, contrary to assumption. Therefore we must have u = 0.

Proof of (ii). Note that ker (L∗) ∩ e⊥ is an intersection of subspaces, the former of

which is nontrivial, and the latter of which has dimension dim (V )−1. If ker (L∗) had

dimension greater than one, then it would intersect non-trivially with e⊥ because the

sum of their dimensions would exceed dim (V ). Therefore, 0 < dim (ker (L∗)) ≤ 1

implying that dim (ker (L∗)) = dim (ker (L)) = 1.

Proof of (iii). We already have L (x̄) = 0 from ȳ
∗� 0, so begin by taking a nonzero

u ∈ ker (L∗) such that u /∈ span ({ȳ}). If there is no such u, then we are done. Note

that 〈u, e〉 6= 0 unless u = 0 from item (i), so by scaling we assume that 〈u, e〉 = 1.

Apply Lemma 10 to obtain y := (1 + t) ȳ − tu ∈ bdy (K∗). Since y ∈ ∆2,

this gives us a second optimal pair (x̄, y) with y
∗
� 0, contrary to our assumptions.

Therefore there is a contradiction inherent in the ability to choose u /∈ span ({ȳ}),

and we conclude that ker (L∗) = span ({ȳ}).

Proof of (iv). We already know that L (x̄) = 0, and that dim (ker (L)) = 1. There-

fore, ker (L) = span ({x̄}). From this it follows that

L∗ (V )⊥ = ker (L) = span ({x̄}) ⇐⇒ L∗ (V ) = x̄⊥.

If x̄ � 0, then 〈x̄, y〉 > 0 for any nonzero y ∈ K∗ and thus K∗∩ x̄⊥ = {0}. But, if we

assume on the contrary that x̄ ∈ bdy (K), then we can find a nonzero c ∈ bdy (K∗)
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with 〈x̄, c〉 = 0 using Proposition 5. Furthermore, since L∗ (V ) = x̄⊥, we have

c = L∗ (d) for some nonzero d ∈ V .

Now, depending on whether or not 〈d, e〉 = 0, we can apply either Lemma 10

or Lemma 11 (through a similar procedure as in the previous items) to find another

y ∈ ∆2 ∩ bdy (K∗) with L∗ (y) ∈ span ({c}). For example, when 〈d, e〉 = 0, we will

have y := ȳ − sd where s < 0. But this y ∈ bdy (K∗) is also optimal, since

〈L (x̄), y〉 = 〈x̄, L∗ (y)〉 = 〈x̄, αc〉 = 0.

This is a contradiction, so our assumption that x̄ ∈ bdy (K) was flawed, and x̄ �

0. For uniqueness, recall that L (x) = 0 = L∗ (y) for any optimal (x, y). Since

dim (ker (L)) = dim (ker (L∗)) = 1, any other optimal pair would comprise multiples

of x̄ and ȳ, but only 1x̄ and 1ȳ belong to ∆1 and ∆2.

Corollary 14. A game is completely-mixed if and only if ȳ ∗� 0 for each of its

optimal pairs (x̄, ȳ).

Proof. Use Corollary 12 if necessary, and then apply Theorem 19.

Completely-mixed games admit nice characterizations. The completely-mixed

property is preserved under duality. Moreover, the values of the game G and its

dual G∗ coincide and can be computed explicitly.

Theorem 20. If G is completely-mixed, then so is G∗ and v (G∗) = v (G).

Proof. Let G be completely-mixed. Suppose that (z̄, w̄) is optimal for the game

G∗. We claim that (w̄, z̄) is optimal for the game G. From Theorem 17 we have
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L∗ (z̄)
∗
< v (G∗) e∗ and that implies,

〈L∗ (z̄), x̄〉 ≥ v (G∗) 〈e∗, x̄〉 ⇐⇒ 〈z̄, L (x̄)〉 ≥ v (G∗) .

Now (x̄, ȳ) is optimal for the completely-mixed G, so L (x̄) = v (G) e by Theorem 18.

Substitute to find v (G) ≥ v (G∗). For the reverse inequality v (G∗) ≥ v (G), apply a

similar technique to

(L∗)∗ (w̄) 4(K∗)∗ v (G∗) e ⇐⇒ L (w̄) 4 v (G∗) e.

Next we show that G∗ is completely-mixed. Suppose that (z̄, w̄) is optimal for

the game G∗. From Theorem 17, we have L∗ (z̄) − v (G∗) e∗
∗
< 0. Since x̄ � 0, this

gives 〈L∗ (z̄)− v (G∗) e∗, x̄〉 > 0 unless L∗ (z̄) − v (G∗) e∗ = 0. Using the fact that

v (G∗) = v (G) and ȳ
∗� 0 =⇒ L (x̄) = v (G) e from Theorem 18,

〈L∗ (z̄)− v (G∗) e∗, x̄〉 = 〈z̄, v (G) e〉 − v (G∗) 〈e∗, x̄〉 = 0.

So, L∗ (z̄) = v (G∗) e∗, and by a similar argument, L (w̄) = v (G∗) e. Apply Theo-

rem 17 to those two equalities to conclude that (w̄, z̄) is optimal for the game G

with corresponding value v (G∗) = v (G). As a result, G∗ is completely-mixed.

Theorem 21. If G is completely-mixed, then it has a unique optimal pair (x̄, ȳ),

and v (G) 6= 0 if and only if L is invertible. If L−1 exists, then

v (G) = 1/
〈
L−1 (e), e∗

〉
, x̄ = v (G)L−1 (e) , and ȳ = v (G)L−1 (e∗) .

Proof. Theorem 19 and Corollary 14 give existence and uniqueness of (x̄, ȳ). If L−1

exists, then x̄ and ȳ are found by solving L (x̄) = v (G) e and L∗ (ȳ) = v (G) e∗.
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Afterwards, v (G) is found by solving 1 = 〈x̄, e∗〉 = v (G) 〈L−1 (e), e∗〉. Thus when

L−1 exists, v (G) 6= 0.

If L is not invertible, then there exists a nonzero u ∈ ker (L). Note that

ker (L) ∩ (e∗)⊥ = ker (L+ λe⊗ e∗) ∩ (e∗)⊥. Combine Corollary 12 and Theorem 19

to conclude that 〈u, e∗〉 6= 0. Without loss of generality, let 〈u, e∗〉 = 1. Now

L∗ (ȳ) = v (G) e∗ by Theorem 18, so 〈L∗ (ȳ), u〉 = v (G) 〈e∗, u〉 = v (G). But, we also

have 〈L∗ (ȳ), u〉 = 〈ȳ, L (u)〉 = 0. Combining these equations gives v (G) = 0.

All of the results in this section survive if instead we have x̄ � 0 for every

optimal pair (x̄, ȳ). Recall that by Corollary 13, every optimal pair (x̄, ȳ) for the

game G gives us an optimal pair (ȳ, x̄) for the game (−L∗, K∗, e∗, e) and vice-versa.

So, if every optimal pair for G has x̄ � 0, then (−L∗, K∗, e∗, e) is completely-mixed.

Reasoning backwards, G is completely-mixed as well.

5.4 Games over Lyapunov-like, Stein-like, and Z-operators

We now turn our attention to games whose payoff operators have some struc-

ture. The first class that we investigate are the games G where L ∈ Z (K). One

of the reasons why Z-operators are important is for their connection to the stabil-

ity of dynamical systems—a connection that we will exploit. First we recall some

equivalent properties of Z-operators [18].

Definition 34. A linear operator L is positive stable if the real part of every eigen-

value of L is positive. A negative stable operator is defined similarly.
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Theorem 22. If K is a proper cone in a finite-dimensional real Hilbert space and

if L ∈ Z (K), then the following are equivalent.

• L−1 exists, L−1 ∈ π (K), and L−1 ∈ π (int (K)).

• L ∈ S (K).

• L is positive stable.

• L∗ is positive stable.

• L∗ ∈ S (K∗).

• (L∗)−1 exists, (L∗)−1 ∈ π (K∗), and (L∗)−1 ∈ π (int (K∗)).

The items involving the adjoint follow because the spectra of L and L∗ coincide.

An immediate corollary of Theorem 22 and Proposition 37 is the following.

Corollary 15. If L ∈ Z (K), then v (G) > 0 if and only if L is positive stable.

Theorem 23. If v (G) > 0 and if L ∈ Z (K), then G is completely-mixed.

Proof. Suppose that (x̄, ȳ) is optimal for G. Then from Theorem 17 and the fact

that v (G) > 0, we have L (x̄) < v (G) e � 0. Moreover, L ∈ S (K) by Proposition 37,

so Theorem 22 shows that L−1 exists with L−1 ∈ π (K) ∩ π (int (K)). We can thus

invert to obtain x̄ < v (G)L−1 (e) � 0, showing that x̄ � 0 for any optimal pair

(x̄, ȳ). By Corollary 14, the game G is completely-mixed.

Theorem 24. If L is Lyapunov-like on K in G, then v (G∗) = v (G) and

(i) v (G) > 0 if and only if L is positive stable;
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(ii) v (G) < 0 if and only if L is negative stable;

(iii) if v (G) 6= 0, then G is completely-mixed.

Proof. The enumerated claims follow from applying Corollary 15 and Theorem 23 to

±L ∈ Z (K). If v (G) 6= 0, then item (iii) and Theorem 20 show that v (G∗) = v (G).

If v (G∗) 6= 0, then L∗ ∈ LL (K∗), so item (iii) and Theorem 20 show that v ((G∗)∗) =

v (G) = v (G∗). If neither v (G) 6= 0 nor v (G∗) 6= 0, then v (G) = v (G∗) = 0.

The Stein-like operators of Definition 19 are a discrete analogue of Lyapunov-

like operators. Stein’s theorem [36] characterizes Schur stability.

Definition 35. An operator L is Schur stable if all of its eigenvalues λ have |λ| < 1.

Note that A ∈ cl (Aut (K)) implies that A ∈ π (K). Combined with the fact

that every Stein-like operator is a Z-operator, this allows us to deduce the following.

Lemma 12. If K is a proper cone in V and if L := idV −A is Stein-like on K, then

L is positive stable if and only if A is Schur stable.

Proof. Lemma 1 in Schneider [34] shows that L ∈ S (K) if and only if A is Schur

stable. Apply Theorem 22 to L ∈ Z (K).

To characterize games over Stein-like operators, we need the following lemma.

We ultimately apply it to the game from Corollary 13.

Lemma 13 (Gowda and Sznajder [16], Lemma 2.7). If K is a proper cone and

A ∈ cl (Aut (K)) ∩ S (K), then A ∈ Aut (K).
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Corollary 16. If L := idV −A is Stein-like on K and if −L∗ ∈ S (K∗), then

A ∈ Aut (K).

Proof. From the definition of S (K∗), there exists a d
∗� 0 such that −L∗ (d) =

A∗ (d) − d
∗� 0; in other words, A∗ (d) ∗� d. Apply Lemma 13 to conclude that

A∗ ∈ Aut (K∗), which is equivalent to A ∈ Aut (K).

Proposition 41. If L := idV −A is Stein-like on K, then −L∗ ∈ S (K∗) if and only

if A−1 is Schur stable.

Proof. Suppose−L∗ ∈ S (K∗) so thatA ∈ Aut (K) by Corollary 16 and−L ∈ S (K).

The set S (K) is closed under precomposition by Aut (K), since any element of

Aut (K) is a homeomorphism and will send int (K) to an open set contained in K.

Therefore A−1 ◦ (−L) = idV −A−1 ∈ S (K). But idV −A−1 is also a Z-operator on

K, so A−1 is Schur stable by Theorem 22 and Lemma 12.

To go backwards, note that idV −A−1 is Stein-like on K, so if A−1 is Schur

stable, then idV −A−1 ∈ Z (K)∩S (K) by Theorem 22 and Lemma 12. Precompose

with A ∈ Aut (K) to find −L = A− idV ∈ S (K) implying −L∗ ∈ S (K∗).

Theorem 25. If L := idV −A is Stein-like on K in G, then v (G∗) = v (G) and,

(i) v (G) > 0 if and only if A is Schur stable;

(ii) v (G) < 0 if and only if A ∈ Aut (K) and A−1 is Schur stable;

(iii) if v (G) 6= 0, then G is completely mixed.

Proof. The first enumerated item follows from Corollary 15 and Lemma 12. For the
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second item, note that v (G) < 0 if and only if −L∗ ∈ S (K∗) by Corollary 13 and

Proposition 37. Then apply Proposition 41.

The v (G) > 0 case in the third item is supplied by Theorem 23, so we can

assume that v (G) < 0. In that case, item (ii) shows that A−1 ∈ Aut (K) ⇐⇒

(A∗)−1 ∈ Aut (K∗) ⊆ π (K∗). If (x̄, ȳ) is optimal for G, then from Theorem 17,

L∗ (ȳ) = ȳ − A∗ (ȳ)
∗
4 v (G) e∗.

Apply (A∗)−1 to both sides and rearrange to obtain

ȳ
∗
< (A∗)−1 (ȳ)− v (G) (A∗)−1 (e∗)

∗
< −v (G) (A∗)−1 (e∗) .

The expression on the right is a positive multiple of an interior point of K∗. As a

result, ȳ ∗� 0. Since (x̄, ȳ) was arbitrary, the game G is completely-mixed.

The proof that v (G∗) = v (G) is now identical to the one in Theorem 24.

5.5 Solution by conic programming

Recall the two-person zero-sum matrix game of Example 26. As early as

1947, von Neumann observed [9] that such a game could be expressed as a linear

program. The reduction of a two-person zero-sum matrix game to a linear program

is straightforward, and its constraints are reminiscient of Theorem 17. Using a

similar procedure, we will construct a conic program equivalent to a linear game.

Definition 36. If K1 and K2 are closed convex cones in a finite-dimensional real

Hilbert space W and if b, c ∈ W , then the primal P and dual D conic programming

problems are,
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P :=



minimize 〈b, ξ〉

subject to Λ (ξ) <K2 c

ξ <K1 0

D :=



maximize 〈c, γ〉

subject to Λ∗ (γ) 4K∗1
b

γ <K∗2
0.

A primal feasible point satisfies the cone constraints of P. A primal optimal

solution is a primal feasible ξ̄ such that
〈
b, ξ̄

〉
≤ 〈b, ξ〉 for all primal feasible ξ. The

value of a primal feasible point ξ is 〈b, ξ〉. A dual feasible point, its value, and dual

optimal solution are defined similarly.

The strong duality of linear programming does not necessarily hold for conic

programs. Nevertheless, any primal feasible ξ provides an upper bound 〈b, ξ〉 on the

value of any dual optimal solution. Likewise, any dual feasible γ provides a lower

bound 〈c, γ〉 on the value of any primal optimal solution. Therefore, if we can find

a primal/dual feasible pair (ξ, γ) such that 〈b, ξ〉 = 〈c, γ〉, then we know that (ξ, γ)

are primal/dual optimal solutions to P and D in Definition 36.

Recall from Theorem 17 that any optimal pair (x̄, ȳ) for the game G satisfies

L (x) < νe and L∗ (ȳ)
∗
4 νe∗. It therefore suffices to consider pairs meeting those

criteria. If we express those criteria along with the constraints on ∆1 and ∆2, then

we arrive at the following descriptions of the players’ objectives,
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p1 :=



maximize ν

subject to x ∈ K

〈x, e∗〉 = 1

ν ∈ R

L (x) < νe

p2 :=



minimize ω

subject to y ∈ K∗

〈y, e〉 = 1

ω ∈ R

L∗ (y)
∗
4 ωe∗.

We know that an optimal pair exists and that ω = ν = v (G) for that pair.

Moreover, the optimization problems p1 and p2 can be converted into primal/dual

conic programs satisfying Definition 36.

Theorem 26. In the game G, there exists a pair of dual conic programs (P,D)

such that every optimal pair of G induces a pair of primal/dual optimal solutions

to (P,D), and every pair of primal/dual optimal solutions to (P,D) contains an

optimal pair of G.

Proof. Define the (real) product space W := V × R× R in which P and D will

take place. In this product space, our free variables are ξ := (x, ν1, ν2)T ∈ W and

γ := (y, ω1, ω2)T ∈ W . The remaining data are,

K2 := K1 := K × R+ × R+ ⊆ W,

c := b := (0,−1, 1)T ∈ W, and

Λ :=

 L −e e
−〈·, e∗〉 0 0
〈·, e∗〉 0 0

 ∈ B (W ) .

As a result, K∗2 = K∗1 = K∗ × R+ × R+, and Λ∗ = ΛT can be found by block-
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transposition. Substitute these data into Definition 36 to obtain

P =



minimize
〈 0
−1

1

,
xν1
ν2

〉

subject to

 L −e e
−〈·, e∗〉 0 0
〈·, e∗〉 0 0


xν1
ν2

 <K1

 0
−1

1


xν1
ν2

 <K1

0
0
0


and

D =



maximize
〈 0
−1

1

,
 yω1
ω2

〉

subject to

 L∗ −e∗ e∗

−〈·, e〉 0 0
〈·, e〉 0 0


 yω1
ω2

 4K∗1

 0
−1

1


 yω1
ω2

 <K∗1

0
0
0

 .
Simplify and note that maximizing any real function f (x) is equivalent to minimiz-

ing −f (x). Define ν := ν1 − ν2 and ω := ω1 − ω2. Then,

P =



maximize ν1 − ν2 = ν

subject to x ∈ K

ν1 ∈ R+

ν2 ∈ R+

〈x, e∗〉 = 1

L (x) < νe

D =



minimize ω1 − ω2 = ω

subject to y ∈ K∗

ω1 ∈ R+

ω2 ∈ R+

〈y, e〉 = 1

L∗ (y)
∗
4 ωe∗.

Suppose that (x̄, ȳ) is optimal for the game G. Then x̄ ∈ K with 〈x̄, e∗〉 = 1,

and L (x) < v (G) e from Theorem 17. If v (G) ≥ 0, set ν1 = v (G) and ν2 = 0;
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otherwise, set ν1 = 0 and ν2 = −v (G). The point ξ := (x̄, ν1, ν2)T is now primal

feasible with objective value ν = v (G). Likewise, γ := (ȳ, ω1, ω2)T will be dual

feasible for suitable ω1, ω2 and have objective value ω = v (G). Since ν = ω = v (G),

the pair (ξ, γ) contains primal/dual optimal solutions to (P,D).

Now suppose that ξ̄ = (x̄, ν̄1, ν̄2)T is primal optimal and γ̄ = (ȳ, ω̄1, ω̄2)T is

dual optimal for (P,D). Through circular reasoning, we know that
〈
b, ξ̄

〉
= 〈c, γ̄〉;

otherwise,
(
ξ̄, γ̄

)
would be worse than any pair of primal/dual optimal solutions

obtainable from G. Thus we can define ν :=
〈
b, ξ̄

〉
= ν̄1 − ν̄2 = ω̄1 − ω̄2. The

feasibility of ξ̄ and γ̄ implies that x̄ ∈ ∆1 with L (x) < νe and ȳ ∈ ∆2 with

L∗ (y)
∗
4 νe∗. By Theorem 17, the pair (x̄, ȳ) is optimal for G, and v (G) = ν.

Symmetric cones are a special case of self-dual cones. Games over self-dual

cones were studied by Gowda and Ravindran [15] and form the basis for this chapter.

With regard to Theorem 26, symmetric cones have a nice property.

Corollary 17. Every linear game over a symmetric cone is solved by an associated

symmetric conic program.

Proof. If K is symmetric, then K2 = K1 = K × R+ × R+ is symmetric in our

construction of the pair (P,D).

This connection is useful because efficient algorithms to solve symmetric conic

programs are known in many cases [2].
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